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Abstract 

Background:  Emerging resistance to anti-malarial drugs has led malaria researchers to investigate what covariates 
(parasite and host factors) are associated with resistance. In this regard, investigation of how covariates impact malaria 
parasites clearance is often performed using a two-stage approach in which the WWARN Parasite Clearance Estima‑
tor or PCE is used to estimate parasite clearance rates and then the estimated parasite clearance is regressed on the 
covariates. However, the recently developed Bayesian Clearance Estimator instead leads to more accurate results 
for hierarchial regression modelling which motivated the authors to implement the method as an R package, called 
“bhrcr”.

Methods:  Given malaria parasite clearance profiles of a set of patients, the “bhrcr” package performs Bayesian 
hierarchical regression to estimate malaria parasite clearance rates along with the effect of covariates on them in the 
presence of “lag” and “tail” phases. In particular, the model performs a linear regression of the log clearance rates on 
covariates to estimate the effects within a Bayesian hierarchical framework. All posterior inferences are obtained by a 
“Markov Chain Monte Carlo” based sampling scheme which forms the core of the package.

Results:  The “bhrcr” package can be utilized to study malaria parasite clearance data, and specifically, how covariates 
affect parasite clearance rates. In addition to estimating the clearance rates and the impact of covariates on them, the 
“bhrcr” package provides tools to calculate the WWARN PCE estimates of the parasite clearance rates as well. The fitted 
Bayesian model to the clearance profile of each individual, as well as the WWARN PCE estimates, can also be plotted 
by this package.

Conclusions:  This paper explains the Bayesian Clearance Estimator for malaria researchers including describing the 
freely available software, thus making these methods accessible and practical for modelling covariates’ effects on 
parasite clearance rates.
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Introduction
In the 1990s, resistance to available anti-malarial drugs 
such as chloroquine and sulfadoxine–pyrimethamine 
worsened across areas of the world where malaria is 
endemic [1]. As a consequence, morbidity and mortality 
associated with malaria increased, especially among Afri-
can children, who account for most deaths from malaria 
[1]. To counteract this, artemisinin-based combination 
therapy (ACT) was introduced in the mid-1990s. Recent 
marked increases in the availability and use of ACT, 
together with the increased use of insecticide-treated 
bed nets, have substantially reduced global morbidity and 
mortality from falciparum malaria [2]. However, these 
gains are threatened by the emergence of artemisinin 
resistance [3].

Artemisinin resistance can cause the malaria para-
sites to clear more slowly after treatment and thus slow 
parasite clearance can indicate resistance. It is worth 
noting that slow parasite clearance could also be related 
to host factors such as decreased immunity, inadequate 
dosing or poor drug absorption. Understanding how 
covariates relate to parasite clearance rate is important 
for understanding host and parasite factors’ association 
with delayed parasite clearance, characterizing resist-
ance and defining spatio-temporal trends in resistance. 
The parasite clearance rate is defined as the negative of 
the slope of the log-parasitaemia profile over the time 
in which the anti-malarial is having its primary effect, 
where this time period is called the “decay” phase. There 
are some difficulties that arise in calculating parasite 
clearance rates. First, some patients’ profiles may con-
tain a “lag” phase, before the decay phase, in which the 
parasite density remains constant, or even increases, in 
a period right after drug administration [4, 5]. Second, 
there might be also a “tail” phase, after the decay phase, 
where the true parasite count remains close to the detec-
tion limit, with no decline over a few measurements, and 
once the detection limit is reached, observations are left-
censored. Lastly, there may exist errors in the measured 
values of parasite densities (see [6, 7] for more details). 
The Paras​ite Clear​ance Estim​ator (PCE) was developed 
by the WorldWide Antimalarial Resistance Network 
(WWARN) in response to the need from field research-
ers for a method to quickly and reliably estimate parasite 
clearance rates, while accounting for the existence of lag 
phases, tail phases, and censored observations [8].

In some studies, the clearance rates are of interest 
themselves and for these studies the WWARN PCE is 
a powerful tool. In other studies, as in [3] and [9], the 
primary interest in the clearance rates is to understand 
how they are associated with parasite and host factors; 
such understanding can provide insights into the mech-
anism of artemisinin resistance. For these studies, one 

common approach to estimating the effect of individual 
level covariates on clearance rates is to use a two-stage 
procedure, where the WWARN PCE is followed by a 
regression. Even though using the two-stage approach 
is straightforward, it has some drawbacks. For instance, 
the WWARN PCE handles profiles with a small number 
of measurements in a way that can potentially introduce 
substantial bias in the second-level regression. Addition-
ally, as discussed in [10], the two-stage procedure results 
in confidence intervals that fail to meet their prescribed 
coverage guarantees [11], studies a general form of a sta-
tistical inference problem involving two components and 
provides examples in which a two-stage or plug-in proce-
dure performs poorly compared to a full model analysis. 
These shortcomings of the two-stage approach moti-
vated [10] to develop the Bayesian Clearance Estimator. 
This procedure uses a Bayesian hierarchical model to 
estimate both clearance rates and the impact of patient 
level covariates on them, while accounting for lag phase, 
tail phase, and censored observations. Simulations in 
[10] suggest that the Bayesian methodology provides 
improvements in terms of frequentist properties such 
as bias and correct coverage of confidence (or credible) 
intervals. Given the advantages of the Bayesian approach 
over the two-stage analysis, an R [12] package bhrcr 
was built to provide researchers with software that per-
forms the Bayesian hierarchical regression on clearance 
rates. The bhrcr package provides tools to calculate the 
WWARN PCE estimates of the parasite clearance rates as 
well.

