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Abstract 

Background:  Bayesian methods have been used to generate country-level and global maps of malaria prevalence. 
With increasing availability of detailed malaria surveillance data, these methodologies can also be used to identify 
fine-scale heterogeneity of malaria parasitaemia for operational prevention and control of malaria.

Methods:  In this article, a Bayesian geostatistical model was applied to six malaria parasitaemia surveys conducted 
during rainy and dry seasons between November 2010 and 2013 to characterize the micro-scale spatial heterogeneity 
of malaria risk in northern Ghana.

Results:  The geostatistical model showed substantial spatial heterogeneity, with malaria parasite prevalence varying 
between 19 and 90%, and revealing a northeast to southwest gradient of predicted risk. The spatial distribution of 
prevalence was heavily influenced by two modest urban centres, with a substantially lower prevalence in urban cen-
tres compared to rural areas. Although strong seasonal variations were observed, spatial malaria prevalence patterns 
did not change substantially from year to year. Furthermore, independent surveillance data suggested that the model 
had a relatively good predictive performance when extrapolated to a neighbouring district.

Conclusions:  This high variability in malaria prevalence is striking, given that this small area (approximately 
30 km × 40 km) was purportedly homogeneous based on country-level spatial analysis, suggesting that fine-scale 
parasitaemia data might be critical to guide district-level programmatic efforts to prevent and control malaria. 
Extrapolations results suggest that fine-scale parasitaemia data can be useful for spatial predictions in neighbouring 
unsampled districts and does not have to be collected every year to aid district-level operations, helping to alleviate 
concerns regarding the cost of fine-scale data collection.
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Background
Over the past two decades, Ghana has made signifi-
cant progress towards reducing malaria mortality [1]. 
This progress can be attributed to increasing coverage 
and improving access to rapid diagnostic tests and arte-
misinin-based combination therapy, implementing uni-
versal access to insecticide-treated bed nets, scaling-up 
indoor residual spraying (IRS) [2, 3] as well as climate 
change, urbanization patterns and infrastructural devel-
opment [4, 5]. Despite these country-wide efforts for 
malaria control and prevention [6], and improved infra-
structure, malaria morbidity remains relatively high [7]. 
The national early childhood (6 to 59 months old) malaria 
prevalence rate in Ghana has remained relatively stable 
(22–27%) from 2011 to 2016 [8]. However, it is important 
to consider that nationwide prevalence estimates mask 
significant spatial variability, as many parts of Ghana still 
experience intense seasonal malaria transmission, par-
ticularly in the northern regions [9, 10] where prevalence 
is greater than 40%. The 2016 Ghana Malaria Indicator 
Survey (MIS) revealed regional childhood prevalence 
estimates ranging between 5 and 31%, but these aggre-
gated estimates may understate substantial heterogeneity 
within and between districts in each region [5].

Characterizing the spatial variation of disease preva-
lence by mapping exercises has proven to be useful for 
the strategic planning of malaria prevention and control 
activities at the national level [11–13]. In 2013, the Ghana 
National Malaria Control Programme (NMCP) collabo-
rated with a team at Kenya Medical Research Institute-
Wellcome Trust to develop a state-of-the-art map of 
malaria parasitaemia rates at the district level [5]. Their 
model estimates of Plasmodium falciparum in children 
aged 2 to 10 years in Northern Region ranged from 42% 
for the Tamale municipality to over 75% for most rural 
districts, presumably related to the residual malaria 
transmission in this area [14]. Linking data on climate 
and urbanization with locally available data yielded a 
more nuanced view of malaria distribution in the north-
ern savannah compared to national averages, which 
allowed for the classification of districts into those that 
may be suitable/unsuitable for seasonal malaria chemo-
prophylaxis (SMC). Such work has paved the way for 
finer scale mapping efforts to describe the within-district 
local-scale heterogeneity in malaria parasite prevalence 
[15, 16], which is critical to increasing the effectiveness 
of current malaria control interventions implemented at 
the local level [17]. However, the ability to map at finer 
scale is contingent on the availability of rich surveillance 
data [18].

The purpose of this study was to characterize local spa-
tial patterns in early childhood malaria prevalence in a 
single district in northern Ghana. A Bayesian hierarchical 

geostatistical model it was applied to a series of seasonal 
cross-sectional parasitaemia surveys conducted in the 
Bunkpurugu-Yunyoo district from 2010 to 2013, which 
were previously collected as part of an IRS intervention 
evaluation [3]. The high geographic resolution in these 
surveys provided a rich dataset for understanding the 
local scale malaria epidemiology in a residual transmis-
sion region [19]. Detailed surveys such as these can be 
prohibitively costly and would be untenable to scale to 
the entire Northern Region of Ghana, therefore explora-
tory work was conducted on how well the model could 
be extrapolated to unsampled neighbouring districts and 
how frequently these surveys would have to be imple-
mented to achieve the same degree of resolution.

