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OPINION

Clinical trials to assess adjuvant therapeutics 
for severe malaria
Rosauro Varo1,2†, Clara Erice3†, Sydney Johnson4, Quique Bassat1,2,5,6,7† and Kevin C. Kain3,8*† 

Abstract 

Despite potent anti-malarial treatment, mortality rates associated with severe falciparum malaria remain high. To 
attempt to improve outcome, several trials have assessed a variety of potential adjunctive therapeutics, however none 
to date has been shown to be beneficial. This may be due, at least partly, to the therapeutics chosen and clinical trial 
design used. Here, we highlight three themes that could facilitate the choice and evaluation of putative adjuvant 
interventions for severe malaria, paving the way for their assessment in randomized controlled trials. Most clinical 
trials of adjunctive therapeutics to date have been underpowered due to the large number of participants required 
to reach mortality endpoints, rendering these study designs challenging and expensive to conduct. These limitations 
may be mitigated by the use of risk-stratification of participants and application of surrogate endpoints. Appropriate 
surrogate endpoints include direct measures of pathways causally involved in the pathobiology of severe and fatal 
malaria, including markers of host immune and endothelial activation and microcirculatory dysfunction. We propose 
using circulating markers of these pathways to identify high-risk participants that would be most likely to benefit 
from adjunctive therapy, and further by adopting these biomarkers as surrogate endpoints; moreover, choosing 
interventions that target deleterious host immune responses that directly contribute to microcirculatory dysfunc-
tion, multi-organ dysfunction and death; and, finally, prioritizing where possible, drugs that act on these pathways 
that are already approved by the FDA, or other regulators, for other indications, and are known to be safe in target 
populations, including children. An emerging understanding of the critical role of the host response in severe malaria 
pathogenesis may facilitate both clinical trial design and the search of effective adjunctive therapeutics.
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Background
Mortality and morbidity rates associated with falciparum 
malaria infection remain high. The World Health Organi-
zation (WHO) estimated that malaria accounted for 
405,000 deaths in 2018 [1], mostly affecting sub-Saharan 

African (SSA) children [1]. Despite effective treatment 
with artesunate, between 8.5% and 18% of patients diag-
nosed with severe malaria (SM) die [2] and up to 50% of 
cerebral malaria (CM) survivors may develop long-term 
neurological sequelae [3–5]. The Global Technical Strat-
egy for Malaria 2016–2030 Report calls for at least a 90% 
reduction in malaria incidence and mortality by 2030 [6]. 
However, without new and accelerated interventions this 
goal will not be achieved. Thus, there is an urgent need to 
develop adjuvant therapies to be used concurrently with 
anti-malarial drugs to improve clinical outcomes.

SM is a multi-organ syndrome resulting from a com-
plex interaction between both pathogen and host 
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determinants, and its pathophysiology is yet to be fully 
understood [7]. However, it is becoming increasingly 
clear that endothelial and immune mediators play key 
roles in determining disease severity and outcome and 
thus represent attractive targets for host-directed inter-
ventions [8, 9]. There have been multiple efforts to iden-
tify adjunctive therapeutics, although to date none of 
these has been successful [10]. This likely reflects both 
our limited understanding of malaria physiopathology, 
as well as the challenges, cost and feasibility of conduct-
ing suitably powered randomized controlled trials (RCT) 
to evaluate mortality outcomes [11]. Most RCTs have 
relied on specific population sub-groups and were largely 
underpowered. In addition, study design/characteristics 
diverge widely between RCTs making it difficult to com-
pare and extrapolate results from the available data [10]. 
Here, we outline three areas that may help to address lim-
itations of previous efforts to identify effective adjunctive 
therapeutics.

Risk‑stratification of patients with malaria
In SSA, there are challenges in the early recognition and 
triage of SM, with as few as 10% of malaria cases appro-
priately triaged for care and < 30% of SM cases diagnosed 
and treated promptly, resulting in increased mortality 
and brain injury in survivors [12, 13]. WHO criteria for 
SM are commonly used to recruit patients for RCTs [14]. 
However, these criteria, which are a mixture of clinical 
and laboratory parameters, are broad, have widely vari-
able prognosis [15], may overlap and can present with 
other co-morbidities, making it difficult to assess and 
classify children [16]. Taylor et al. showed, in a post-mor-
tem study, that 23% of children clinically diagnosed with 
CM, had died from other causes [16]. A recent meta-
analysis highlighted the variability between SM-defin-
ing criteria and fatal outcomes. Some criteria, such as 
impaired consciousness, severe anaemia or prostration, 
are weakly associated, while others, such as renal failure 
and hyperlactataemia, are strongly correlated with death/
outcome [11, 15]. Additionally, the changing epidemiol-
ogy of SM has caused a shift in its clinical characteristics 
(e.g., children that develop SM are no longer primarily 
restricted to < 5 years of age) [17, 18].