The rest of the paper is structured as follows. Some 
fundamental concepts in Bayesian data analysis are first 
briefly reviewed, as the adopted model falls in the Bayes-
ian statistical inference context. The Bayesian hierarchi-
cal regression model introduced and developed by [10] 
will be then presented. A description of the bhrcr pack-
age, where the built-in data sets and functions are illus-
trated by examples, will then follow.

Bayesian data analysis
In this paper, a Bayesian approach is adopted to build up 
and implement the model. Before presenting the details 
of the Bayesian hierarchical regression model, some basic 
concepts in Bayesian analysis are first briefly reviewed. 
Many of the following materials in this section are cov-
ered in more detail in [13].

Bayesian inference
Statistical inference is about drawing conclusions, from 
numerical data or samples, about quantities that are 
not observed. As a general notation, let y denote the 
observed data; in this paper’s model, y is the malaria 
parasite densities over time for each patient. Let θ denote 

http://www.wwarn.org/tools-resources/toolkit/analyse/parasite-clearance-estimator-pce
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unobservable quantities or population parameters of 
interest; for example, θ could include the average half-
life of the decay phase and the amount by which different 
covariates modify this average half-life. While in classical 
statistics θ is considered as a fixed unknown, in Bayesian 
statistical inference, θ is considered a random variable 
and inferences about θ are probability statements condi-
tional on the observed data y.

In order to make such a probability statement about θ 
given y, the first step is to specify a full probability model 
providing a joint distribution for θ and y. The joint prob-
ability density function can be written as:

where p(θ) and p(y|θ) are often referred to as the prior 
density and the sampling density or data likelihood, 
respectively. The prior distribution represents the prior 
belief about the parameters such as the average half life 
of the decay period. Having specified the prior p(θ) as 
well as the likelihood p(y|θ) which shows how the data 
is generated, one would then use the property of condi-
tional probability, known as Bayes’ rule, to calculate the 
posterior density of θ:

where p(y) =
∫

p(θ)p(y|θ)dθ is the marginal density of 
the data y. Since the factor p(y) does not depend on the 
unknown θ , it only plays the role of a normalizing con-
stant, and hence, it can be dropped from the above for-
mula without invalidating inferences about θ , in which 
case one obtains the unnormalized posterior density:

This reveals the relationship that “posterior” is propor-
tional to “prior” × “data likelihood” in Bayesian statistics. 
Once p(θ |y) is calculated (analytically, or numerically in 
the case where analytical derivations are difficult/impos-
sible), point estimators for θ can be calculated such as the 
mean, median or mode of p(θ |y) . 95% credible intervals 
for components of θ are intervals that contain 95% of 
the posterior density of those components; typically the 
central 95% part of the density. For example, a 95% cred-
ible interval for the average half-life of the decay phase 
of [12,  18] h would mean that based on the data, there 
is 95% probability that the average half-life is between 
[12,  18] h. Credible intervals are Bayesian analogues of 
confidence intervals although there are some differences 
in interpretation.

Hierarchical models
Many statistical problems involve multiple parameters 
that can be connected in some way by the structure of the 

p(θ , y) = p(θ) p(y|θ)

p(θ |y) =
p(θ , y)

p(y)
=

p(θ) p(y|θ)

p(y)

p(θ |y) ∝ p(θ) p(y|θ).

problem. A joint probability model for these parameters 
should reflect their dependence. It is natural to model 
such a problem hierarchically, with observable outcomes 
conditional on certain parameters, which themselves fol-
low a distribution specified by some further parameters, 
known as hyperparameters.