Methods
The outcome used throughout this paper was micros-
copy-based malaria status of individuals sampled by 
parasitaemia household surveys that were conducted 
between October 2010 and March 2013 in the Bunkpu-
rugu-Yunyoo district (BYD), Northern Region, Ghana. 
This dataset arises from a collaboration between the Uni-
versity of Ghana and the President’s Malaria Initiative 
(PMI) as part of an IRS evaluation project [20].

Study area
Bunkpurugu-Yunyoo is located in Northern Region, 
Ghana (10.6° N 0.0° W). The district exhibits a gradual 
slope from the rocky Gambaga escarpment in the north/
northwest to riverine plains in the south/southeast, drop-
ping from 518 to 128  m above sea level within a rela-
tively small area (30 km by 40 km). The district lies in the 
Guinea Savannah zone, characterized by a unimodal rainy 
season from May to October, which peaks in August–
September while the remainder of the year is typically 
dry. The mean annual rainfall is between 100  mm and 
115 mm, with annual temperature ranging between 30 °C 
and 40  °C. The predominant malaria vector species are 
Anopheles gambiae sensu stricto and Anopheles funes-
tus [21]. In 2010, the estimated total district population 
was 122,591, with an estimated under-five population of 
21,373. The study district is predominantly rural, with the 
exception of two settlements that exceed a population 
threshold of 5000, and are thereby designated as ‘urban’ 
according to the Ghana Statistical Service, namely Nak-
panduri (population 6179) and Bunkpurugu (population 
11,106) [22]. Most of the population live in mud-walled 
compounds and engage in rain-fed, small-scale farming 
as well as small-scale trading.

Malaria transmission in BYD is characterized by strong 
seasonal variations that closely follow rainfall patterns, 
with a peak lasting up to 3–4  months between August 
and November [6]. The study area is defined as the set of 
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communities that were eligible for spraying by the PMI-
funded IRS programme in 2011–2013 (Fig. 1). The study 
boundaries do not perfectly align with the official admin-
istrative district boundary because the sampling frame 
for the study consisted of the list of communities that fell 
under the public health jurisdiction of the BYD office of 
Ghana Health Service (GHS). As a result, this list leaves 
out communities handled by the East Mamprusi office 
of GHS along the extreme northeastern border and the 
southeastern corner of BYD.

The district had benefitted from two recent mass distri-
butions of long-lasting insecticide-treated nets (LLINs). 
In 2010, the LLINs programme covered children under 
5  years and pregnant women and in 2012 they covered 
all other members of the household, resulting in approxi-
mately > 75% coverage across BYD [2, 23]. The other 
major malaria prevention and control intervention in the 
region had been IRS, which began in 2011 using alpha-
cypermethrin 0.4% WP (ICON®10CS, Syngenta, Basel, 
Switzerland) and shifted to organophosphates in 2013 

due to declining susceptibility of Anopheles spp. to the 
pyrethroid insecticides [21].

Malaria survey data
Surveys were conducted twice annually at periods of 
expected peak (i.e., the end of the rainy season, October–
November) and trough (i.e., the end of the dry season, 
March–April) levels of malaria parasitaemia. Each survey 
was collected over a 2-week period.

Children under 60 months of age and their caregivers 
were randomly selected for each survey, using a multi-
stage randomized cluster sampling design. Probability 
proportional to population was used to randomly sam-
ple approximately 72 communities per survey across 
the study area from a GHS roster of 238 communities. 
Within each community, survey teams visited 15–17 
households with children under 5  years old, selected 
randomly from an inventory of such households that 
had been conducted within 6 months prior to each sur-
vey. Teams were instructed to invite any child under 

Fig. 1  Communities sampled (black dots) in Bunkpurugu-Yunyoo district across all 2011–2013 surveys. The observed prevalence rates are displayed 
from low (green) to high (red) on the elevation surface and major roads. Four ecological zones defined by study design are highlighted by the 
elevation as rocky uplands, transition vegetation, riverine plains and urban zones. Inset map shows all the districts within Ghana, highlighting the 
Bunkpurugu-Yunyoo district
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5 years old who was available on the day of the survey 
and had slept in the household the night before for par-
ticipation. The resulting sample (average 24 children 
per community) covered approximately 20% of the 
under-five population in each survey, based on the 2010 
census data and community lists developed by the GHS 
[3]. Thin and thick blood films were prepared in the 
field and later read by two qualified microscopists at the 
Noguchi Memorial Institute for Medical Research labo-
ratory in Accra to determine microscopic parasitaemia. 
In cases of discordant readings, a senior microscopist 
determined the final result. Prior to analysis, children 
aged under 6  months were removed from the dataset, 
based on previous studies suggesting that young infants 
have enhanced malaria protection due to maternal anti-
bodies [24, 25].