It is important to re-evaluate WHO criteria to include 
emerging insights of SM pathogenesis and new aspects 
of SM epidemiology. Additionally, complementing WHO 
criteria with prognostic biomarkers could help identify 
high-risk patients that would most benefit from RCTs. 
Histidine-rich protein-2 (HRP-2), lactate, C-reactive pro-
tein (CRP) and procalcitonin (PCT), have all shown to be 
associated with poor outcomes in patients with SM, and 
have been considered for risk-stratification of children 
with malaria [19–24]. More recently, host-biomarkers 

of endothelial and immune activation, which may bet-
ter reflect the pathological pathways underlying SM, 
have been identified as independent and quantitative 
markers of disease severity and outcome in both chil-
dren and adults with malaria, both in Africa and Asia 
[25]. The most promising candidates are those that may 
be involved in casual pathways leading to death such 
as Angiopoietin-2 (Ang-2), soluble triggering receptor 
expressed on myeloid cells 1 (sTREM-1), soluble FMS-
like tyrosine kinase-1 (sFt-1), soluble tumour necrosis 
factor receptor 1 (sTNFR-1) and others [26–28]. Addi-
tional prospective studies to evaluate their predictive 
accuracy are required to define their potential clinical 
utility in triage and risk stratification. The available evi-
dence to date supports Ang-2 as one marker that best 
addresses the priorities in this article and is also associ-
ated with disease severity in Plasmodium vivax and Plas-
modium knowlesi infections [29, 30].

Ang-2, an integral member of the Ang/Tie axis, is a 
promising candidate for risk stratification and triage. 
During normal physiological states, the Ang/Tie axis is 
involved in maintaining endothelial integrity through the 
binding of Angiopoietin-1 (Ang-1) to its receptor Tie-2. 
SM triggers a pro-inflammatory environment which pro-
motes the expression and release of Ang-2, the antago-
nist of Ang-1, which competes for binding to Tie-2 and 
destabilizes the microvasculature [31]. Preclinical stud-
ies in mice have shown a casual and mechanistic link of 
the Ang/Tie axis in the pathogenesis of SM [32]. Data 
from human studies strongly support Ang-2 as an excel-
lent biomarker for malaria disease severity and related 
multi-organ dysfunction and death; consequently, Ang-2 
is a valuable new option for identifying high-risk patients 
for RCTs [26, 27, 33–35]. Ang-2 plasma concentrations 
are higher in children with SM compared to those with 
uncomplicated malaria (UM) [27, 34, 36, 37], and have 
also been linked to CM with retinopathy [36]. Impor-
tantly, the identification of retinal changes in children 
with CM has been a major advance in the risk-stratifica-
tion of those patients [38].

Searching for surrogate endpoints of mortality
Conducting RCTs can be costly and time-consuming and 
in low-and middle-income countries the challenges are 
even greater [11]. To demonstrate efficacy of adjunctive 
therapeutics in reducing mortality requires the enrol-
ment of very large numbers of participants, which may be 
untenable due to cost and/or logistics. Power calculations 
indicate that at least 30,000 participants would have to be 
enrolled in order to observe a 10% change (parting from a 
9% mortality rate) [11]. In an effort to address this prob-
lem the Severe Malaria African Children: A Clinical Net-
work (SMAC) was created [39]. This was a multicentre 
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pan-African effort to coordinate RCTs with mortality 
endpoints. Still, with such a network in place, it may take 
3–4  years to enrol the required participants, meaning 
only a limited number of interventions can be assessed 
[11, 39]. Ultimately, underpowered studies can result in 
the inappropriate rejection of novel therapeutics because 
of their failure to show beneficial effects [11]. The iden-
tification of new surrogate endpoints, such as biomarker 
levels, might help address these problems. However, it is 
important to note that mortality should always be meas-
ured as a secondary endpoint in these RCTs, to allow a 
better characterization of the trends and relationships 
between levels of biomarkers and groups of treatment.