Generally speaking, suppose there are a set of experi-
ments {1, . . . ,N } , in which experiment i is modelled by 
a likelihood p(yi|θi) where yi is the observed data and θi 
is the unknown parameter. In the case which is of inter-
est in this paper, each patient’s series of measurements 
of parasite density over time is an experiment (where if 
there are N patients, there are N experiments), yi is the 
vector of observed parasite densities for patient i and θi is 
the set of parameters which describe the probability dis-
tribution of yi for patient i, including the parasite clear-
ance rate, the time of changepoint between the lag and 
decay phases, and the time of changepoint between the 
decay and tail phases. Let θ = (θ1, . . . , θN ) represent all 
parameters in a single vector. The simplest form of a hier-
archical model is to let each of the parameters θi be an 
independent sample from a common distribution p(θ |φ) 
governed by some unknown hyperparameter φ (see 
Fig. 1). The hyperparameter φ describes the distribution 
of the θ1, . . . , θN ; for example, it could include the vari-
ance of parasite clearance rates over the decay period. By 
assuming independence, p(θ |φ) can be expanded as

p(θ |φ) =

N
∏

i=1

p(θi|φ)

Fig. 1  An example hierarchical model where the parameter θi 
describes the probability distribution of the outcome yi for subject 
i. In this graphical model, an arrow from a to b indicates that b is 
generated via a through a distribution pa(b) , or in other words, a 
describes the distribution of b. The main part of this hierarchical 
model is that θi ’s are themselves assumed to be draws from a 
common distribution described by a hyperparameter φ , which within 
a Bayesian framework, has its own prior distribution



Page 4 of 16Sharifi‑Malvajerdi et al. Malar J            (2019) 18:4 

The key “hierarchical” part is that φ is not a fixed param-
eter and thus, in a Bayesian framework, has its own prior 
distribution p(φ) . Consequently, the joint prior distribu-
tion of all unknowns is

and the joint posterior distribution is

Finally, in order to get the marginal posterior of θ given y, 
φ must be integrated out:

Markov chain Monte Carlo (MCMC)
Bayesian inference for hierarchical models is often dif-
ficult in practice due to the large number of parameters 
that commonly appear in a hierarchical model. In gen-
eral, if the posterior p(θ |y) cannot be found analytically 
or if it does not appear to be one of the standard distri-
butions, one may need to draw samples from the poste-
rior distribution through the use of a simulation-based 
method. Markov chain Monte Carlo (MCMC) is a gen-
eral simulation method to draw a chain of samples of θ 
from the posterior distribution. In the MCMC toolbox, 
there are some frequently used methods, such as Gibbs 
sampling and Metropolis-Hastings algorithms. In the 
hierarchical regression model introduced in this paper, a 
combination of samplers known as Metropolis-Hastings-
within-Gibbs are used to get samples from the posterior 
distribution. For details of these methods, please see [13].

In MCMC, the longer the chain, the closer the result-
ing values are to draws from the target distribution that 
is being estimated. To make the resulting chain more like 
an independent set of samples, two steps are normally 
taken. First, a “burn-in” period often needs to be set for 
the algorithm to discard the first m samples. The idea is 
that a “bad” starting point may over-sample regions that 
have very low posterior probability before the sampler 
converges to the target distribution. Hence, the Markov 
chain needs to be given enough time to reach its equi-
librium. Second, MCMC algorithms generate a Markov 
chain of samples, each of which will be correlated with 
nearby samples. Thus, if uncorrelated samples are 
required for inference, one can thin the resulting chain 
(after the burn-in period) by only taking every n-th value, 
which is called “thinning”.

Bayesian hierarchical regression on clearance rates
The Bayesian Clearance Estimator developed in [10] 
is briefly presented in this section. Let yij represent the 
jth parasitaemia measurement for patient i at time tij , 
where 1 ≤ i ≤ N  and 1 ≤ j ≤ ni . Suppose δℓi  is the time of 

p(φ, θ) = p(φ) p(θ |φ)

p(θ ,φ|y) ∝ p(φ, θ) p(y|φ, θ) = p(φ) p(θ |φ) p(y|θ).

p(θ |y) =

∫

p(θ ,φ|y)dφ.

changepoint between the lag and decay phases for patient 
i, and let δτi  be patient i’s time of changepoint between the 
decay and tail phases. As the first step in Bayesian analy-
sis, the data likelihood is specified, in which the observed 
data (in log scale) are assumed to follow a continuous 
piecewise linear model, where a constant lag phase is fol-
lowed by a linear decay and a constant tail:

Note that �A is the indicator function of A which takes 
the value one if A occurs, and zero otherwise. βi is the 
clearance rate of the ith individual, and the error term 
ǫij

iid
∼ N (0, σ 2

ǫ ) ( = normal distribution with mean 0 and 
variance σ 2

ǫ  ) represents biological variability and meas-
urement error. To further illustrate the model, consider 
Fig.  2 in which two clearance profiles containing simu-
lated noisy measurements along with the true underly-
ing models are provided. Fig. 2a corresponds to a profile 
that exhibits lag, decay, and tail phases, with parameters 
δℓ = 3 , δτ = 9 , β = 0.2 (negative of the slope of the decay 
phase), and α = 5 . Figure 2b shows a profile with only a 
decay phase, with parameters δℓ = 0 , δτ = 12 , β = 0.2 , 
and α = 5.

