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Abstract 

Background: In 2017, nearly 80% of malaria morbidity and mortality occurred in sub-Saharan African (SSA) countries 
and India. Rapid diagnostic tests (RDTs), especially those targeting histidine-rich protein 2 (PfHRP2) of Plasmodium 
falciparum, have become an important diagnostic tool in these malaria-endemic areas. However, the chances of RDT-
oriented successful treatment are increasingly jeopardized by the appearance of mutants with deletions in pfhrp2 and 
pfhrp3 genes. This systematic review and meta-analysis determines the prevalence of field P. falciparum isolates with 
deletion in pfhrp2 and/or pfhrp3 genes and their proportion among false-negative results in the PfHRP2-based RDTs in 
SSA and India.

Methods: Eight electronic databases were used for searching potentially relevant publications for the systematic 
review analysis, wherein the main methodological aspects of included studies were analysed and some missing links 
in the included studies were identified.

Results: A total of 19 studies were included, 16 from SSA and 3 from India. The pooled prevalence of pfhrp2 deletions 
was 8 and 5% while 16 and 4% for pfhrp3 gene deletions in Africa and India, respectively. The pooled proportion of 
pfhrp2 gene deletions found among false negative PfHRP2-based RDTs results was about 27.0 and 69.0% in Africa and 
India, respectively.

Conclusions: This review study indicates a relatively high proportion of both pfhrp2/3 genes deletions in P. falcipa-
rum isolates and among false-negative malaria cases using PfHRP2-based RDT results in SSA and India. Recently the 
deletions in pfhrp2/3 genes have also been reported from two African countries (Nigeria and Sudan). This review 
emphasizes the importance of more extensive studies and standardization of studies addressing the pfhrp2/3 gene 
deletions in malarious areas.
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Background
According to the World Health Organization (WHO), 
Plasmodium falciparum was responsible for over 90% of 
all malaria cases and deaths that occurred worldwide in 
2017 [1]. Plasmodium falciparum is highly prevalent in 
most malaria-endemic areas, especially in sub-Saharan 
Africa (SSA) and Southeast Asia, where it accounted for 
99.7 and 62.8% of malaria cases, respectively [1].

The P. falciparum genome comprises 14 linear chro-
mosomes with a total of 25–30  megabases of nuclear 
DNA, with two fragments of 35 kb and 6 kb in the api-
coplast and mitochondria, respectively [2]. This genome 
is extremely adenine/thymine-rich (80%) and consists of 
over 5000 genes encoding diverse proteins [2, 3]. A large 
number of these proteins are shared between all malar-
ial species; other proteins such as histidine-rich protein 
2 (PfHRP2) are specifically expressed by a given species. 
PfHRP2 is yielded by P. falciparum during its different 
developmental stages in humans and has been detected 
at different localization, including the membrane surface 
of infected erythrocytes and bloodstream [4]. PfHRP2, 
with other diverse proteins, have enabled the develop-
ment of immunochromatographic rapid diagnostic tests 
(RDTs) of P. falciparum blood infections in humans.

Rapid diagnostic tests are becoming increasingly the 
preferred method for malaria diagnosis in health facilities 
throughout the world. They accounted for 75% of malaria 
tests used in health facilities in 2017 against 40% in 2010 
globally [1]. The increase in RDT usage is probably due 
to their easier implementation, handling and interpreta-
tion as compared with light microscopy, which has many 
limitations jeopardizing its utilization in certain areas [5, 
6]. The implementation of light microscopy is particu-
larly challenging as it is labour-intensive and requires 
skilled microscopists in resource-constrained, remote 
and difficult-to-reach areas with no electricity [1, 5, 6]. 
As a consequence, malaria diagnosis relies mainly on 
signs and symptoms presented by patients in these areas 
[1, 6]. This kind of clinical diagnosis is less sensitive and 
specific, especially in highly malaria-endemic areas, given 
other co-endemic infectious diseases may elicit a similar 
clinic presentation in patients [6]. In contrast, there are 
evidence-based reports indicating the improved manage-
ment of malarious patients using RDTs [1, 5, 6]. Another 
study in Cameroonian children reported that the utili-
zation of a RDT lowered the rate of anti-malarial drugs 
misuse in them [7].

