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Abstract 

Background: Malaria rapid diagnostic tests (RDTs) are precious tools to diagnose malaria. Most RDTs used currently 
are based on the detection of Plasmodium falciparum histidine‑rich protein 2 (PfHRP2) in a patient’s blood. However, 
concern has been raised in recent years that deletion of pfhrp2 in the parasite could affect the accuracy of PfHRP2‑
based RDTs. In addition, genetic variation in pfhrp2 might influence the accuracy and sensitivity of RDTs. In this study, 
the genetic variation in pfhrp2 and pfhrp3 in Myanmar P. falciparum isolates was analysed.

Methods: Blood samples were collected from malaria patients who were infected with P. falciparum in Mandalay, Naung Cho, 
Tha Beik Kyin, and Pyin Oo Lwin, Upper Myanmar between 2013 and 2015. The pfhrp2 and pfhrp3 were amplified by nested 
polymerase chain reaction (PCR), cloned and sequenced. Genetic variation in Myanmar pfhrp2 and pfhrp3 was analysed using 
the DNASTAR program. Comparative analysis of Myanmar and global pfhrp2 and pfhrp3 isolates was also performed.

Results: One‑hundred and two pfhrp2 and 89 pfhrp3 were amplified from 105 blood samples, of which 84 pfhrp2 and 
56 pfhrp3 sequences were obtained successfully. Myanmar pfhrp2 and pfhrp3 showed high levels of genetic varia‑
tion with different arrangements of distinct repeat types, which further classified Myanmar pfhrp2 and pfhrp3 into 76 
and 47 haplotypes, respectively. Novel amino acid changes were also found in Myanmar pfhrp2 and pfhrp3, but their 
frequencies were very low. Similar structural organization was shared by Myanmar and global pfhrp2 and pfhrp3, and 
differences in frequencies of repeat types and lengths were also observed between and among global isolates.

Conclusion: Length polymorphisms and amino acid substitutions generated extensive genetic variation in Myanmar 
pfhrp2 and pfhrp3. Comparative analysis revealed that global pfhrp2 and pfhrp3 share similar structural features, as well 
as extensive length polymorphisms and distinct organizations of repeat types. These results provide a better under‑
standing of the genetic structure of pfhrp2 and pfhrp3 in global P. falciparum populations and suggest useful informa‑
tion to develop RDTs with improved quality.
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Background
Myanmar has the majority of malaria cases and deaths 
in Southeast Asia, but the incidence of the disease has 
declined dramatically during the last decade and is pro-
gressing steadily towards elimination [1]. The annual 
number of malaria cases in the country has dropped from 
approximately 700,000 in 2010 to about 85,000 in 2017 
[1]. Microscopic examination of a blood smear is the pri-
mary diagnostic tool for malaria in Myanmar, but malaria 
rapid diagnostic tests (RDTs) have become a valuable 
alternative for use in remote areas where microscopy may 
not be feasible or where microscopy results would not 
be available immediately. RDTs offer a practical alterna-
tive to microscopy because they do not require a labora-
tory or special equipment, are simple to use, and provide 
reliable results in a short time [2, 3]. RDTs have been 
introduced as reliable diagnostic tools in many malaria-
endemic areas, including Myanmar.