The second step towards a Bayesian data analysis is 
specifying the prior distributions for parameters of the 
model. Within a Bayesian hierarchical structure, the 
patients’ parameters {βi}Ni=1 and {αi}Ni=1 , are assumed to 
be drawn from a common distribution. This hierarchical 
structure allows one to borrow strength across patients 
to improve the estimation of patient-specifc parameters. 
Borrowing strength refers to that, due to regression to 
the mean, if a patient clears parasites particularly quickly 
(slowly), it is likely that idiosyncratic factors may have 
contributed to the patient’s particularly quick (slow) par-
asite clearance and that the patient’s true parasite clear-
ance rate over many infections would still be quicker 
(slower) than average but closer to the mean parasite 
clearance rate. For discussions of borrowing strength, 
see [13–15] (Chapters  6, 7 and 21, respectively). Fig-
ure 3 shows the hierarchical structure embedded in the 
model where each set of patient-specific parameters are 
assumed to be draws from a common distribution with 
some hyperparameters.

Here only the prior on the clearance rates {βi}Ni=1 which 
involves the hyperparameters γ and σ 2

β is introduced. See 
the Appendix for the complete set of prior distributions 
adopted.

Let Xi be the 1× p row vector of covariates for patient 
i. The prior on βi is

(1)
log(yij) = αi − βi

(

δℓi �tij<δℓi
+ tij�δℓi ≤tij≤δτi

+ δτi �tij>δτi

)

+ ǫij

log(βi)
indep.
∼ N (Xiγ , σ

2
β )
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where γ is a p× 1 vector of parameters representing the 
effect of covariates on {βi}Ni=1 . Note that γ is a parameter 
of interest in the model, as it represents the impact of 
covariates on parasite clearance rates. Furthermore, let-
ting Xi = 1 for all i corresponds to the case where there 
are no covariates and estimating the parasite clearance 
rates based on the Bayesian hierarchical model is of pri-
mary interest.

The bhrcr package
The bhrcr package takes serial measurements of a 
response on an individual (e.g., parasite densities after 
artemisinin administration) over time, and performs 
Bayesian hierarchical regression on the clearance rates 
(model shown in Fig.  3). While this tutorial illustrates 
the method in the context of malaria, the package can be 
utilized to analyse any clearance data fitting the Bayesian 
framework presented in the previous section. The Plas-
modium falciparum clearance data, previously analysed 
by [9, 10], is included in this package. The main function 
of the bhrcr package is clearanceEstimatorBayes, 
which will be described thoroughly later on. This function 
returns the WWARN PCE estimates as well as the esti-
mates from the Bayesian hierarchical model. The cal-
culatePCE function, which provides only the WWARN 
PCE estimates of the clearance rates, has been incor-
porated in the package as well. The generic summary, 
print, and plot functions, as well as the diagnos-
tics function, will also be illustrated by examples in the 
following subsections.
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Fig. 2  Examples of two profiles along with the true underlying models. a has lag, decay, and tail phases with parameters 
δℓ = 3, δτ = 9, β = 0.2, α = 5 . b only has a decay phase and its corresponding parameters are δℓ = 0, δτ = 12,β = 0.2,α = 5

Fig. 3  The model hierarchy for the Bayesian Clearance Estimator. 
Note that each blue box represents a patient and within the blue 
box of patient i, there are ni red boxes representing her associated 
parasitemia measurements. In this graphical model, a collection of 
variables A all pointing to a variable b simply means the distribution 
of b is described by the variables in A. Observe that, following the 
notation introduced in the previous section, a set of parameters 
θi = {αi ,βi , δ

ℓ
i , δ

τ
i } describes the distribution of the measurement 

vector y i = {yij}
ni
j=1 for patient i. Furthermore, each element of 

θi is assumed to be a sample of a distribution described by the 
hyperparameters appearing in the figure. For example, βi is assumed 
to be generated from a distribution which is described by γ and σ 2

β . 
This distribution and others are all introduced in the text
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To install the package, open a fresh R console and run:

which will automatically download the bhrcr package from 
CRAN and install it on your machine. For a quick demonstra-
tion of the package, please run the following functions:

Or one can run the slow example. In the interest of sav-
ing the users time, the MCMC in the slow example has 
already been run for users. The following demo will show 
you the saved results:

The Pursat data
The data sets contained in the bhrcr package consist 
of Plasmodium falciparum clearance profiles of 110 
patients, along with individual level covariates, meas-
ured in 2009 and 2010 in the Pursat province of Western 
Cambodia. Parasite densities were measured every 6 h, 
and the detection limit was 15 parasites/μl. Addition-
ally, parasites were divided into two genetically different 
groups, labeled group 1 and group 2. All 110 individuals 
were observed until no parasites were detected in their 
blood. The individual level covariates are:

•	 Sex: A factor variable with two levels F and M

•	 agegroup: 21+ (21 years of age or older), or 21− 
(younger than 21 years)

•	 vvkv: whether or not an individual was from Veal 
Veng or Kranvanh

•	 HbE: the number of alleles of Haemoglobin E variant
•	 athal: the number of alleles of thalassaemia variant

•	 g6pd: the number of alleles of G6PD deficient vari-
ant

•	 lnPf0: Log initial parasite density
•	 year2010: TRUE if 2010, FALSE if 2009
•	 group: 1 if parasite group 1, 0 if parasite group 2

For more details on the data, see [9, 10]. One can use 
data(“pursat”) and data(“pursat_covari-
ates”) to access the data sets.

