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Abstract 

Background: Malaria blood-stage infection length and intensity are important drivers of disease and transmission; 
however, the underlying mechanisms of parasite growth and the host’s immune response during infection remain 
largely unknown. Over the last 30 years, several mechanistic mathematical models of malaria parasite within-host 
dynamics have been published and used in malaria transmission models.

Methods: Mechanistic within-host models of parasite dynamics were identified through a review of published 
literature. For a subset of these, model code was reproduced and descriptive statistics compared between the 
models using fitted data. Through simulation and model analysis, key features of the models were compared, includ-
ing assumptions on growth, immune response components, variant switching mechanisms, and inter-individual 
variability.

Results: The assessed within-host malaria models generally replicate infection dynamics in malaria-naïve individu-
als. However, there are substantial differences between the model dynamics after disease onset, and models do not 
always reproduce late infection parasitaemia data used for calibration of the within host infections. Models have 
attempted to capture the considerable variability in parasite dynamics between individuals by including stochas-
tic parasite multiplication rates; variant switching dynamics leading to immune escape; variable effects of the host 
immune responses; or via probabilistic events. For models that capture realistic length of infections, model represen-
tations of innate immunity explain early peaks in infection density that cause clinical symptoms, and model represen-
tations of antibody immune responses control the length of infection. Models differed in their assumptions concern-
ing variant switching dynamics, reflecting uncertainty in the underlying mechanisms of variant switching revealed 
by recent clinical data during early infection. Overall, given the scarce availability of the biological evidence there is 
limited support for complex models.

Conclusions: This study suggests that much of the inter-individual variability observed in clinical malaria infections 
has traditionally been attributed in models to random variability, rather than mechanistic disease dynamics. Thus, it is 
proposed that newly developed models should assume simple immune dynamics that minimally capture mechanis-
tic understandings and avoid over-parameterization and large stochasticity which inaccurately represent unknown 
disease mechanisms.
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Background
The complex life cycle of Plasmodium falciparum 
involves many parasite stages within both the mosquito 
and human host. Plasmodium falciparum induces com-
plex and non-sterilizing immune responses with repeated 
possible exposure in both the human host and mosquito. 
The human blood-stage infection plays a crucial role 
in both disease burden and transmission. Indeed, the 
length and magnitude of asexual parasite infection both 
drive clinical symptoms within a host and the transmis-
sion potential through the level of gametocytes. Thus, 
understanding within-host dynamics of the asexual para-
site stage is essential for both the development of drugs 
or other tools that target asexual or gametocytes stages, 
and to assess burden or transmission dynamics. Within a 
human host, the P. falciparum malaria cycle begins with 
sporozoites transmitted by infectious mosquito bites that 
travel from the skin to the liver [1]. Following replication 
in the liver, merozoites are released into the bloodstream 
[1, 2]. These merozoites subsequently infect red-blood 
cells (RBCs) and in  vitro, approximately 16 merozoites 
emerge from a single merozoite in a 48 h asexual blood-
stage cycle [3]. The blood-stage infection can persist for 
over 300 days if untreated [4]. A small fraction of asexual 
parasites convert into gametocytes [2], responsible for 
the transmission from human to mosquito.

The asexual malaria life cycle drives clinical disease 
in an individual, with many processes eliciting or evad-
ing the immune response [1]. After invasion of a RBC, 
merozoites are no longer directly exposed to immune 
actors. However, with hundreds of parasite proteins 
exported to the erythrocyte’s cell surface, immune effec-
tors can recognize an infected RBC (iRBC) [1]. Naturally 
acquired immune responses recognize erythrocyte sur-
face antigens of iRBCs or antigens of the free merozoites 
[1], as well as antigens from liver and sexual stages [5, 6]. 
Exported parasite proteins on the cell’s surface give the 
cell the capability to adhere to the blood vessel’s wall, and 
thus evade splenic clearance [1]. Furthermore, expression 
of the most characterized exported protein, the eryth-
rocyte membrane protein 1 (PfEMP1), can be switched 
by the parasites from a large library of variants [1]. New 
protein conformations are produced to avoid detection, 
requiring the host to mount new immune responses [1]. 
Plasmodium falciparum escapes the immune response 
by successively expressing one out of 50–60 different 
PfEMP1 genes [7]. The switching mechanisms remain 
uncertain, but switching between the PfEMP1 variants 
needs to be quick enough to evade the immune system 
and avoid splenic clearance, while slow enough to avoid 
variant exhaustion and maintain the chronic nature of 
the infection [7]. In endemic areas where populations are 
continuously exposed to malaria, repeated infections lead 

to acquired immunity, preventing severe cases of malaria 
and death but without leading to sterilizing protection 
for infection [1].