Using a hand-held Etrex© GPS device (Garmin), field 
technicians obtained GPS coordinates for a readily 
identifiable central point in each community, such as a 
church, school, or chief ’s palace. GPS coordinates were 
not obtained at the household level because of feasibil-
ity and ethical considerations. The geo-coding of com-
munities permitted the dataset to be enhanced with 
remotely sensed and geographic variables.

Variables employed to model malaria parasite prevalence
Remote sensed variables Malaria transmission has been 
shown to be strongly related to satellite-derived environ-
mental and socio-demographic factors [26]. Weiss et  al. 
[27] carried out a comprehensive assessment of spatially 
gridded covariates that are likely to be associated with 
the malaria transmission cycle. Based on their results a 
suite of satellite and geographically derived covariates 
were assembled for modelling purposes (Table  1). The 
selection of environmental covariates was partly based 
on availability of raster data that closely matched the sur-
vey times. Elevation is widely used in malaria mapping 
due to its association with precipitation and temperature 
[27] and it was extracted from the 90-m resolution Shut-
tle Radar Topography Mission Digital Elevation Model 
(SRTM-DEM). The normalized difference vegetation 
index (NDVI), a proxy for vegetation cover, was obtained 
from Moderate Resolution Imaging Spectroradiometer 
(MODIS) products using the 16-day composite. Based on 
this product, the maximum NDVI was calculated within 
a 32-day period prior to the start date of each survey. 
Vegetation cover is a useful proxy for characterizing vec-
tor habitat for Anopheles spp. commonly found across 
Africa [28]. The land surface temperature (LST) for day 
and night was also obtained from MODIS (MOD11) 

Table 1  List of spatial predictors, including their sources and spatial resolution (maps of spatial covariates can be found 
in Additional file 1)

Variable Definition (units) Spatial resolution Source

Remote-sensed

 Elevation Height above sea level (m) 90 m CGIAR SRTM [49]

 Normalized difference vegetation index 
(NDVI)

Index of vegetation conditions. Ranges 
from − 1 (no vegetation) to 1 (complete 
vegetated)

250 m NASA (Terra) MOD13A3 and 
(Aqua) MYD13A3 datasets 
[50]

 Land surface temperature (LST)—day and 
night time

Kelvin (converted to  °C) 1 km NASA (Terra) MOD11A2 and 
(Aqua) MYD11A2 datasets 
[50]

 Rainfall (seasonal 3 months cum.) Actual cumulative 3-months rainfall (mm) 5 km CHIRPS [51]

 Long-term precipitation 1970–2000 (seasonal 
3 months cum.)

Long-term cumulative 3 months rainfall based 
on average monthly rainfall (mm) data from 
1970–2000

1 km WorldClim [52]

 Night-time lights Average visible band digital number values 
ranging 1–63

1 km NOAA [33]

 Population density Number of people per 100 sq m 100 m WorldPop [36]

GIS-derived

 Distance to urban centre Distance from urban centre (km) 1 km Based on field data

 Distance to health facility Distance from active health facilities during 
study (km)

1 km Based on field data

 Distance to roads Distance from established road-network (km) 1 km CIESIN [46]

 Distance to water bodies Distance from permanent water bodies (km) 1 km ESRI [45]

 Accessibility to cities Travel time to cities to assess inequalities in 
accessibility (travel time)

1 km MAP [44]

 Slope Percentage rise in elevation 90 m Derived from elevation product
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products using the 8-day composites, which were then 
used to calculate a monthly average LST 32 days prior to 
survey start date. Temperature has been widely accepted 
to be an important component in malaria transmis-
sion, largely based on its influence on mosquito sur-
vival, development, breeding, and biting rates [8, 29, 30], 
whereas precipitation is a proxy for available stagnant 
water puddles that are ideal habitat for mosquito larvae. 
Previous studies have shown that a 9 to 12-week time 
lag exists between rainfall and onset of malaria trans-
mission [31]. Therefore, the variable of cumulative rain-
fall for a 3-month period 30  days prior to survey start 
date was created, based on the Climate Hazards Group 
InfraRed Precipitation with Station (CHIRPS) data while 
long-term precipitation patterns at finer resolution than 
CHIRPS (1 km) were extracted from WorldClim datasets 
[32]. Long-term precipitation was included because of its 
higher spatial resolution compared to cumulative rainfall. 
Night-time lights for 2011 were obtained from National 
Oceanic and Atmospheric Administration (NOAA) satel-
lite products at 1-km resolution [33], being a useful proxy 
for poverty and infrastructure (i.e., electrified housing 
are more likely to be walled and be less suitable habitat 
for vector development) [34]. Because densely populated 
areas are often poor habitat for Anopheles to breed [35], 
Population density at 100-m resolution was extracted 
from WorldPop [36] and validated this product using the 
census data for the two main urban towns of Bunkpurugu 
and Nakpanduri. Finally, land use products by MODIS 
were expected to be an important factor [27] for vector 
habitat, however it was not included because there was 
little variation across the study district [37].