The clearanceEstimatorBayes function
The clearanceEstimatorBayes function is the 
principal function in the bhrcr package that analyzes the 
input data set in the Bayesian framework presented in the 
previous section, and provides the posterior distributions 
of the parameters, along with point estimates and cred-
ible intervals. The arguments of the clearanceEs-
timatorBayes function as well as their default values 
and the major components of the function output are 
explained below:

Usage:
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•	 burnin: length of the burn-in period. The default 
value is 500.

•	 thin: step size of the thinning process. The default 
value is 50.

•	 filename: the name of the csv file used to store 
some output elements. This csv file, which is named 
“output.csv” by default, contains id, clearance.
mean, lag.median, and tail.median.

Output: an object of class “bhrcr” containing:

•	 clearance.post: a matrix of posterior samples 
for clearance rates {βi}.

•	 clearance.mean: mean values of the clearance 
rates’ posterior distributions.

•	 clearance.median: median values of the clear-
ance rates’ posterior distributions.

•	 gamma.post: a matrix of posterior samples for 
each element in γ.

•	 gamma.mean: mean values of the γ ’s posterior dis-
tributions.

•	 gamma.median: median values of the γ ’s posterior 
distributions.

•	 gamma.CI: credible intervals for each element in γ.
•	 halflifeslope.post: a matrix of posterior sam-

ples for the effect of covariates on log half-lives. The 
half-life value is calculated as log(2)/(clearance rate) . 
Thus, even though the method originally regressed 
log clearance rates rather than log half-lives 
on the covariates, one can obtain the slopes 
for a regression of the log half-lives by using 
log (half-life) = log log(2)− log (clearance rate).

•	 halflifeslope.mean: mean values of the pos-
terior distribution for the effect of covariates on log 
half-lives.

•	 halflifeslope.median: median values of the 
posterior distribution for the effect of covariates on 
log half-lives.

•	 halflifeslope.CI: credible intervals for the 
effect of covariates on log half-lives.

•	 changelag.post: posterior samples of change-
points between lag and decay phases, {δℓi }.

•	 lag.median: median values of the posterior distri-
butions of {δℓi }.

Arguments:

•	 data: a data frame, with no missing values, con-
taining clearance profiles of patients. This data 
frame must contain id, time, and count col-
umns, in that order. The first column represents the 
IDs of patients (not necessarily integers). The sec-
ond and third columns contain time and recorded 
parasitaemia (per microlitre) for each of the meas-
urements, respectively. data is allowed to have 
the predicted WWARN PCE estimates stored in 
another column named Predicted. If data 
doesn’t have the Predicted column, clear-
anceEstimatorBayes will automatically cal-
culate and provide the WWARN PCE rates. In this 
case it is strongly recommended to set outlier.
detect = TRUE. Otherwise, the WWARN PCE 
outlier detection would not be executed by the pro-
gram and the provided WWARN PCE rates would 
be inconsistent with the estimates generated by the 
online tool.

•	 covariates: a data frame (with no missing val-
ues), ordered according to patients’ order in data, 
containing individual level covariates. This argument 
may be NULL, in which case estimation of clearance 
rates is of primary interest.

•	 seed: an optional user-specified number used to 
initialize a pseudorandom number generator, with 
a default value of 1234. The seed argument helps 
users to reproduce their results.

•	 detect.limit: detection limit of the parasite den-
sity in blood (parasites per microlitre). The default 
value is 40.

•	 outlier.detect: indicator of whether or not to 
use the WWARN PCE outlier detection method [8]. 
The default value is TRUE and for the reasons stated 
before, it is recommended to set outlier.detect 
= TRUE if data is missing the Predicted col-
umn.

•	 conf.level: required confidence level for report-
ing estimates’ credible intervals, with a default value 
of 0.95.

•	 niteration: total number of simulations after the 
burn-in period, with a default value of 100,000.
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•	 changetail.post: posterior samples of change-
points between decay and tail phases, {δτi }.

•	 tail.median: median values of the posterior dis-
tributions of {δτi }.

•	 predicted.pce: WWARN PCE estimates of the 
parasite clearance rates.

This is a partial output list; see clearanceEstima-
torBayes man page in the bhrcr package for the full 
list.

The summary and print functions
The summary function produces comprehensive and 
compressed output information based on the results 
from the main function, clearanceEstimator-
Bayes. To further illustrate this point, the built-in data 
sets of bhrcr package, pursat and pursat_covari-
ates are used to provide a fast example. It may take 
significant time to run the code, depending on one’s com-
puter’s hardware. Here a small number of iterations is 
used for tutorial purpose. If the reader wants to obtain 
stationary results from the simulation, please consider a 
larger number of iterations. Details will be explained later 
in the diagnostics function section.