There are a few other reports of significant rates of 
false-negative results using PfHRP2-based RDTs, thereby 
limiting their diagnostic utility in malaria-endemic set-
tings. The main causes of false-negative results include 
low parasitaemia, poor state of RDT, prozone effect and 
poor utilization of RDT by user [8, 9]. The absence of 

PfHRP2 expression due to gene deletions is also a cause 
of false-negative PfHRP2-based RDTs results [10]. The 
presence of malaria parasites not expressing PfHRP2 
is primarily reported in the Amazon area of Peru [11]. 
The utilization of PfHRP2-based RDTs is no longer rec-
ommended in this area as the proportion of pfhrp2 
gene deletions is very high [12]. Other reports indicated 
that the expression of PfHRP3 may reduce the level of 
false-negative results as this protein has the potential to 
cross-react with monoclonal antibodies (MAbs) used by 
PfHRP2-based RDTs due to its structural similarity with 
PfHRP2 [9]. Cross-reactions are more likely to occur 
in high parasitaemia as this protein is lesser expressed 
than PfHRP2. Thus, real malarial infection cases may be 
misdiagnosed using PfHRP2-based RDTs and thereby 
increase the likelihood of survival and transmission of 
malaria strains [13].

The present systematic review and meta-analysis is a 
part of a project aimed at determining and comparing the 
prevalence of P. falciparum field isolates with deletions in 
pfhrp2 and pfhrp3 genes, specifically between India and 
SSA countries. The criteria of this selection was based on 
three major factors: (i) SSA countries and India contrib-
uted nearly 80% of the global malaria burden in 2017; (ii) 
they are major consumers of malaria RDTs [1]; and, (iii) 
little is known of the impact of pfhrp2 and pfhrp3 gene 
deletions on the performances of RDTs, unlike in South 
American countries where RDTs are no longer advised 
for diagnosis due to high levels of deletions [11, 14, 15]. 
Although, there are a few studies that reported the pres-
ence of strains with deletions in pfhrp2 and pfhrp3 genes 
and their impact on results of PfHRP2-based RDTs in 
India and SSA, there is no systematic review and meta-
analysis available on this relevant topic. Additionally, the 
main methodological aspects of included studies were 
analysed for any missing links.

Methods
The study was conducted according to Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
guidelines (PRISMA) [16]. The PRISMA checklist was 
used to ensure inclusion of relevant information in the 
analysis (Additional files 1 and 2).

Search strategy
A comprehensive search of eight electronic databases 
was done to identify all relevant publications published 
in the last 10 years on deletions of pfhrp2/3 genes and the 
impact on results of RDTs, targeting PfHRP2 only due to 
the absence of RDTs targeting specifically PfHRP3. These 
databases included Medline, Wiley, EMBASE, Cross-
ref, WHOLIS, ScienceDirect, Popline, and the Cochrane 
Library. Two search engines (Google and Google Scholar) 
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were also consulted. The search strategy, performed in 
English and French, is presented in Additional file  3. 
Titles and abstracts of potentially eligible publications 
were independently reviewed using the above-mentioned 
search strategy.

Assessment of the reliability and quality of studies
The methodological quality of studies was assessed using 
The Joanna Briggs Institute (JBI) Critical Appraisal tools 
for use in JBI Systematic Reviews Checklist for Preva-
lence Studies available at http://joann abrig gs.org/asset 
s/docs/criti cal-appra isal-tools /JBI_Criti cal_Appra isal-
Check list_for_Preva lence _Studi es201 7.pdf [17]. The tool 
consists of 9 points ranging from the appreciation of sam-
pling frame to address target population (point 1), to the 
rate of response (point 9). Each point was scored as 1 for 
presence and 0 for absence. A score was not given if the 
point of the appraisal tool was not applicable to the study, 
or unclear. Given the absence of studies that defined a 
quality-based clear classification of studies, study with a 
score of ≥ 5 was considered acceptable for inclusion in 
the study. A score ponderation was performed for stud-
ies if at least 1 point out of 9 was not applicable in these 
studies. Studies having a quality score ≥ 5 were eligible 
for the meta-analysis (Additional file 4). Quality of stud-
ies was independently evaluated by both authors and any 
disagreement was resolved through discussion.