GIS derived variables
In relation to the geographically derived variables, Euclid-
ean distances from roads, urban centres, permanent water 
bodies, and active health facilities were calculated using 
ArcGIS 10.3 [38]. A 5-km buffer was created around the 
study area to control for edge effects that might affect dis-
tance calculations. The inclusion of these distance vari-
ables was based on their biological importance to malaria 
transmission: urban centres are known to be associated 
with lower malaria prevalence due to their infrastructural 
development and access to resources such as medica-
tion [39]. Access to health facilities has been shown to be 
a key determinant in child mortality and primary usage 
of health clinics declines with increased travel time and 
distance [40]. Roads are a proxy for accessibility [41, 42] 
and water bodies are directly linked to mosquito breed-
ing sites [42, 43]. Accessibility to cities, developed by 
the Malaria Atlas Project (MAP), was also included as a 
metric to account for distance to cities, transport infra-
structure and distribution of resources [44]. A geo-coded 

shape file with urban centres was created based on field 
work records. Urban centres were defined as villages with 
more than 5000 people in the 2010 census, resulting in 
two urban centres in the study region: Nakpanduri and 
Bunkpurugu. Field workers used GPS to record locations 
of active health facilities in each survey period. Shape files 
for water bodies and major roads were obtained from 
ESRI online [45] and the Center for International Earth 
Science [46], respectively. Finally, slope was derived from 
the SRTM elevation raster. A list of covariates and their 
details can be found in Table 1.

Adjusting the model for child age
The only individual-level variable used for modelling was 
child’s age. Age is known to be strongly associated with 
individual-level parasitaemia and therefore was accounted 
for in the model to generate age-adjusted malaria preva-
lence predictions [47]. Diggle et  al. explored a similar 
approach of including non-spatial covariates for malaria 
mapping such as age and bed-net use to explain the non-
spatial variation in model-based geostatistical methods 
[48]. A detailed risk analysis involving other individual-level 
variables for this same dataset is provided elsewhere [4].

Selecting a suitable set of variables for prediction
The use of too many covariates can lead to over-fitting of 
the model, as well as multicollinearity [53, 54]. To address 
this issue, a two-step procedure, commonly used in map-
ping exercises [9, 55], was used to select the best predic-
tors from Table  1. First, correlation between covariates 
was calculated, and in cases of high correlation (i.e., 
R > 0.7), a single representative covariate was selected. 
The choice of which covariate to retain was based on the 
strength of association with malaria prevalence, spatial 
resolution, and its relevance to malaria epidemiology 
[27]. Second, a bi-directional, step-wise, regression analy-
sis was run on a full multivariate model using the remain-
ing covariates. The covariates associated with the model 
with the lowest Akaike information criterion (AIC) were 
used for subsequent analysis.

Bayesian geostatistical model
A Bayesian hierarchical geostatistical model was fitted 
independently to data from each survey. Let the malaria 
status Mijt for child i in village location j in survey t be 
a binary variable, equal to 1 for a positive microscopy 
result and 0 otherwise. Using a probit regression frame-
work, assume that Mijt = 1 if the latent variable zijt is 
greater than 0 and Mijt = 0 otherwise. The latent variable 
zijt is modelled as:

zijt ∼ N
(

αjt + xTijtβt , 1

)
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where xTijt is the design vector containing the age of each 
child, βt contains the corresponding regression coeffi-
cients, and αjt is the village-survey level random-effect. 
Assume that:

where W t is the design matrix and γ t is a vector of the 
corresponding coefficients. Furthermore, � is the spatial 
correlation matrix, where the correlation between vil-
lages k and l is given by the exponential parametric func-
tion exp

(

−
dkl
ρt

)

 . In this expression, dkl is the Euclidean 
distance between villages k and l and ρt is the correlation 
decay parameter.

Finally, the priors are given by:

where T is a diagonal matrix with diagonal elements 
equal to [10,1,…,1]. A customized Gibbs Sampler pro-
grammed in R [56] was used to fit this model separately 
for each survey.