Malaria RDTs are designed to detect one or more Plas-
modium antigens in a patient’s blood by using specific 
monoclonal antibodies. Several antigens of Plasmodium 
falciparum have been utilized in RDTs for malaria detec-
tion, including histidine-rich protein 2 (PfHRP2), lactate 
dehydrogenase (PfLDH) and aldolase [4]. Among these 
antigens, PfHRP2 is the most widely employed in com-
mercially available malaria RDTs at present, because of its 
abundant expression in the asexual blood stage of P. falci-
parum [5–7], structural stability [8] and high specificity 
recognized by multiple antibodies [9–11]. PfHRP2 is a 
protein encoded by pfhrp2, which is located in the sub-
telomeric region of chromosome 8. This P. falciparum-
specific protein is expressed abundantly in the infected 
erythrocyte surface of the blood stage and early game-
tocyte stage [12, 13]. Some of the PfHRP2-based RDTs 
can cross-react with a structural homologue, P. falcipa-
rum histidine-rich protein 3 (PfHRP3) that is encoded 
by pfhrp3 and shares high sequence identity and epitope 
similarity with PfHRP2 [13, 14]. The pfhrp2 and pfhrp3 
genes are predicted to be derived from a common ances-
tral gene. As such, these near-duplicate genes may com-
pensate each other in function [7]. However, it has been 
reported recently that P. falciparum field isolates in some 
parts of malaria-endemic regions lack pfhrp2 [15–20]. 
Deletion of pfhrp2 could affect the accuracy of PfHRP2-
based RDTs and lead to false-negative results followed 
by inappropriate treatment, which in turn causes nega-
tive impact for effective control and elimination of 
malaria. Furthermore, co-deletion of pfhrp2 and pfhrp3 
has also been identified [8, 21]. In addition to the density 
of the parasite or the lack of PfHRP2 expression, it has 
also been suggested that genetic diversity in pfhrp2 and 
pfhrp3 could affect the sensitivity of PfHRP-based RDTs 

[22, 23]. Therefore, monitoring parasite factors that can 
affect performance of RDT-based diagnosis is important.

In this study, the genetic variation in pfhrp2 and pfhrp3 
of Myanmar P. falciparum isolates was analysed. The 
diversity of the two genes from global P. falciparum iso-
lates was also investigated comparatively to gain in-depth 
understanding of the genetic diversity and population 
structure of global pfhrp2 and pfhrp3.

Methods
Study sites and blood sample collection
A total 105 blood samples from malaria patients infected 
with P. falciparum were collected during a previous study 
conducted in Myanmar between 2013 and 2015 [24]. 
The patients were detected during regional malaria sur-
veys, which were conducted in the regions of Naung Cho, 
Pyin Oo Lwin, Tha Beik Kyin, and Mandalay in Upper 
Myanmar (Additional file  1: Fig. S1). Malaria infection 
was diagnosed by microscopic analysis of thin and thick 
blood smears. Finger-prick blood was taken from P. falci-
parum-infected patients and spotted in Whatman 3MM 
filter (GE Healthcare, Maidstone, UK) for confirmation 
by polymerase chain reaction (PCR) targeting 18S ribo-
somal RNA (rRNA) gene [24]. Informed consent was 
obtained from all patients before blood collection. The 
study protocol was approved by either the Ethics Com-
mittee of the Ministry of Health, Myanmar (97/Ethics 
2015) or the Biomedical Research Ethics Review Board 
of Inha University School of Medicine, Republic of Korea 
(INHA 15-013).

Genomic DNA extraction and amplifications of pfhrp2 
and pfhrp3
Genomic DNA was extracted from the dried blood spots 
using the QIAamp DNA Blood Kit (Qiagen, Hilden, Ger-
many) following the manufacturer’s instructions. The 
primers specific for pfhrp2 and pfhrp3 were designed and 
used (Additional file 2: Table S1). Both genes were ampli-
fied by nested PCR methods. Each PCR was done with 
thermal cycling conditions: 94 °C for 5 min, and 35 cycles 
of 94 °C for 1 min, 53 °C for 1 min, and 72 °C for 1.5 min, 
followed by the final extension at 72  °C for 10  min. In 
order to minimize the nucleotide mis-incorporation 
during amplification, Ex Taq DNA polymerase (Takara, 
Otsu, Japan), which has a proof-reading activity, was 
used in all PCR steps. Each PCR product was resolved on 
1.5% agarose gel, extracted from the gel, and cloned into 
T&A cloning vector (Real Biotech Corporation, Banqiao, 
Taiwan). Each ligation mixture was transformed into 
Escherichia coli DH5α competent cells. Colony PCR was 
performed to select the positive clones with appropriate 
inserts. The nucleotide sequences of the cloned pfhrp2 
and pfhrp3 were analysed by automatic DNA sequencing 
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with M13 forward and M13 reverse primers by the Sanger 
method. Plasmids from at least two independent clones 
from each transformation mixture were sequenced to 
verify the sequence accuracy. The nucleotide sequences 
of Myanmar pfhrp2 and pfhrp3 analysed in this study 
have been deposited in the GenBank database under the 
accession numbers KX138275–KX138311, MG417056–
MG417080, and MT591418–MT591439 for pfhrp2 and 
KX138312–KX138340 and MT591440–MT591466 for 
pfhrp3.