Many mathematical and statistical models have been 
developed to understand population level dynam-
ics of malaria transmission and impact of interventions 
(reviewed in [8, 9]), or to understand within host dynam-
ics. Although there is a long history of mathematical 
modeling of malaria parasite within-host dynamics over 
the years, the substantial biological unknown elements of 
both parasite and host dynamics and the highly variable 
nature of infection patterns, make it difficult to assess 
model accuracy. Furthermore, as there is limited within-
host data available for infections from either immuno-
logically naïve or non-naïve individuals, there is no “gold 
standard” data set or model to compare. In 1999, Molin-
eaux and Dietz reviewed published intra-host models 
[10], indicating the first within-host model of malaria was 
likely developed in 1989 by Anderson et al. [11]. Ander-
son and colleagues [11] described parasite dynamics via 
a set of differential equations representing uninfected 
RBCs, iRBCs, merozoites, and immune effectors [11]. 
This model along with the others reviewed led Molineaux 
and Dietz to conclude that existing models lacked realism 
and did not make quantitative comparisons to real data. 
They further concluded that the reviewed models did 
not allow for inter-individual variability in the outputs, 
even though a large variation in infection dynamics exists 
between individuals [10]. In part to address these con-
cerns, a substantial number of mechanistic within-host 
models, either standalone or used in larger transmission 
models, have since been developed. Most of these models 
were initially parameterized to data from naïve patients, 
but not necessarily to the limited available data from pre-
viously exposed individuals.

Several sources of detailed observations of parasite 
dynamics and densities in naïve patients exist. In the 
past, malaria infection was induced to generate fever to 
treat other illnesses. In particular between 1917 and 1963 
malaria was used as a therapy to treat patients with ter-
tiary neurosyphilis before the use of penicillin [12]. The 
most extensive malaria therapy data set was collated 
between 1940 and 1963 by Collins and Jeffery [12–15]. 
The published database consists of 318 patients treated 
at Columbia, South Carolina and the Milledgeville, Geor-
gia laboratories [12]. This data, referred to here as the 
malariatherapy dataset, includes patients infected with 
three different strains of P. falciparum for neurosyphi-
lis treatment. The data captures daily parasite counts by 
microscopy of both gametocyte and asexual parasites, 
and daily fever charts are available for each patient. This 
data set is the only detailed representation of the entire 
P. falciparum infection in a naïve population. Other 
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malariatherapy data sets exist, for example of Plasmo-
dium vivax infection in naïve and non-naïve individuals 
[16] (not further discussed here).

Over the last decade, many individual-based mod-
els of malaria transmission dynamics have been devel-
oped (reviewed in [8]); several of these include models 
of within-host asexual parasite dynamics [17–20]. A 
recently published paper [21] investigated common bio-
logical assumptions made by within-host models, and 
concluded that current knowledge is insufficient to cap-
ture infection lengths and to explain the chronic nature 
of malaria infections. They further concluded their model 
was quite sensitive to small changes in the parameters 
leading to large instabilities in estimated infection lengths 
[21]. Since asexual parasite dynamics are particularly 
important for modelling the effect of malaria interven-
tions targeting humans (such as drugs or vaccines), the 
within-host model assumptions in these models have the 
potential to drive predictions at the population level, on 
either disease burden or intervention impact. Thus, with 
these within host models widely used in public health 
research, a good understanding of the overall dynamics, 
the assumptions, the uncertainties, and limitations of the 
models are key to critically assess and understand the 
predictions arising from the use of those models.

In this review, within-host models of asexual parasitae-
mia were analysed and components of the models which 
drive predicted dynamics were identified. The identified 
models were used to investigate malaria interventions 
such as drugs or vaccines, either as stand-alone within-
host models or used in combination with transmission 
models. The review and analytical assessment of each 
model, including the re-simulation of a subset of models 
to allow for deeper investigation, provides an overview of 
the main components of each model and their underlying 
assumptions. Rather than defining a gold standard, mod-
els were discussed on how they differ in their immune 
responses and parasite growth. This comparison provides 
an understanding of the benefits and limitations in using 
these models, which directs and informs future work on 
within-host models of blood-stage parasitaemia.