For reproducibility of the results, the seed argument 
is set to be 1234. The output given by summary includes 
a table containing the posterior mean and median of 
the regression coefficients which represent the impact 
of covariates on log parasite clearance rates and also on 
the corresponding log half-life values, along with the 95% 
credible intervals. If the input data set does not contain 
WWARN PCE estimates, the clearanceEstima-
torBayes function will automatically generate a folder 
called “PceEstimates” under your current working direc-
tory to store calculated WWARN PCE estimates for each 
individual.

In what follows, the results are displayed in terms of 
log half-lives which may be more intuitive to the malaria 
research community. The half-life is the time it takes for 
the parasite density to reduce by 50%; the longer the half-
life, the slower the parasite clearance.
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Fig. 4  In the fast example burnin = 50, niteration = 100, thin = 10, a traceplot of posterior πℓ over the whole 150 simulations; b ACF plot; 
c traceplot of thinned posterior samples of πℓ

Based on the output of the summary function, one 
can perform an analysis of the covariates of interest. As 
discussed in Section 4 of [10], one point of interest was 
whether or not there is evidence of resistance to arte-
misinins developing over time. Thus the indicator vari-
able year2010TRUE for the year of data collection was 
included. According to the results above, the parasite 
clearance half-life increased over time (positive mean and 
median) however this effect is not significant since its 
95% credible interval contains zero.

One may also want to know whether certain aspects 
of host genetics impact the resulting half-lives. There is 
a hypothesis given in [9] that red blood cell polymor-
phisms—including Haemoglobin E (HbE), thalassae-
mia (athal), and G6PD deficiency (g6pd)—may act to 
strengthen the pro-oxidant activity of parasite defenses 
against artemisinins, hence resulting in lower clearance 
rates. From the results in the example, none of these 
factors has a significant positive impact on log half-
lives since the 95% credible intervals all contain 0. For 
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a detailed posterior analysis based on longer Markov 
chains, please see Section 4 in [10].

Finally, one may be also interested in how acquired 
immunity to the effects of Plasmodium falciparum may 
impact half-lives. In the analysis, three covariates were 
included that are surrogates for increased likelihood 
of exposure to malaria: male gender (SexM), age 21 or 
greater (agegroup21+) and living in the Kravanh 
or Veal Veng districts (vvkvTRUE) which are close to 

forested regions (see [9]). Notice the slope of 0.1648 on 
the indicator variable SexM for males which means that 
parasite clearance half-life is estimated to be longer in 
male patients than in female patients, other factors in 
the model being held equal, by a factor of e0.1648 ≈ 1.179 . 
But one should be careful about the interpretation here 
because this is an observational study and there may be 
unmeasured confounders. The causal interpretation of 
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Fig. 5  In the slow example burnin = 500, niteration = 25,500, thin = 100, a traceplot of posterior πℓ over the whole 26,000 simulations; b 
ACF plot for the whole chain; c traceplot of thinned posterior samples of πℓ ; d ACF plot for the thinned chain
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each covariate is not straightforward and more or less 
speculative. The reader can refer to [16] for some details.

The print function is essentially the same. It only dis-
plays the posterior mean of the effect of covariates on both 
log clearance rates and log half-lives. Therefore, for a quick 
and straightforward summary of the estimated impact of 
covariates, the print function is recommended.

The diagnostics function
The diagnostics function provides diagnostic analysis 
such as trace plots, ACF (auto-correlation function) and 
PACF (partial auto-correlation function) plots for some 
important parameters in the MCMC process of the Gibbs 
sampling. These diagnostic plots help to assess whether it 
is plausible that the MCMC process has reached station-
arity and has been thinned sufficiently (see [17, 18]).

Here the previous results are used as an exam-
ple. All diagnostic plots will be saved under “./
mcmcDiagnostics”.

In the fast tutorial example, the burn-in period and the 
total length of simulation (also referred to as the length of 

Markov chain) are short, which may not provide enough 
time for convergence. For serious malaria research, here 
are some recommendations:

1.	 Detect outliers by using the methodology suggested 
in [8]. Flegg’s outlier detection method is recom-
mended. However, users can choose to toggle it off 
by setting outlier.detect = FALSE when 
they are running the main function clearanceEs-
timatorBayes. If the outliers are determined to 
be likely due to transcription errors, then the outly-
ing data points should be deleted;

2.	 Run the MCMC algorithm (already embedded 
in clearanceEstimatorBayes) with vari-
ous lengths and observe the trace plots, ACF plots 
(explained later), which helps determine the suitable 
burn-in period. Make sure the final sample is collected 
after the Markov chain reaches stationarity, i.e. the dis-
tribution of the values after the burn-in ends should be 
similar to the values at the middle and end of the chain. 
For the current version of bhrcr, parallelization is not 
supported so that users have to run one chain at a time;