Model validation
The geospatial model performance was assessed based on 
its out-of-sample predictive ability using a tenfold cross-
validation approach for each survey. Villages in the data 
were randomly divided into 10 sub-sets. The model was 
trained on 9 of the 10 sub-sets, and then used the esti-
mated parameters to predict the expected prevalence 
for the remaining withheld sub-set. This was repeated 
using each testing sub-set. The out-of-sample predictive 
skill of the geospatial Bayesian model was compared to 
that of a standard generalized linear regression model 
(GLM), which is a commonly used statistical framework 
for modelling this type of response variable. A temporal 
validation was also done for the Bayesian model, where 
the model was trained on one survey and used to predict 
prevalence for future surveys. These temporal predic-
tions were stratified by season (i.e., rainy season surveys 
were used to predict future rainy season surveys but not 

αt ∼ N
(

W tγ t , σ
2
t �(ρt)

)

βt ∼ N (0, I)

ρt , σt ∼ Unif (0, 100)

γ t ∼ N (0, T)

dry season surveys). Two statistical metrics were used for 
all validations: the log-likelihood and the mean absolute 
error (MAE) in relation to malaria prevalence in each 
village.

Extrapolation to neighbouring district
Once the geospatial model was fitted, the results were 
extrapolated to the neighbouring district: East Mam-
prusi. This district was chosen because it has similar 
topography and environment to Bunkpurugu–Yunyoo. 
Furthermore, a list of health facilities and urban centres 
for East Mamprusi was obtained from the GHS [57] and 
corroborated using expert information and the 2010 pop-
ulation census, respectively [22], enabling the determina-
tion of the distance to health facilities and urban centres. 
For an independent evaluation of the accuracy of these 
spatial extrapolation, the MAE was calculated between 
the predicted malaria prevalence rates in the 2011 rainy 
season and the 2011 Multiple Indicator Cluster Survey 
(MICS) prevalence estimates for locations that fell within 
this district [58].

Results
Malaria prevalence
The study included 10,518 children aged 6–59  months 
of age with a complete microscopy diagnostic test result 
for malaria parasitaemia collected in 438 communities 
across 3 rainy seasons and 3 dry seasons. The average age 
of participants was 31  months. The average community 
level prevalence was 44.46% (95% CI 43.83–45.74) dur-
ing the entire study but prevalence varied considerably by 
survey, with a strong seasonal effect (Table 2).

Variable selection
As mentioned in Methods, an initial set of 14 spatial 
covariates were chosen based on the malaria mapping 
literature [27] (Table 1). NDVI, rainfall, long-term pre-
cipitation, and daytime LST were highly correlated 
(R > 0.7). Because NDVI had the strongest association 
with microscopy and this covariate had the finest spa-
tial resolution, NDVI was retained and the other three 
highly correlated covariates were excluded from the 
step-wise selection. Because accessibility was highly 
correlated with distance to health facility (R = 0.71), 

Table 2  Average prevalence across each survey

Survey year 2010 2011 2012 2013

Season Rainy Dry Rainy Dry Rainy Dry

Number of children 1547 1762 1794 1804 1803 1808

Mean prevalence (%) 60 39 56 36 51 28

95% CI 57–62 36–41 54–58 34–38 49–54 25–29
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given that distance to health facility was based on 
ground-truth locations of active health facilities at the 
time of each survey, it was retained instead of accessi-
bility. A step-wise, model-selection approach using AIC 
revealed that the most important covariates were dis-
tance to urban centre, distance to health facility, eleva-
tion, NDVI, distance to road, distance to water, LST 
at night, and night-time lights. These parameters were 

used for geostatistical predictions (parameter estimates 
can be found in Additional file 2).

Geospatial model results
The Bayesian geostatistical model revealed a strong 
rural–urban gradient with prevalence generally increas-
ing northeast to southwest (top and middle panels in 
Fig.  2) ranging from 19 to 90%. These results were par-
ticularly surprising given that the malaria prevalence 

Fig. 2  Strong seasonal and fine-scale spatial variability in age-adjusted predicted malaria prevalence. Top and middle panels (a–f) display the 
age-adjusted predicted mean prevalence for the rainy and dry seasons, respectively. Age-adjusted malaria prevalence is based on children 
with average age (i.e., 31 months). The bottom panels (g–i) display the MAP parasite prevalence surface for P. falciparum between ages 2 and 
10 years [11]. Insets show the uncertainty in prevalence predictions (top right in each panel), given by the width of the 95% CI. High uncertainty is 
represented by darker grey
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maps for Ghana developed by the MAP suggest a much 
smaller range in prevalence (68–83%), without a clear 
geographical trend (bottom panels in Fig.  2). Malaria 
remained low in and around the urban centres through-
out the study but this pattern was more distinct during 
rainy seasons versus dry seasons. The only notable tem-
poral trend was a small reduction in prevalence in the 
southern portion of BYD in the final dry season.