An appropriate surrogate endpoint should be able to 
predict/measure a clinical outcome for a specific inter-
vention and be part of the casual pathway of the disease. 
This is particularly true when considering biomarkers, as 
if they are not direct readouts of the underlying patho-
biology of SM, but rather just correlated to disease out-
come, they may lead to confounding findings. Moreover, 
biomarkers used as surrogate endpoints and the inter-
vention being assessed should also converge on the same 
pathways [40]. To date, the only proposed surrogate end-
point that has been validated for SM is plasma lactate. A 
secondary analysis, on three datasets from clinical studies 
looking at anti-malarial efficacies, showed that measuring 
changes in plasma lactate concentration at 8 or 12 h after 
intervention is a valid surrogate endpoint for mortality 
for treatments aiming to improve microcirculation [11]. 
However, lactate has a number of limitations discussed 
in detail by Jeeyapant et  al. [11]. Briefly, these include 
that only a proportion of patients with SM will present 
with metabolic acidosis and that patients have poor out-
comes related to multiple organ dysfunction (e.g., coma 
or acute kidney injury). Therefore, adjunctive therapies 
could improve survival through mechanisms that do not 
involve lactate clearance, and interventions that reduce 
lactate may not be effective adjunctive therapies.

In contrast to lactate, the Ang/Tie2 axis has been 
shown to have a causal relationship to severity and death 
for malaria [32] and Ang-2 concentrations are associated 
with multi-organ dysfunction leading to death, includ-
ing acute kidney injury and coma [26, 41]. High Ang-2 
concentrations have been linked to multi-organ dysfunc-
tion and mortality for multiple causes of sepsis, including 
malaria [27, 42–45]. Specifically, Ang-2 has been demon-
strated to be elevated in patients with SM and to be an 
independent and quantitative predictor of mortality [27, 
33]. Importantly, Ang-2 levels at admission are higher 
in children who die in hospital, as well as being associ-
ated with longer recovery times in survivors and post-
discharge mortality [26]. Reduction in plasma levels of 
Ang-2 has already been used as a primary outcome in a 

RCT assessing inhaled nitric oxide as adjunctive therapy 
for paediatric SM [46]. Moreover, interventions target-
ing this pathway improve outcome in preclinical models 
[32, 47]. Taking into consideration the central role that 
endothelial activation and microcirculatory dysfunction 
play in SM pathogenesis and the mechanistic link that 
the Ang/Tie axis plays, we propose Ang-2 as another 
possible surrogate endpoint candidate, either alone or in 
conjunction with other markers such as lactate. Further-
more, lactate can already be measured using a point-of-
care (POC) test and there is ongoing research trying to 
design similar POC devices for Ang-2 and other markers. 
This could facilitate the implementation and impact of 
marker-based risk-stratification in resource-constrained 
settings.

Drug repurposing
Identification of novel therapeutics is expensive, time 
consuming and risky, with many promising new chemi-
cal entities never reaching or showing efficacy in Phase 
III trials. In the field of cancer research, it has been 
estimated that de novo therapeutic development takes 
between 10 and 17 years with cost estimates of 1–2 bil-
lion USD [8]. However, this can be de-risked, at least in 
part, by drug repurposing, which involves the search of 
new therapeutic indications for already marketed drugs 
with known safety profiles [48]. With this strategy, suc-
cess rates may be enhanced with dramatically reduced 
costs and timelines to RCTs [8, 49, 50]. Therefore, drug 
repurposing is an attractive avenue for therapeutic devel-
opment in common and rare diseases, including SM [8, 
49, 50].

The primary hurdle in drug repurposing is the iden-
tification of appropriate drugs to test. A multitude of 
databases, data mining tools and compound libraries are 
emerging to help the scientific community sift through 
the plethora of potential candidates [50]. For example, 
Repurposing, Focused Rescue, and Accelerated Med-
chem (ReFRAME), is an open access screening library 
of 12,000 compounds compiled from commercial drug 
competitive intelligence databases [51]. Such tools could 
be used towards identifying adjunctive therapeutics for 
SM that target either deleterious host immune responses 
and/or protect/stabilize the microvasculature. A recent 
review explores the advantages and challenges of using 
licensed pharmaceuticals, developed originally as therapy 
for cancer and neurological disease, as possible candi-
dates for CM. Furthermore, they emphasize the impor-
tance of targeting pathways of microvascular stability 
and blood brain barrier (BBB) function [52]. However, an 
accelerated strategy will still require that any promising 
candidate be prospectively evaluated in phase II RCTs 
and then, if proven to be effective, further assessed in 
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larger Phase III trials evaluating adverse events and mor-
tality before they can be more widely implemented.