Sequence analyses of Myanmar and global pfhrp2 
and pfhrp3
The nucleotide and deduced amino acid sequences of 
Myanmar pfhrp2 and pfhrp3 were analysed using Edit-
Seq and SeqMan in the DNASTAR package (DNASTAR, 
Madison, WI, USA). Genetic variations of pfhrp2 and 
pfhrp3 in global P. falciparum isolates were also analysed. 
The pfhrp2 and pfhrp3 sequences deposited in public 
database were used in this study. The pfhrp2 sequences 
analysed in this study were from China, India, Sri Lanka, 
Thailand, Philippines, Cambodia, Vietnam, Central Afri-
can Republic, Ghana, Haiti, Kenya, Madagascar, Nigeria, 
Tanzania, French Guinea, Brazil, Honduras, Papua New 
Guinea, Solomon Islands, and East Timor (Additional 
file 3: Table S2). For pfhrp3, the sequences from Cambo-
dia, India, Philippines, Kenya, Madagascar, Nigeria, Peru, 
Colombia, Papua New Guinea, and Solomon Islands 
were analysed (Additional file 4: Table S3).

Results
Amplification of pfhrp2 and pfhrp3 in Myanmar 
Plasmodium falciparum isolates
PCR amplification of pfhrp2 and pfhrp3 from 105 P. 
falciparum-infected blood samples resulted in suc-
cessful amplification of 102 pfhrp2 and 89 pfhrp3. The 
approximate sizes of amplified products were highly 
variable, ranging 100–1000 bp for pfhrp2 and 50–600 bp 
for pfhrp3. Of these, 84 pfhrp2 and 56 pfhrp3 PCR prod-
ucts were cloned successfully and sequenced for further 
assessments. The remaining 19 pfhrp2 and 33 pfhrp3 
PCR products were excluded from this study because 
the quality of the amplicons was not adequate for further 
analysis, despite repeated attempts.

Polymorphic character of Myanmar pfhrp2
Seventy-six distinct haplotypes of pfhrp2 were identified 
in 84 Myanmar P. falciparum isolates (Fig. 1). Each hap-
lotype consisted of different numbers of repeats ranging 
from 3 to 36. Different arrangements of distinct repeat 
types resulted in size variation between and among hap-
lotypes. Haplotype 13 (H13) showed the highest preva-
lence with 4.76% (4/84), followed by haplotype 55 (H55), 

accounting for 3.57% (3/84). Most Myanmar pfhrp2 
started with 1–6 copies of type 1 repeat (AHHAHHVAD, 
96.4%) and terminated with type 12 repeat (AHHAAAH-
HEAATH, 94%). However, three pfhrp2 haplotypes (H23, 
H24, H76) began with type 2 repeat (AHHAHHAAD) 
and finished with type 12 repeat. Five haplotypes (H16, 
H20, H21, H32, H48) also started with type 1 repeat, but 
they terminated with type 4 (AHH), type 6 (AHHATD), 
or type 10 (AHHAAAHHATD).

Polymorphic character of Myanmar pfhrp3
Forty-seven distinct haplotypes of pfhrp3 were observed 
in 56 Myanmar P. falciparum isolates (Fig. 2). Eleven dif-
ferent types of repeat were observed in Myanmar pfhrp3 
and each haplotype was constructed with different num-
bers of the repeats ranging from 2 to 25. Structural fea-
tures of Myanmar pfhrp3 haplotypes were highly diverse, 
but all haplotypes shared similar patterns. Most haplo-
types started with type 1 repeat (AHHAHHVAD) and 
terminated with type 4 repeat (AHH). Two exceptions 
were haplotypes 38 and 46. Haplotype 38 stared with 
type 1 repeat but finished with type 15 repeat (AHHAH-
HAAN). Haplotype 46 began with type 7 repeat 
(AHHAAD) and terminated with type 4 repeat (AHH). 
Non-repeat (NR) regions were scattered randomly in the 
sequences of most haplotypes. The length variation in 
Myanmar pfhrp3 was caused mainly by repeating num-
bers of type 16 (AHHAAN), type 17 (AHHADG), or type 
18 (AHHDD).