3.	 Run the formal MCMC with a long run instead of 
just several short runs. Only a long run can give the 
Markov chain enough time to mix well and thus to 
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Fig. 6  a The posterior log-parasitaemia profile of patient 1. The profile of patient 1 is identified as only having a decay phase. The brown lines 
characterize the point-wise 95% credible intervals of the posterior samples. The solid black and blue lines represent, respectively, the posterior mean 
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and the purple line is the fit given by the WWARN PCE method. The green triangles are censored observations due to the detection limit
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get its equilibrium since one is not able to foresee 
how slow the mixing rate might be for real problems 
especially for those in high-dimensional space;

4.	 Optional: set a suitable step size in “thinning” to 
make sure the final sample is close to independent 
if independence or low correlation is highly desired 
(the ACF plot can be used to detect autocorrelation). 
But “thinning” will inevitably sacrifice some estima-
tion efficiency.

The above steps will be further explained below to show 
how to analyse the posterior samples from MCMC by 
using the fast and slow examples in the bhrcr package.

Here only one set of trace results is displayed. Fig-
ure  4 shows diagnostic plots corresponding to the 
parameter πℓ in the fast example. These plots are cause 
for concern. The traceplot over the whole simulation 
(including the burn-in period) is shown in Fig. 4a. The 
massive oscillations in the traceplot make it nearly 
impossible to ascertain whether or not stationarity has 
been attained over the course of the chain, giving no 
satisfactory choice of burnin. The ACF plot in Fig.  4b 
shows that significant autocorrelation exists in the 
candidate posterior sample. Note the blue dotted lines 
give the confidence interval beyond which the autocor-
relations are (statistically) significantly different from 
zero. In Fig. 4b, the autocorrelations are slowly decay-
ing instead of dropping to zero (within the blue dot-
ted lines) after small lags. The traceplot after a burnin 
and thinning, shown in Fig.  4c, is utterly uninforma-
tive for assessing convergence and stationarity of the 
resulting chain. Because, after burn-in and thinning, 
there are only (150− 50)/10 = 10 samples which is 
too small for accurate inference. For a more informa-
tive plot after thinning, please check Fig. 5c in the slow 
example. In conclusion, for the fast sample, the num-
ber of resulting iterations is clearly too few to result in 
a satisfactory posterior sample. In order to determine 
the suitable number of simulations, a sequential strat-
egy could be used in which one first tries a number of 
posterior samples and checks whether convergence has 
been achieved, and if it has not, then one takes more 
posterior samples. As a first try in the sequential strat-
egy, at least 200 and preferably 1000 samples are rec-
ommended. Since the fast sample involves considerably 
less samples, the posterior results produced by the fast 
example may not be very reliable; the fast sample is 
used only for tutorial purposes.

For the results of the Bayesian clearance estimator to 
truly reflect the posterior uncertainty in the estimators, 
one needs to be confident that stationarity has been 
achieved. Results that satisfy the requisite diagnostics are 
found in a longer sample (slowExample), which has 

been saved into a dataset called posterior.rda and 
incorporated into the bhrcr package. To see the results, 
run the slow example in the demo:

Figure  5 shows one set of plots related to the param-
eter πℓ . According to Fig. 5a, there is no long-term trend 
in the trace plot and the average value seems to be flat, 
which suggests the Markov chain has reached station-
arity. But Fig.  5b indicates that it has very high-order 
autocorrelation since the plot shows significant expo-
nential decay autocorrelation values persisting over a 
long period of lags which is a typical behaviour of the AR 
(Auto-Regressive) model. After burn-in and thinning (see 
Fig. 5c, d), a stationary thinned chain with uncorrelated 
nearby samples appears to have been obtained since its 
ACF exhibits a sharp cutoff after lag 0.

Gelman and Rubin [19] suggest running MCMC simu-
lations multiple times with different configurations and 
observing whether the within chain variation is similar to 
the between chain variation as a way of assessing MCMC 
convergence. Practitioners should take this advice. In the 
previous work [10], a Metropolis-Hasting-within-Gibbs 
sampling algorithm on this data set from six different 
starting locations was run, for 50,500 iterations (with 500 
iterations as burn-in) per starting location. As such, each 
chain was thinned by only keeping one out of every 100 
iterations. The six chains in total provided 3000 roughly 
independent posterior samples.

The plot function and posterior analysis
The plot function visualizes the results returned by the 
clearanceEstimatorBayes function. All plots will 
be saved under “./plots”. The previous example is used 
as follows.

The output provides a group of figures showing each 
patient’s posterior log-parasitaemia profiles fitted by the 
Bayesian method. Figure  6a shows an individual whose 
profile seems to exhibit only a decay phase, whereas 
Fig. 6b shows an individual who is identified as having a 
lag phase before the decay occurs.