Inclusion criteria
Those studies included were considered only if they ful-
filled the following prerequisites: (1) addressed the deter-
mination of prevalence of P. falciparum field isolates with 
deletions in pfhrp2/3 genes in SSA and/or India; (2) writ-
ten in English or French; (3) published and peer-reviewed 
articles; (4) published between January 2009 and June 
2019 in order to provide recent estimates and reduce het-
erogeneity between studies; (5) had sample size of ≥ 30; 
and, (6) of acceptable quality (score ≥ 5). Criteria 1–4 
were used to include any study in the systematic review 
while the fifth and sixth criteria were used to include the 
studies in meta-analysis.

Data management
Data consisted of first author’s name, year of publica-
tion, African or Indian state, study population, year of 
data collection, diagnostic method of malaria, pfhrp 
gene investigated (pfhrp2 and/or pfhrp3), the genomic 
sequences genotyped to define deletion in pfhrp2 
and/or pfhrp3, the laboratory malarial strains used 
as control, the number of malarial strains success-
fully genotyped for pfhrp2/3, the number of strains 
with deletions in pfhrp2/3 genes among false-negative 

PfHRP2-based RDT results. Data were keyed into Excel 
and then exported to the OpenMeta Analyst software 
for Windows for performing meta-analysis and descrip-
tive analyses [18, 19]. Data were presented as charts or 
tables where appropriate. The results from meta-anal-
ysis were presented graphically using forest plots.  I2 
statistics was computed to appraise the level of hetero-
geneity between studies included in the meta-analysis 
and choose the best statistical model (i.e., binary fixed 
effect or random effect models) to compute pooled 
value of prevalence of gene deletion [20]. The variance 
of individual studies was stabilized using the arcsine 
transformation prior to pooling estimates of propor-
tion. The  I2 statistic appraises the percentage of total 
variation across studies due to real differences between 
studies rather than chance, while the heterogeneity was 
assessed using the Chi-square test based on Cochrane’s 
Q statistic [21]. Fixed effect model was suitable when 
 I2 was ≤ 25%, while random effect model was suit-
able when  I2 was ≥ 75% [22, 23]. Publication bias was 
appraised using funnel plot, with meta-analysis being 
performed separately for India and SSA countries using 
a sub-group analysis (Additional file 1). The maps were 
generated using ArcGIS version 10.5 (ESRI, USA) and 
Adobe Illustrator for Windows (Adobe Inc., USA).

Results
Selection of studies included in the meta‑analysis
A total of 871 studies were retrieved in hand search-
ing and electronic databases targeted as presented in 
the PRISMA flowchart (Fig.  1; Additional files 2 and 
3). Six-hundred and seventy-four of 871 were screened 
after removing duplicates. The studies from regions 
other than SSA and India were excluded from this sys-
tematic review and meta-analysis. Reviews, conference 
papers, modelling studies, comments, letters to the edi-
tor and unrelated studies were also excluded. Twenty-
five studies were found eligible for analysis, of which 6 
were excluded despite having addressed the prevalence 
of deletions in pfhrp2/3 genes and/or their proportion 
among false negative PfHRP2-based RDT results in SSA 
(Additional file  5). Nineteen studies, 16 in SSA and 3 
in India, were finally included in the systematic review. 
Three studies were excluded from the meta-analysis of 
the prevalence of deletions in pfhrp2/3 genes because 
of small sample size (i.e., fewer than 30). Despite this 
threshold being arbitrary, it is generally accepted as suf-
ficient to do realistic calculation and statistical analysis 
in practice [24, 25]. Eight studies were excluded from 
the analysis on the proportion of P. falciparum isolates 
with deletions in pfhrp2/3 genes among false negative 
PfHRP2-based RDT results because of small sample 

http://joannabriggs.org/assets/docs/critical-appraisal-tools/JBI_Critical_Appraisal-Checklist_for_Prevalence_Studies2017.pdf
http://joannabriggs.org/assets/docs/critical-appraisal-tools/JBI_Critical_Appraisal-Checklist_for_Prevalence_Studies2017.pdf
http://joannabriggs.org/assets/docs/critical-appraisal-tools/JBI_Critical_Appraisal-Checklist_for_Prevalence_Studies2017.pdf
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size and the topic not being addressed. Sixteen and 10 
studies were included in the meta-analysis to determine 
the prevalence of deletions in pfhrp2/3 genes and their 
proportion among false negative PfHRP2-based RDT 
results, respectively [26–44] (Fig. 1, Additional file 2).