Amino acid changes in Myanmar pfhrp2 and pfhrp3
Amino acid substitutions were identified in repeat types 
1, 2, 6, and 7 of Myanmar pfhrp2 (Table 1). Six variants 
of type 1 (AHHAHHVAY, AHRAHHVAD, AHHARH-
VAD, AHPAHHVAD, AHHAHHEAD, ARHAHHVAD) 
and six variants of type 2 (VHHAHHAAD, AHHAH-
HAAG, AHHAHHTAD, AHHARHAAD, AHHTH-
HAAD, ARHAHHAAD) were found in Myanmar pfhrp2. 
Four variants of type 6 (VHHATD, AHHAID, DHHATD, 
AHHAPD) were found. Two variants of type 7 were 
identified, in which one variant had a deletion of alanine 
(─HHAAD). The frequency of each variant in Myanmar 
pfhrp2 was low, ranging from 1.17 to 2.35%. For Myan-
mar pfhrp3, an amino acid change was also observed in 
each type 16 (AHHASN), type 18 (ARHAAD), and type 
20 (SYHDD), but their frequencies in Myanmar pfhrp3 
were also low (Table 1).

Prevalence of repeat types in Myanmar pfhrp2 and pfhrp3
Overall prevalence of each type of repeat differed in 
Myanmar pfhrp2 and pfhrp3. Type 2 repeat was the 
most prevalent and showed high numbers of duplicates 
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Fig. 1 Genetic variation in Myanmar pfhrp2. Seventy‑six unique haplotypes were identified in Myanmar pfhrp2. The haplotypes differ in the number 
and organization of 12 distinct repeat types. Each repeat type is displayed as a different color
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in most haplotypes of Myanmar pfhrp2. Types 1, 6 and 
12 were found in most haplotypes of Myanmar pfhrp2, 
accounting for 96.5, 92.9 and 95.3% of sequences, 

respectively. Type 4, 5, and 14 repeats were observed in 
only a few haplotypes of Myanmar pfhrp2 and with lower 
prevalence (Fig. 3). For Myanmar pfhrp3, types 1, 4, 17, 
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Fig. 2 Genetic variation in Myanmar pfhrp3. Forty‑seven unique haplotypes were identified in Myanmar pfhrp3. The haplotypes differ in the 
number and organization of 11 distinct repeat types. Each repeat type is displayed as a different color
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18, and 20 repeats were found commonly in most hap-
lotypes, while the proportions of other types of repeats 
were variable (Fig.  3). Types 1, 2, 4, and 7 repeats were 
found in both Myanmar pfhrp2 and pfhrp3. Types 3, 5, 
6, 8, 10, 12, 13, and 14 were identified only in Myanmar 
pfhrp2 and types 11, 15, 16, 17, 18, 20, and 28 were found 
only in Myanmar pfhrp3.

Genetic polymorphisms of pfhrp2 and pfhrp3 in global 
isolates
Comparative analysis of repeat types revealed that types 
1, 2, 3, 5, 6, 7, 10, and 12 were found commonly in all 
global pfhrp2 population (Table  2). The frequencies of 
types 1, 2, 6, and 12 were especially high in global pfhrp2. 
The frequencies of types 3, 5, 7, and 10 differed by coun-
try. Type 8 repeat also showed high frequencies in global 
pfhrp2, but it was not identified in Brazil pfhrp2. Types 
4, 13 and 14 were observed at low frequencies in pfhrp2 
from some countries, but types 15 and type 19 were found 
only in pfhrp2 from China, India, Kenya, or the Solomon 
Islands. A similar variety of frequencies of repeat types 
was found in global pfhrp3 populations (Table 3). Types 
1, 4, 7, 17, 18, and 20 were detected at high frequencies in 