The regression results indicate that increasing distance 
to urban centre was significantly associated with high 
malaria prevalence estimates during rainy seasons. Fur-
thermore, higher elevation was linked to reduced para-
site prevalence of malaria during the rainy seasons in 
2010 and 2011, and the dry season in 2012. Finally, liv-
ing further away from a health facility tended to increase 
the risk of high malaria prevalence, but this effect was 
only significant for dry season 2013. All other covariates 
showed no statistically significant association. Posterior 
estimates of the parameters used for predictive modelling 
are given in Additional file 2.

Model validation
The model validation results using the average log-likeli-
hood across all surveys (Fig. 3a) revealed that the Bayes-
ian model generally had better out-of-sample predictive 
performance when compared to the GLM model, par-
ticularly during the dry seasons. Similar results also arose 
in relation to the mean absolute errors (Fig. 3b).

The temporal validation results reveal an average MAE 
of approximately 12.7%, without much difference in error 
for temporal predictions of 1 versus 2  years (Table  3). 
These MAE values are similar to those obtained when 
performing the tenfold cross-validation, suggesting that 
temporal predictions within a 1- or 2-year time interval 
are as accurate as spatial predictions.

Extrapolation to neighbouring district
Predicted malaria prevalence in East Mamprusi was 
substantially higher during the rainy season when com-
pared to the dry season (Fig. 4). As expected, there is a 
distinct trend of lower transmission close to urban areas 
and the 2012–2013 dry seasons showed a significantly 

Fig. 3  Model validation comparisons between Bayesian geospatial model and generalized linear model (GLM). Predictions based on the Bayesian 
geospatial model generally outperform the GLM. Two out-of-sample metrics were calculated; the log-likelihood for each survey (a) and MAE (b). 
Grey vertical polygons depict the range of outcomes based on the 10 cross-validation folds. Higher values for the log-likelihood and lower values 
for the MAE indicate better out-of-sample predictive skill

Table 3  Temporal validation for  surveys with  temporal 
prediction lag of one and two years

Season Year of estimation Year of prediction Mean 
absolute 
error

Rainy 2010 2011 0.124

Rainy 2011 2012 0.126

Rainy 2010 2012 0.132

Dry 2011 2012 0.126

Dry 2012 2013 0.124

Dry 2011 2013 0.126
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lower predicted prevalence. Finally, as expected, there 
is distinctly higher uncertainty across East Mamprusi 
compared to Bunkpurugu-Yunyoo for all surveys. The 
results for survey three (rainy season 2011) and MICS 
2011 survey data were used to determine the reliability 
of these spatial extrapolations. MICS 2011 contained 
10 clusters that fell in Bunkpurugu-Yunyoo and East 
Mamprusi district. Of these, six were in Bunkpurugu-
Yunyoo and four in East Mamprusi. No location in sur-
vey data matched the MICS locations; so unfortunately, 
direct ground-truthing was not possible. The MAE was 
equal to 19.5 and 11.2% for Bunkpurugu-Yunyoo and 
East Mamprusi, respectively. The overall MAE for all 

10 locations in both districts was 16%. While this may 
seem large, it is important to note that this margin of 
error is not substantially larger than those obtained 
with the tenfold cross-validation and temporal predic-
tion exercises in Bunkpurugu-Yunyoo. Furthermore, 
this margin of error is enough to adequately distinguish 
the main spatial prevalence trends in the region, some-
thing that current national prevalence maps are not 
able to detect. For comparison purposes, the MEA for 
these 10 locations with the MAP  2011 estimates was 
37.6% (graphical representation can be found in Addi-
tional file 2: Figure S1).