A direct example of drug repurposing used in the 
context of SM is rosiglitazone [53, 54]. Rosiglitazone, 
a peroxisome proliferator-activated receptor (PPARγ) 
agonist, with immunomodulatory activity and capacity 
to promote endothelial integrity, was originally devel-
oped to treat type II diabetes. PPARγ-agonists were ini-
tially investigated because they were predicted to act on 
similar gene response elements as vitamin A metabolites 
(e.g., 9-cis retinoic acid), which were associated with 
protection in malaria preclinical models and in vitamin 
A malaria studies [55, 56]. Current evidence supports its 
utility to modulate multiple pathways in malaria patho-
genesis. Preclinical models have shown that rosiglitazone 
reduces levels of Ang-2, increases levels of Ang-1, stabi-
lizes the BBB and is neuroprotective [47, 57]. Adjunctive 
treatment with rosiglitazone has been shown to decrease 
inflammatory biomarkers associated with adverse out-
comes, and reduce parasite burdens in adults [54]. In 
addition, rosiglitazone has been demonstrated to be safe 
and well tolerated in children with UM [53]. Cumula-
tively, this has led to its assessment as an adjuvant ther-
apy in children with SM in an ongoing Phase II clinical 
trial (clinicaltrials.gov: NCT02694874). The primary end-
point of which is to determine whether rosiglitazone, in 
addition to parenteral artesunate (standard of care anti-
malarial treatment), accelerates the rate of decline in 
Ang-2 from admission levels, compared to standard of 
care plus placebo. Atorvastatin is another FDA-approved 
drug that has been suggested as a possible adjuvant ther-
apy due to its anti-inflammatory and neuroprotective 
effects [9].

Current barriers for biomarker implementation
The future use of Ang-2 and other biomarkers in RCTs has 
some important limitations that need to be considered. 
Although these molecules are independent and quantita-
tive markers of severity and outcome, it is unlikely that any 
single clinical or laboratory measurement will be uniformly 
predictive. Therefore, algorithms that combine predictive 
clinical (e.g., LODs [58] or qSOFA [59]) and marker data 
may ultimately be most predictive. Importantly, these algo-
rithms still need to be developed and validated. Moreover, 
evaluation of baseline malaria mortality (irrespective of 
being recruited to a trial using biomarkers for risk-stratifi-
cation) in the study population will need to be conducted, 
and would allow a better understanding of ‘real mortality 
risk’ in those not captured by biomarker levels. In addition, 
there is a clear variability in the thresholds/cut-offs and 
confidence intervals (CI) currently reported for biomarkers 
(including lactate and Ang-2) in association with mortality 
endpoints. There are many technical and methodological 

issues that may contribute to this variability and that cur-
rently preclude providing specific data on cut-offs/ranges. 
These include: the sample source (finger-prick versus veni-
puncture) and matrix used (whole blood, plasma (EDTA, 
heparin, etc.), serum); fresh versus frozen samples; the 
platform used to detect and quantitate the marker(s) (e.g., 
ELISA, Luminex™, ELLA™, etc.); patient population (adult, 
paediatric, underlying disease, HIV-1 infection).

What is clear is that there is an urgent need for rigorous 
prospective evaluation of candidate markers head-to-head 
under standardized protocols to first determine, and then 
validate cut-offs and CIs in further multi-site prospective 
studies. These studies have not yet been rigorously con-
ducted and these issues will remain major barriers to the 
use of surrogate markers as endpoints of studies.

Conclusions
Our improved understanding of the pathobiology of 
SM should facilitate enhanced clinical trial design. 
Specifically: by decreasing required sample sizes by 
using biomarkers (e.g., Ang-2) to risk-stratify children 
and adults into RCTs; through the use of validated 

1. SM 
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3. Surrogate
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4. Drug-
Repurposing

5. Clinical 
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Fig. 1  Dysregulated host immune and endothelial activation as 
the rationale to enhance clinical trial design and identify adjunctive 
therapeutics for severe malaria. The host-response plays a central 
role in the pathogenesis and outcome of severe malaria (SM). 
Therefore, measuring levels of biomarkers of immune and endothelial 
activation, could be used both to identify patients that would 
benefit most from randomized control trials and as surrogate 
endpoints. FDA-approved drugs that protect and/or stabilize the 
host microvasculature and/or that are immunomodulatory could 
be repurposed as adjunctive therapeutics for severe malaria. These 
candidate therapeutics should be paired with the enhanced design 
of clinical trials
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surrogate endpoints of mortality; and, via the search for 
safe FDA-approved drugs that modulate these underly-
ing causal pathways (Fig. 1).
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