all global pfhrp3. Type 16 also showed high frequencies in 
all global pfhrp3, except for Myanmar. Type 15 was found 
in nearly all global pfhrp3 at relatively high frequencies, 
but it was not detected in pfhrp3 from Peru, Papua New 
Guinea and the Solomon Islands. Types 2, 28 and 29 were 
identified at low frequencies in only several countries, 
including Myanmar, India, Philippines, Kenya, Mada-
gascar, Peru, or Papua New Guinea. Length variation in 
pfhrp2 and pfhrp3 was also found in the global P. falcipa-
rum population (Fig. 4). The lengths of the global pfhrp2 
and pfhrp3 mainly ranged from 200–300 and 100–200 
amino acids, respectively. The mean amino acid length 
of global pfhrp2 was 245.2 ± 41.9, whereas the value for 
global pfhrp3 was 178.2 ± 31.7. Diverse length polymor-
phisms between and among global isolates were found in 
both genes. The lengths of Myanmar pfhrp2 varied from 
50 to 350 amino acids (mean length 175.4 ± 70.3) and the 
size variation was greater than those of other countries 
analysed in this study. The mean lengths of pfhrp2 from 
East Timor (253.7 ± 18.0), Solomon Islands (260.7 ± 23.4), 
Honduras (262.8 ± 14.3), Brazil (263.1 ± 12.4), French 
Guinea (286.8 ± 11.6), Nigeria (254.0 ± 17.3), Kenya 
(268.4 ± 19.7), Haiti (264.4 ± 14.4), Ghana (261.3 ± 11.0), 
Central African Republic (258.5 ± 14.4), Vietnam 

Table 1 The amino acid changes identified in repeat types in Myanmar pfhrp2 and pfhrp3 

The amino acid changes are presented as bold. Asterisks indicate novel variants that have not been reported previously. The – in type 6 of pfhrp2 means a deletion of 
alanine (A) at the corresponding position. Frequency means percentage of sequences with the corresponding repeat type variant in Myanmar pfhrp2 or pfhrp3

Gene Types Variants Frequency (%)

pfhrp2 Type 1
AHHAHHVAD

AHHAHHVAY 1.17

AHRAHHVAD* 1.17

AHHARHVAD* 1.17

AHPAAHVAD* 1.17

AHHAHHEAD* 1.17

ARHAHHVAD* 1.17

Type 2
AHHAHHAAD

VHHAHHAAD* 1.17

AHHAHHAAG 2.35

AHHAHHTAD 1.17

AHHARHAAD* 1.17

AHHTHHAAD 2.35

ARHAHHAAD 1.17

Type 6
AHHATD

VHHATD* 1.17

AHHAID* 1.17

DHHATD* 1.17

AHHAPD 1.17

Type 7
AHHAAD

HHAAD* 1.17

AHHAAA* 1.17

pfhrp3 Type 16
AHHAAN

AHHASN 1.78

Type 18
AHHAAD

ARHAAD* 1.78

Type 20
SHHDD

SYHDD* 1.78
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(271.0 ± 21.6), Thailand (255.6 ± 20.9), and Sri Lanka 
(260.3 ± 24.9) were longer than that of global pfhrp2 
(245.2 ± 41.9). The mean lengths of pfhrp2 from 
Papua New Guinea (227.7 ± 40.0), India (240.3 ± 24.9), 
China-Myanmar border (212.4 ± 56.3), and Myanmar 
(232.3 ± 14.8) [25] were shorter than the mean length of 
global pfhrp2. The overall lengths of Myanmar pfhrp3 
were remarkably shorter than global pfhrp3. Most Myan-
mar pfhrp3 were about 100 amino acids in length, with a 
mean length of 104.7 ± 30.4. The mean lengths of pfhrp3 
from Cambodia (268.6 ± 27.4), the Solomon Islands 
(168.4 ± 29.2) and Papua New Guinea (163.3 ± 21.8) 
were shorter than that of global pfhrp3 (178.2 ± 31.7). 
In contrast, the mean lengths of pfhrp3 from Colombia 
(211.8 ± 21.8), Peru (196.7 ± 14.5), Kenya (199.2 ± 17.6), 
and Philippines (184.7 ± 25.5) were longer than that of 
global pfhrp3.