Characteristics of studies included in the meta‑analysis
The 16 studies from 13 SSA countries: Mali, Senegal, 
Ghana, Kenya, Mozambique, Rwanda, Zambia, Eritrea, 
Eswatini (Swaziland), Nigeria, Sudan, Madagascar and 
Democratic Republic of Congo, were conducted locally 
with one exception which was conducted at national 

level (Table 1) [26–44]. Three studies found deletions in 
pfhrp2 in Uganda, Gambia and Tanzania [45–47], but 
these were excluded from the systematic review (Addi-
tional file 5).

From the three Indian studies only one included sam-
ples from several regions, whereas the other two stud-
ies did analysis in samples collected locally [42–44]. 
The blood samples in the studies were collected from 
symptomatic and/or asymptomatic patients, including 
adults, children or both between 1996 and 2018 in SSA 
and between 2010 and 2016 in India (Table 2). The mini-
mum sample size of P. falciparum isolates for amplifying 

Fig. 1 PRISMA chart of the selection steps of included studies
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pfhrp2 gene was 26 in a study reported from Sudan [40]. 
The highest sample size was 2329 in a national study con-
ducted in Democratic Republic of Congo [48]. Regarding 
pfhrp3 gene, sample size ranged from 48 to 1529 samples 
in India [42, 43]. In the present study, the meta-analysis 
included 4286  and 1953 samples for pfhrp2 deletions, 
and 1115 and 1953 samples for pfhrp3 deletions evalu-
ated in SSA and India, respectively.

Prevalence of pfhrp2 gene deletions
The geographic distribution of pfhrp2 genetic deletions 
in Africa and India is presented in Fig.  2. Deletions in 

pfhrp2 gene is reported in 16 African countries (Fig. 2a). 
Out of the right regions studied in India only six regions 
reported deletions from India (Fig. 2b).

In India, the lowest and highest values for prevalence of 
pfhrp2 gene deletions reported were 2.4 and 9.9% (see Fig. 3) 
[43, 44]. In Africa, these values were 0 and 62% in Nigeria 
and Eritrea, respectively [35, 37]. The pooled prevalence 
of pfhrp2 deletions in field isolates and the values of preva-
lence were 7.0% (95% CI 4.0–9.0%) and 5% (95% CI 0–11%) 
in Africa and India, respectively (Figs.  2 and 3, Additional 
file 6).

Table 1 Characteristics of studies included in the systematic review and meta-analysis

Authors Country Regions Origin of samples Collection period

Koita et al. [26] Mali Sirakoro (suburban village), Bancoumana 
and Donéguébougou (rural villages)

Asymptomatic blood donors 
(adults 18 years) and symp-
tomatic subjects (children 
6 months to 9 years and 
adults > 18 years)

1996

Wurtz et al. [27] Senegal Dakar Symptomatic patients 2009–2012

Amoah et al. [28] Ghana Abura Dunkwa and Obon Healthy children 2015

Beshir et al. [29] Kenya Mbita (Wester area) Asymptomatic children aged 
5–12 years

Not specified

Gupta et al. [30] Mozambique Manhiça and Magude General population 2010–2016

Kozycki et al. [31] Rwanda Busogo (Northern Province), Rukara (East-
ern Province) and Kibirizi (Southern 
Province) Health Centre

Symptomatic patients 2014–2015

Menegon et al. [32] Eritrea Agordat, Barentu (Gash Barka region) and 
Medefera (Debub region)

Patients (3–70 years) 2013–2014

Parr et al. [33] Democratic Republic of 
the Congo

National (26 provinces) Mostly asymptomatic under 5 2013–2014

Ranadive et al. [34] Swaziland Lumumbo Patients (all age) 2012–2014

Berhane et al. [35] Eritrea Ghindae Hospital and Massawa Hospital 
in the Northern Red Sea Region

Patients > 5 years old 2016

Nderu et al. [36] Kenya Matayos Health Centre in Busia County Patients (0.3–76 years) 2016

Willie et al. [37] Madagascar The western highlands fringe region of 
Madagascar, in the foothills between 
the central highlands and the tropical 
western coastal zone

Patients 2014–2015

Funwei et al. [38] Nigeria Ibadan Febrile children (3–59 months) 2013–2014

Kobayashi et al. [39] Zambia Choma and Nchelenge Asymptomatic individuals 2009–2011 and 2015–2017

Mussa et al. [40] Sudan Omdurman city Patients 2018

Thomson et al. [41] Ghana, Tanzania and 
Uganda

Kintampo (Ghana), Mbeya, Mtwara, 
and Mwanza regions (Tanzania), Jinja 
district (Uganda)