By using the following commands, one can calculate 
the posterior mean, median, and 95% credible interval 
of each individual’s clearance rate. Several specific indi-
viduals can be picked by using a vector of IDs. In the fol-
lowing example, one can check patients with ID “1”, 
“3”, “14”, “35”. Here the ID numbers are stored as 
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string/characters instead of numeric integers. This allows 
for general use of extracting specific patients in terms of 
given IDs such as names or bar code sequence etc.

If one wants to check several patients’ credible intervals 
simultaneously,

If one wants to check only one patient’s credible inter-
val, for instance patient id = 1,

For the patient with id 1 (see Fig.  6a), the posterior 
mean clearance rate was 0.1076, the median was 0.1080 
with a 95% credible interval of [0.1005,  0.1167]. For this 

patient, one can check the posterior distribution of the time 
of the changepoint between the lag and decay phases:
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The output is a vector of posterior samples of change-
point time. There are 10 posterior samples in total after 
thinning for the fast example. Only 20% of the posterior 
samples identified this individual as having a lag phase 
of more than 6 h, and only 30% identified a lag phase of 
more than 3 h. The analysis here is based on the previous 
fast example which has a small number of total iterations. 
So the posterior results are only used here for tutorial 
purposes.

For the individual in Fig. 6b (with id 81), the posterior 
mean clearance rate was 0.1284, the median was 0.1270 
with a 95% credible interval of [0.1196, 0.1423]. There are 
100% posterior of samples identifying this individual as 
having a lag phase of greater than 6 h, whereas no sam-
ples identified a tail phase, as shown by

which implies that a tail phase was not observed in any 
posterior sample. The posterior median of the time of 
changepoint between lag and decay phases for this indi-
vidual is 24.86 (h), which can be obtained by

The 95% credible interval for the time of changepoint 
between lag and decay phases is [8.337287,  28.843629], 
which can be obtained by:

Last but not least, there are four different posterior 
curves produced by the plot function: the mean (coeffi-
cient) curve, the median (coefficient) curve, the posterior 
median curve and the point-wise 95% credible intervals 
of the posterior samples. In Fig. 6a, b,

a.	 The “mean curve” is obtained by plugging the poste-
rior mean values of all coefficients into the change-
point model (Eq.  1) which is displayed as the black 
piece-wise linear curves in Fig. 6a as well as in Fig. 6b;

b.	 The blue “median curve” is produced similarly by 
plugging the posterior median values of all coeffi-
cients into the change-point model (Eq. 1);

c.	 The “posterior median curve” is obtained by taking 
the timepoint-wise median of all the posterior sample 
curves (not shown in Fig. 6). This curve is shown in 
red in Fig. 6a, b. Note that a “posterior mean curve” is 
not included since due to the linearity of expectation, 
the “posterior mean curve” would be the same as the 
black “mean curve”.

d.	 The point-wise 95% credible intervals of the posterior 
samples are calculated at each time point by using all 
the posterior samples, which are shown as the brown 
lines (upper bound and lower bound).

All these curves are available in the plot function to 
give users more flexibility to choose what they prefer.

Discussion
The bhrcr package is quite general, in that, given any 
data set which is expected to follow linear decay possibly 
with lag and/or tail phases, it can produce the Bayesian 
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hierarchical estimates of the clearance rates together 
with regression analysis on interesting covariates and 
data visualization. The package makes the Bayesian hier-
archical clearance rate regression method developed in 
[10] much more accessible to the malaria research com-
munity. In this paper, a fast example with a small number 
of burn-in periods and iterations in the MCMC process 
was illustrated, which may lead to non-stationarity since 
according to Section  4 in [10], the convergence rate is 
quite slow. This paper serves as a tutorial for the bhrcr 
package and introduces the basic functions it provides. 
It is hoped that the bhrcr package will be useful to the 
malaria research community and beyond for investigat-
ing parasite clearance rates.
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Appendix
Here the adopted prior distributions and the implemen-
tation of the model are briefly outlined:

•	 Let Xi be the 1× p row vector of covariates for 
patient i. The priors on αi and βi are 

log(βi)
indep.
∼ N (Xiγ , σ

2
β ), log(αi)

indep.
∼ N (Xiη, σ

2
α )

where γ and η are p× 1 vectors of parameters repre-
senting the effect of covariates on {βi}Ni=1 and {αi}Ni=1 , 
respectively.

•	 Let πℓ and πτ be a priori probabilities of there being 
a lag and a tail phase respectively. The prior distribu-
tions on δℓi  and δτi  are 

where LN (µ, σ 2) (log-normal) is a random variable 
whose logarithm is normally distributed with param-
eters µ and σ 2.

•	 See [10] for priors on the model’s hyperparameters 
σ 2
ǫ  , {γ , σ 2

β } , {η, σ 2
α } , πℓ , πτ , a, b, c2 , and d2.

•	 A Metropolis-Hastings-within-Gibbs sampling algo-
rithm is used to obtain samples that are approxi-
mately from the posterior distribution.
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