Discussion
Malaria RDTs provide a simple, rapid and reasonably 
reliable diagnosis of malaria, which could aid proper 
treatment of the disease and offer significant benefits 
for malaria control and elimination. Given these advan-
tages, global use of RDTs has been increasing rapidly in 
many malaria-endemic regions, and having RDTs with 
high specificity and sensitivity against global isolates is 
very important. However, genetic variation in the target 

antigens employed in the RDTs could affect the perfor-
mance, especially their sensitivity to detect low-density 
malaria infections [9, 23, 25]. Understanding the genetic 
diversity and structure organization of the pfhrp2 and 
pfhrp3 in global P. falciparum isolates is important 
because most commercially available P. falciparum RDTs 
target PfHRP2 expressed solely by the parasite [26].

This study is the first report on genetic analysis of pfhrp2 
and pfhrp3 in Myanmar P. falciparum isolates. Sequence 
analysis of Myanmar pfhrp2 and pfhrp3 suggested exten-
sive genetic variations in the both genes consistent with 
previous studies for field isolates from various geographical 
areas [8, 9, 17, 22, 23, 25, 27, 28]. Similar to previous results, 
overall genetic diversity was greater in pfhrp2 than pfhrp3 
in Myanmar isolates. Structural organizations of repeat 
types in Myanmar pfhrp2 and pfhrp3 were highly diverse. 
Most Myanmar pfhrp2 and pfhrp3 sequences occurred only 
once in the analysed P. falciparum isolates. Characteristics 
shared by the isolates were also identified. The majority of 
Myanmar pfhrp2 started with type 1 repeat and terminated 
with type 12 repeat. Similarly, the majority of Myanmar 
pfhrp3 started with type 1 repeat and terminated with type 
4 repeat. This conserved structural organization was also 
identified in global pfhrp2 and pfhrp3 [25, 27–29]; the major 
repeat types found in Myanmar pfhrp2 and pfhrp3 were also 
the most common repeat types observed in global pfhrp2 
and pfhrp3. Although the frequency of each repeat type dif-
fered slightly in global isolates, repeat types 1, 2, 3, 6, 7, 8, 
10, and 12 were the most common in Myanmar and global 
pfhrp2 [25, 27–29]. The frequencies of repeat types 4, 5, 13, 
and 14 varied among global isolates. Repeat types 1, 4, 7, 15, 
16, 17, 18, and 20 were the most common in Myanmar and 
global pfhrp3 [25, 27–29]. Few repeat types were regional or 
country specific. For example, repeat types 15 and 19 were 
found only in limited numbers of pfhrp2 from several coun-
tries including China, India, Kenya, or the Solomon Islands. 
Repeat type 29 was found only in India pfhrp3, and its fre-
quency was low.

Although global pfhrp2 and pfhrp3 shared similar 
structural organizations, they also displayed differences. 
The most important differences identified were length 
polymorphisms, which are caused by variation in the 
number and arrangement of different repeat types. These 
length polymorphisms of global pfhrp2 and pfhrp3 may 
be induced by several molecular mechanisms, such as 
recombination, slipped-strand mispairing event, gene 
conversion, and unequal crossover [30–33]. The effects 
of length polymorphisms in pfhrp2 and pfhrp3 on diag-
nostic performance of PfHRP2-based RDTs are not 
clearly understood, but they could alter the binding 
affinity of specific monoclonal antibodies and conse-
quently influence the sensitivity of PfHRP2-based RDTs 
[9, 23]. The relationship between the combined length 
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of type 2× type 7 repeats in pfhrp2 and the sensitiv-
ity of PfHRP2-based RDTs has been studied previously 
[8, 23, 25, 28, 34, 35]. Four studies [8, 23, 34, 35] pro-
posed that at low parasitaemia (less than 250 parasites/
µl), false-negative rates increased as combined lengths 
of type 2 × type 7 repeats decreased. In contrast, two 
studies [25, 28] found that sensitivity of PfHRP2-RDTs 
was not influenced greatly by combined lengths of type 
2× type 7 repeats [25, 28]. Myanmar pfhrp2 were classi-
fied into two major groups based on the lengths of type 
2× type 7 repeats, borderline group (77.4%, less than 43) 
and group B (19%, ranged from 50 to 100). The impact 

of repeat length polymorphisms in Myanmar pfhrp2 on 
the sensitivity of RDTs was not determined in this study 
because RDT results for all P. falciparum isolates were 
not available. Further studies to determine the effect 
of pfhrp2 length polymorphisms on performance of 
PfHRP2-based RDTs is necessary. Amino acid changes 
in pfhrp2 and pfhrp3 are another important character-
istic that cause genetic polymorphisms in global isolates 
[27, 36]. In total, 17 and 3 amino acid changes were found 
in Myanmar pfhrp2 and pfhrp3, respectively, although 
the frequency of these changes was generally low. Most 
amino acid changes in Myanmar pfhrp2 and pfhrp3 were 