Symptomatic patients 
(6–30 months)

Asymptomatic and symptomatic 
(≥ 6 months), symptomatic 
(all ages)

2009–2010; 2010; 2014–2015

Kumar et al. [42] India Chhattisgarh Patients 2010

Bharti et al. [43] India National (eight regions): Odisha, Chhat-
tisgarh, Jharkhand, Madhya Pradesh, 
Maharashtra, Rajasthan, Gujarat, Tripura

Symptomatic patients aged 
above 5 years (pregnant 
women excluded)

2014

Pati et al. [44] India Odisha Symptomatic patients aged 
above 5 years (pregnant 
women excluded)

2013–2016
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Prevalence of pfhrp3 gene deletions
The studies conducted in India also analysed the preva-
lence of deletions in pfhrp3 gene while in Africa only half 
of the total reviewed studies focused on this aspect of 
pfhrp3 gene. Malaria parasites with deletion in pfhrp3 gene 
were reported from 13 SSA countries while these deletions 
were found in only five regions of India (Fig. 4). Regard-
ing pfhrp3 deletion prevalence in Africa, highest and low-
est values were 82 and 1%, respectively [30, 35]. Pooled 
prevalence of parasites with deletions in pfhrp3 gene was 
16% (95% CI 10–23%) and 4% (95% CI 1–7%) in Africa and 
India, respectively (Fig. 3, Additional files 6 and 7).

Prevalence of pfhrp2 and pfhrp3 gene deletions
Seven and three studies from SSA and India were 
included to calculate the pooled estimates of the preva-
lence of deletions in both pfhrp2 and pfhrp3 genes. The 
pooled estimate was 3% (95% CI 1–4%,  I2 = 87.22%; 
P = 0.00) and 3% (95% CI 0–6%,  I2 = 98.48%; P = 0.00) in 
SSA and India, respectively (Additional files 6 and 7).

Potential role of pfhrp2 gene deletions in the diagnostic 
performances of PfHRP2‑based RDTs
The proportion of isolates with pfhrp2 deletions among 
the false negative cases using PfHRP2-based RDT ranged 

from 1.4 to 100% in SSA while in India the proportion 
was 65.5 to 100% (Table  3). The pooled estimates were 
27.0% (95% CI 0–55.0%) and 69.0% (95% CI 61.0–78.0%) 
in SSA and India, respectively (Additional files 6 and 7).

Discussion
The overall prevalence of malaria parasites with dele-
tions of pfhrp2 gene is relatively high (i.e., ≥ 5%) both in 
SSA and India. The prevalence of pfhrp2 gene deletions 
is lower in South American countries with the excep-
tion of Peru (prevalence > 40%) where the utilization of 
PfHRP2-based RDT is no longer recommended given 
the high risk for false negative results [9–11]. The pfhrp2 
gene is located on sub-telomeric region of chromosome 
8 of P. falciparum. The high prevalence of pfhrp2 gene 
deletions may be due to fact that sub-telomeric genes 
are known to be highly polymorphic and susceptible to 
genetic changes such as deletions during recombination 
events [47, 49].

In areas where P. falciparum is highly prevalent, as 
in SSA and India, the circulation of mutants with dele-
tions in pfhrp2 gene might compromise the PfHRP2-
based RDT management of patients attending health 
facilities. High rates of deletions present in pfhrp2 gene 
in Africa and India among the cases of false negative 

Fig. 2 Geographical distribution of areas in a sub-Saharan Africa and b India. The deletions in pfHRP2 gene observed in Plasmodium falciparum field 
isolates. The maps were generated using ArcGIS version 10.5 (ESRI, USA) and Adobe Illustrator for Windows (Adobe Inc., USA). A few studies were 
excluded from this review (Additional file 5 for reasons), however their results have been taken into account to generate this map. *Deletions have 
been newly reported
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PfHRP2-based RDT results were found. Although dif-
ferent studies included in this meta-analysis have not 
clearly proved the causal role of these deletions in false 
negative cases, the consequences of the circulation of 
isolates with deletions in pfhrp2 gene are important 
in terms of public health. A number of P. falciparum 
mono-infections would be missed and thereby increase 

the risk of severe malaria due to delay in treatment [9, 
50, 51]. This misdiagnosis uselessly exposes malarious 
individuals to drugs used for treating co-endemic viral 
and bacterial infectious diseases which have symp-
tomatology similar to that of malaria [52]. Another risk 
is of misdiagnosis in areas where P. falciparum is not 
the only circulating main malarial species. In India, P. 