Fig. 4  Extrapolated predicted prevalence for children in East Mamprusi and Bunkpurugu Yunyoo district. All six surveys including their 
corresponding uncertainty measures are displayed. Top and middle panels (a–f) display the age-adjusted predicted mean prevalence for the 
rainy and dry seasons, respectively. Age-adjusted malaria prevalence is based on children with average age (i.e., 31 months). The bottom panel 
(g–i) displays the MAP parasite prevalence surface for P. falciparum between ages 2 and 10 years [11]. The black dots represent urban centres with 
population greater than 5000 people. Insets show the uncertainty in prevalence predictions (top right in each panel), given by the width of the 95% 
CI. High uncertainty is represented by darker grey
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Discussion
This study presents a Bayesian geostatistical analysis of 
the active surveillance data collected over a period cover-
ing high (rainy season) and low (dry season) transmission 
seasons in a region that has previously been character-
ized as uniformly high transmission. The application of 
high-resolution remote sensing data and geostatistics to 
develop malaria prevalence maps at a fine spatial resolu-
tion has revealed striking heterogeneity of malaria preva-
lence over a small geographic area, which were previously 
not expressed in country level and global mapping efforts 
[5, 11, 13]. For example, the malaria prevalence map for 
Ghana developed by the MAP for all survey years show 
predicted prevalence in BYD ranging from 68 to 83%, 
failing to encompass the range predicted by the model 
(19 to 90%) and to uncover the strong northeast to south-
west trend that was detected. These differences can be 
explained in multiple ways. For instance, the prevalence 
surface from MAP is based on children 2–10  years old, 
focuses solely on P. falciparum, and relies on satellite 
imagery that was aggregated to 5 km and averaged tem-
porally to suit their dataset’s temporal scale. In contrast, 
the results in this paper rely on satellite imagery that 
matches the dates of the surveys, and is based on chil-
dren between 6 months and 5 years of age. Comparisons 
of maps based on different age ranges may lead to spuri-
ous conclusions, therefore a sensitivity analysis was con-
ducted by reconstructing the prevalence data using the 
MAP age-adjustment model [59] to attain prevalence 
estimates for age 2 to 10  years and then re-created the 
prevalence maps per survey. A tenfold cross-validation 
estimates MAE being 36.9% and 12.5% on average across 
all surveys for MAP and the Bayesian model, respectively 
(Additional file  3). These results suggest that the main 
reason for these strikingly different prevalence maps is 
because the model took advantage of fine-scale malaria 
surveillance data, whereas MAP had to rely on spatially 
sparse data from national surveys (i.e., Demographic 
Health Surveys (DHS), MICS, MIS), in which the spatial 
coordinates are displaced slightly. Ultimately, these find-
ings highlight the importance of fine-scale data to enable 
strategic allocation of resources and malaria prevention 
and control interventions.

The resulting maps predicted elevated risk during the 
rainy season, particularly in low-lying areas near the riv-
erine plains. The prevalence across rainy seasons showed 
very little change implying that temporal change between 
years is limited, despite substantial within-year seasonal 
differences. Importantly, regardless of season and year, 
malaria prevalence was higher in the southern regions 
of the study area. Furthermore, the temporal validation 
also finds that 2-year ahead predictions of the spatial dis-
tribution of malaria prevalence were relatively accurate. 

Taken together, these results suggest that, in the absence 
of large-scale changes in malaria interventions, active 
data collection to spatially guide malaria prevention and 
control interventions might not be required multiple 
times within a year nor every single year, an important 
consideration given the high costs associated with data 
collection.

The maps in Fig. 2 also reveal a strong urban–rural rela-
tionship, where the urban areas experience lower rates 
of malaria prevalence when compared to the rural areas 
across all seasons and years. Although the association 
between lower malaria prevalence and urban areas has 
long been acknowledged [60, 61], it was found that even 
relatively modest urban centres (e.g., population 6000–
12,000) in rural districts have a strong protective effect. 
This could be because these centres have fewer mosquito 
breeding sites [62], better housing conditions that provide 
protection against mosquito-human contact [63], and/or 
urban residents are more likely to have better access to 
medications [64]. A detailed analyses on the non-linear 
relationship between distance to urban centre and malaria 
prevalence in BYD has been reported elsewhere [4]. 
Acknowledging this strong effect of modest urban centres 
may help malaria prevention and control programmes 
better allocate their interventions. For example, after 
presenting the results to the local IRS programme, it was 
suggested that IRS could be prioritized to peri-urban and 
rural areas because urban areas, while easier to access, 
are more difficult to spray as heads of households are less 
likely to be at home during the day, making it difficult to 
reach the targeted structures to be sprayed.

Several environmental factors previously identified as 
driving malaria transmission in Ghana at the national 
level (e.g., rainfall and temperature [5, 64]) were not 
strong determinants of fine-scale malaria prevalence het-
erogeneity and were removed prior to modelling efforts. 
Furthermore, when fitting the geospatial model, many 
commonly used covariates were not statistically signifi-
cant, including NDVI, distance to roads and water bod-
ies, LST for night, and night-time lights. Although these 
covariates are identified as significant in the multivari-
ate model used in step-wise selection, the effect of these 
covariates was probably well captured by the spatial ran-
dom effects in the Bayesian model. Alternative reasons 
for these environmental covariates not being significant 
might be because, at small spatial scales, there is little 
variation in them and perhaps part of the effect of these 
variables is already being captured by distance to urban 
centre. It is possible that socio-economic variables (e.g., 
wealth) play a much more important role at this spatial 
scale than these environmental covariates. Finally, indi-
vidual level non-spatial covariate were restricted to age 
only to avoid interpretation issues regarding the predicted 
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prevalence surface. However, the model is designed such 
that more individual level covariates can be included. A 
more detailed study on the inference of socio-economic, 
demographic, environmental, and intervention at individ-
ual level has been conducted elsewhere [4].