Table 3 Frequencies of repeat types in global pfhrp3 

Country n Type 1 Type 2 Type 4 Type 7 Type 15 Type 16 Type 17 Type 18 Type 20 Type 28 Type 29

Myanmar (This study) 56 97.9 8.9 100 85.7 80.3 57.1 97.9 97.9 97.9 1.8 ‑

Cambodia 8 100 ‑ 100 25.0 100 100 100 100 100 ‑ ‑

India 148 100 2.0 100 100 99.3 96.6 100 98.6 100 4.1 2.0

Philippines 7 100 28.6 100 100 100 100 100 100 100 ‑ ‑

Kenya 270 98.9 0.4 100 100 98.5 100 100 100 100 9.3 ‑

Madagascar 178 99.4 ‑ 96.5 99.4 99.4 100 100 99.4 100 14.2 ‑

Nigeria 16 100 ‑ 100 100 100 100 100 100 100 ‑ ‑

Peru 7 100 33.3 100 100 ‑ 100 100 100 100 ‑ ‑

Colombia 5 100 ‑ 100 100 100 100 100 100 100 20.0 ‑

Papua New Guinea 7 100 ‑ 100 100 ‑ 100 100 100 100 ‑ ‑

Solomon Islands 15 100 ‑ 100 100 ‑ 100 100 100 100 ‑ ‑
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Fig. 4 Comparison of length polymorphisms in global pfhrp2 and pfhrp3 isolates. The blue dotted line indicates the mean amino acid length in 
global pfhrp2 and pfhrp3. The red lines represent the mean amino acid lengths of pfhrp2 and pfhrp3 calculated in P. falciparum isolates from each 
country
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novel changes that have not been reported previously. 
The influence of amino acid changes identified in global 
pfhrp2 and pfhrp3 on the diagnostic performance of 
PfHRP2-based RDTs is also not clear yet, and therefore 
further study is required.

This study had several limitations. The pfhrp2 and 
pfhrp3 were not amplified successfully in all Myan-
mar P. falciparum isolates analysed in this study, a result 
explained by the poor quality of genomic DNA. Indeed, 
some of the pfhrp2-negative samples were also negative 
for P. falciparum merozoite surface protein-1 (pfmsp-1) 
and pfmsp-2 amplifications. Otherwise, deletion of pfhrp2 
and pfhrp3 in the negative samples is also a possibility, 
but further study to elucidate this is necessary. Although 
extreme sequence variations in Myanmar pfhrp2 and 
pfhrp3 were identified, the effect of these variations on the 
performance of PfHRP2-based RDTs was not elucidated 
clearly in this study. Further study, including larger sample 
sizes and RDT negative samples, is needed to understand 
the effect of genetic diversity and deletion of pfhrp2 and 
pfhrp3 on the performance of the PfHRP2-RDTs.

Conclusion
Extensive genetic diversity was found in Myanmar pfhrp2 
and pfhrp3. Length polymorphisms due to variation in 
the number and arrangement of different repeat types 
as well as amino acid changes contributed to the genetic 
diversities of Myanmar pfhrp2 and pfhrp3. Comparative 
sequence analysis of global pfhrp2 and pfhrp3 suggests 
that global pfhrp2 and pfhrp3 share similar structural 
features, but they also differ in some features. These 
results may provide a better understanding of the pfhrp2 
and pfhrp3 structure in global P. falciparum population 
and suggest useful information to develop RDTs with 
improved quality. Further examination of genetic diver-
sity of pfhrp2 and pfhrp3 in diverse global P. falciparum 
populations with a larger number of isolates also is nec-
essary to better understand the structural nature of the 
two genes in the global populations.
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