Fig. 3 Forest plot of the prevalence of PfHRP2 and PfHRP3 gene deletions in sub-Saharan Africa countries and India
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falciparum and Plasmodium vivax are the main species 
involved in its malaria burden [1, 51, 53]. Co-infections 
are frequently reported among malarious patients. Some 
authors reported a high proportion of mixed infections 
with both these malarial species in the country [54, 55]. 
As a consequence, a fraction of mixed infection cases 
would be diagnosed as P. vivax mono-infection by RDTs 
able to detect both P. falciparum and P. vivax. Thus, the 
risk of severe falciparum malaria would increase as the 
RDTs will have failed to detect P. falciparum. This fact is 
particularly important in malaria-endemic areas where 
both the circulation of chloroquine-resistant P. falcipa-
rum isolates and chloroquine is preferentially used for 
treating vivax malaria, as this is the case in India [56–
60]. In most endemic countries, chloroquine is first-
line treatment of vivax malaria [1]. Keeping in mind 
providing quality management in malarious patients, 
it would be helpful to use RDTs that target other P. fal-
ciparum antigens as PfHRP2 in areas whose diagnosis 
strategy relies mainly on RDTs and where suspicions of 
circulation of strains with deletions in pfhrp2 gene are 
reported. Some studies reported better specificity of 
malarial antigen-combining RDTs compared with their 
counterparts targeting PfHRP2 only [61, 62]. WHO rec-
ommended a switch to RDTs that do not rely exclusively 
on PfHRP2 for detecting P. falciparum if the 95% CI 
lower value of the reported prevalence is above 5% upon 
a nationwide study [63].

It should be noted that the prevalence of deletions 
in pfhrp2 gene found in each individual study could be 

higher and generally the malaria infections are polyclonal 
in SSA and Indian endemic regions [64–66]. It is likely 
that individuals are infected with both malaria para-
sites with deletions in pfhrp2 gene and without deletions 
wherein, the presence of malaria parasites with no pfhrp2 
deletions can overshadow that of their counterparts with 
deletions in pfhrp2 gene. As a consequence, blood sam-
ples of this type would be positive with PfHRP2-based 
RDTs.

It was also reported a high level of loss of pfhrp3 gene 
in field isolates in SSA and India. The protein encoded 
by this gene has capacity to cross-react with monoclonal 
antibodies of RDTs targeting PfHRP2 and thus reduce the 
level of false-negative results [9, 10]. However, this likely 
occurs at high parasitaemia as its expression is much 
lower than that of PfHRP2 [9].

This review outlines the report of deletions in pfhrp2/3 
genes in two supplementary African countries, namely 
Nigeria and Sudan which are highly malaria endemic, 
especially Nigeria which accounts for 19% of total 
malaria-related deaths occurring worldwide [1]. Con-
versely, this study pinpoints the absence of reports on 
pfhrp2 and pfhrp3 gene deletions in other countries 
of SSA, such as Burkina Faso, Sierra Leone and Niger, 
which account for 6, 5 and 4% of total malaria-related 
deaths occurring worldwide [1]. Although the cause of 
death due to PfHRP2-based RDTs related misdiagnosis 
remains unknown, data are missing from other highly 
malaria-endemic African countries: Cameroon, Ethio-
pia and Chad for instance. These countries share borders 

Fig. 4 Geographical distribution of areas in sub-Saharan Africa (a) and India (b) The deletions in PfHRP3 gene observed in Plasmodium falciparum 
field isolates. The maps were generated using ArcGIS version 10.5 (ESRI, USA) and Adobe Illustrator for Windows (Adobe Inc., USA). A few studies 
were excluded from this review (Additional file 3 for reasons), however their results have been taken into account to generate this map. *Deletions 
have been newly reported
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with countries where pfhrp2/3 deletions were reported 
(Ethiopia borders Eritrea, Cameroon borders Nigeria). 
The same logic may be applied to Indian areas bordering 
those where gene deletions cases have been reported.