Given the prohibitive cost associated with collecting 
fine-scale data on malaria prevalence over a large geo-
graphical region, an important aim of this paper was to 
determine the reliability of extrapolating model predic-
tions to neighbouring districts. Using readily available 
survey data from MICS 2011, 10 clusters were obtained 
(six in Bunkpurugu Yunyoo and four in East Mamprusi) 
with observed malaria prevalence for October 2011, 
which is a small validation set. Nevertheless, these inde-
pendent data suggest that the extrapolations results for 
both East Mamprusi and Bunkpurugu Yunyoo were still 
relatively accurate for the Bayesian model compared to 
published maps (16 and 37.6%, respectively) and there-
fore can still be useful for programmatic malaria preven-
tion and control activities. Note that the extrapolation 
to a neighbouring district with was done using a similar 
environmental conditions and for which GIS data on 
urban city localities and active health facilities was read-
ily available. Additional work will be needed to determine 
how extrapolation quality is impacted when environmen-
tal conditions differ substantially between districts, and 
to determine how generalizable these findings are.

The data presented here were based on the first six 
surveys during which a pyrethroid-based insecticide 
was applied across the district. Although the direct 
effects of the IRS intervention have not been accounted 
for, it was expected that IRS would result in declines of 
malaria prevalence across the district. Interestingly, the 
model results did not find much change over time with 
the exception of the sixth survey in the dry season of 
2013. This suggests a potential lag in the impact of IRS 
across the district or the presence of substantial resist-
ance to pyrethroids. Indeed, pyrethroids were subse-
quently switched to organophosphates and follow-on 
surveys not presented here revealed a significant drop in 
malaria prevalence [3]. Further work in this area would 
include modelling these follow-on surveys whilst adjust-
ing for IRS intervention in the study area. The methodol-
ogy developed in this paper would help identify how IRS 
spraying is impacting the spatial and temporal patterns of 
malaria in the region.

An important component of the model outputs are 
uncertainty estimates, defined here as the width of the 
95% credible interval. The predicted uncertainty maps 
are indications of the precision around the mean esti-
mated prevalence at a given location (i.e., at the pixel 
level), which helps users understand the robustness of 
the predicted mapped surface. Factors that contribute to 

uncertainty can include sparseness in the observed sur-
vey data (i.e., not enough observations in a given area), 
and/or inability of the model to explain the variability in 
the data [65, 66]. The results suggest that areas predicted 
to have elevated risk as well as higher uncertainty were 
mostly rural. These communities tend to be spread across 
larger geographic areas compared to the urban centres 
and the geographical coordinates, which were collected 
at easily recognizable landmarks in each community, 
may not be an accurate representation of the environ-
ment of a typical household in these rural communities. 
These results suggest that studies in many of these more 
rural areas may benefit from collection of GPS coordi-
nates for each household or at least for clusters of house-
holds, instead of village-level coordinates, or sampling 
frameworks that are designed based on spatially stratified 
random sampling instead of solely on population propor-
tional random sampling [67]. Finally, these uncertainty 
maps may help in the identification of areas in need of 
additional sampling [68].

Conclusion
This study demonstrated how the use of high-resolution 
survey data and a geostatistical model can reveal local-
scale spatial heterogeneity in an area previously assumed 
to be relatively uniform in terms of malaria risk. Charac-
terizing the heterogeneity in the spatial distribution of 
malaria in this small geographic area enabled the iden-
tification of areas of high risk for which malaria preven-
tion and control efforts can be strategically allocated to 
reduce malaria transmission in Bunkpurugu-Yunyoo, 
Ghana. Spatial extrapolations to neighbouring districts 
revealed that it is possible to take advantage of the rich 
data in one area to gain insight on the spatial heterogene-
ity in another, and temporal extrapolation results suggest 
that 2-year predictions can be made with similar accu-
racy as spatial predictions. These extrapolation results, 
together with limited seasonal and between-year vari-
ability in the location of hotspots, suggest that fine-scale 
data collection on malaria prevalence can be conducted 
less frequently, which is an important consideration for 
the long-term financial sustainability of these efforts, 
while still strategically guiding malaria prevention and 
control interventions.
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