The unrestricted use of RDTs targeting PfHRP2 might 
create pressure for a selective sweep of PfHRP2-negative 
strains [67, 68]. A recent study outlined a slight to high 
risk of selection of mutants with deletions in pfhrp2 
gene where the treatment of malaria would be based on 
PfHRP2-based RDTs alone [69]. This finding reinforces 
the utilization of RDTs targeting several plasmodial anti-
gens simultaneously instead of RDTs targeting PfHRP2 
alone as discussed above. The genetics of pfhrp2/3 gene 
deletions in malaria parasites, their adaptive cost in 
mutants, along with the influence of epidemiological 
parameters are elusive and need to be studied in detail 
[10]. The elucidation of these main issues will allow better 
understanding of the biological significance of pfhrp2/3 
gene deletions in endemic areas.

It would be interesting to define standard methodol-
ogy in order to better follow up the patterns of mutants 
with deletions in pfhrp2 gene in a given area and make 
comparisons between studies. In this regard, a methodol-
ogy has been proposed by some authors and the WHO in 
order to standardize the results [61, 70].

The results of this study should be interpreted with cau-
tion in the context of its limitations. First, a high heterogene-
ity was recorded in the meta-analysis and this is inescapable 
in meta-analyses of prevalence and observational studies 
[71]. The high heterogeneity reported in the present study 
might be explained by the discrepancies in epidemiological 
patterns in each region, characteristics of study population, 
and methodology for detecting gene deletions. Indeed, it 
was noted variability between studies in this methodology 
especially on the amplified genomic regions, the utilization 
of laboratory-maintained strains (HB3, 3D7, Dd2) and the 
strategy used for distinction between PCR-negative samples 
for pfhrp due to either low parasitaemia or real absence of 
the gene. Hence, the absence of such a distinction might 
lead to overestimation of P. falciparum isolates with dele-
tions in pfhrp2 and pfhrp3 genes. Second, the small sample 
size in some studies did not allow the evaluation of possible 
sources of a high variation between studies.

Conclusion
This study outlined a relatively high proportion of pfhrp2 
and pfhrp3 gene deletions as well as their important role 
in diagnostic performance of PfHRP2-based RDTs in 
SSA and India. It also pointed out the need for further 
studies with standardized framework in order to have a 

Table 3 Proportion of isolates with deletions in pfhrp2/3 genes among false negative cases using PfHRP2-based RDTs

PfHRP: Plasmodium falciparum histidine-rich protein; NA: not applicable; PCR: polymerase chain reaction; pLDH: lactate dehydrogenase; RDT: rapid diagnostic test
a Reference method was microscopy, PCR or pLDH RDT
b These studies were excluded from the meta-analysis of percentage of false negative samples in which deletions in pfhrp2/3 genes were found due to small sample 
size

Authors Countries Number of P. falciparum samples positive 
with reference method but negative 
with PfHRP‑based  RDTa

Number of isolates 
with deletions in pfhrp2 
gene (%)

Number of isolates 
with deletions in pfhrp3 
gene (%)

Koita et al. [26]b Mali 22 10 (45.5%) NA

Wurtz et al. [27]b Senegal 7 3 (42.9%) 6 (85.8%)

Amoah et al. [28] Ghana 38 6 (15.8%) NA

Beshir et al. [29] Kenya NA NA NA

Gupta et al. [30] Mozambique 69 1 (1.4%) 0 (0.0%)

Kozycki et al. [31] Rwanda 140 32 (22.9%) NA

Menegon et al. [32] Eritrea NA NA NA

Parr et al. [33] Democratic 
Republic of the 
Congo

783 149 (19.0%) NA

Berhane et al. [35] Eritrea 31 31 (100%) NA

Nderu et al. [36]b Kenya 2 0 (0%) 0 (0%)

Ranadive et al. [34]b Swaziland 9 0 (0%) 0 (0%)

Funwei et al. [38] Nigeria 31 7 (22.6%) NA

Kobayashi et al. [39] Zambia 36 3 (8.3%) NA

Kumar et al. [42]b India 2 2 (100%) 2 (100%)

Bharti et al. [43] India 50 36 (72.0%) 27 (54.0%)

Pati et al. [44] India 58 38 (65.5%) 24 (41.38%)
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clearer picture of the extent of mutants with deletions in 
pfhrp2/3 genes and follow their patterns over time and 
space. The rates of deletions in pfhrp2/3 genes are not 
high enough, compared to those reported in Latin Amer-
ica, to reconsider the usefulness of RDTs. RDTs remain 
the reliable tool for diagnosis of malaria in SSA and India.
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