Methods
Malariatherapy dataset
The malariatherapy dataset is extensively described in 
the retrospective analysis of Collins et  al. [12]. Briefly, 
the dataset consists of parasitaemia and fever records 
from Columbia, South Carolina, and the Milledgeville, 
Georgia laboratories of patients with no recorded previ-
ous history of malaria infection. Patients were infected 
by either of three parasite strains (named McLendon, 
Santee-Cooper, and El Limon), inoculated either by intra-
venous injection of parasitized blood, bites of infected 

mosquitoes, or subcutaneous or intravenous injection of 
sporozoites. Parasitaemia was measured daily via thick 
and thin peripheral blood films examined microscopi-
cally. Detection threshold is defined as 10 parasites/μl. 
At early stages of the infection, parasitaemia and fever 
levels were controlled with sub-curative treatment when 
needed, and in some instances the infection were termi-
nated using drugs.

The dataset reported by Collins et al. [22] include 318 
patient records, and models used a range of malaria-
therapy data subsets, to select only infections that cleared 
naturally and with minimal sub-curative drug adminis-
tration, and/or select infections considered non-severe. 
Details on malariatherapy subsets for each model are 
shown in Table 1 and Additional file 1: Table S2, and the 
respective publications. The smallest dataset was used for 
the model by Molineaux et al., which include 35 patient 
records where infections were not classified as severe, 
and infections cleared naturally. These included patients 
inoculated with infected blood (n = 18) and mosquito 
bites (n = 17), using El Limon (n = 34) and Santee Cooper 
(n = 1) strains. In the available dataset, only 315 out of 
the 318 patient records presented by Collins et  al. were 
recovered (missing patient G-27, S-934, S-1173) and the 
time-series and summary statistics are shown for 315 
patients, and 35 patients.

Models and simulation code
Several mechanistic within-host models were identified 
that are currently implemented in individual-based mod-
els (IBMs) from a recently published systematic review of 
IBMs [8], or used as stand-alone models to understand 
within host dynamics or assess malaria interventions 
(drugs or vaccines) targeting humans. The within-host 
models identified as being part of malaria IBMs are 
Molineaux et  al. [22], Johnston et  al. [23], Gatton and 
Cheng [24], Eckhoff [19], McKenzie and Bossert [18], 
and Gurarie et al. [17]. Additionally the models of Childs 
and Buckee [21] and Challenger [25] were included (see 
Fig.  1, and further details on the models in Results and 
in the Additional file 1). Five of the eight identified mod-
els were re-simulated for a deeper understanding of the 
underlying dynamics.

For the simulations, the open access code of Johnston 
et al. [23] was ised to recreate the Johnston et al. model in 
Matlab [26]. As both Johnston et al. [23] and later model 
Challenger et al. [25] were based on the model of Molin-
eaux et  al. [22], the code of Johnston et  al. was used as 
base code to reproduce the Molineaux et al. [22] and the 
Challenger et  al. [25] models. Challenger et  al. provides 
open access code for their model in C+ + [27], which is 
used here to validate the model code. The model of Gat-
ton and Cheng [24] was not open access but the model 
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Fig. 1 Identified within-host models of asexual parasite blood stage infection. Models are ordered by their publication date on the vertical and 
horizontal axis, with models adapted from another model displayed on the same row and linked with arrows. Dashed squares represent models 
that have been used in IBMs according to the systematic review of [6], and colored squares highlight the models that are simulated in this study, 
where the colours correspond to the results plotted in Figs. 3, 4, 5, 6. Text in each box indicates a brief description of the main features or differences 
of the models. A more detailed description of the models can be found in the supplementary material or in the source publications [17, 18, 21–26, 
31]
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was reproduced in Matlab. The model code for Eckhoff 
[19] was available from the author’s affiliated groups [28].

Model simulation and assessment
Each model was simulated 1750 times, which for the 
patient-specific model of Molineaux et  al. corresponds 
to 50 simulations of the 35 malariatherapy patients used 
for parameterization. For all other models, this corre-
sponds to 1750 independent realizations of the stochastic 
models.

Parameter values were fixed to the values defined in 
their respective publication (note that the parameters are 
either assumed from literature or fitted in their models, 
Additional file  1: Table  S3). The same stochastic multi-
plication rate of each PfEMP1 variants was used in the 
models of Molineaux et al. and Johnston et al., except that 
for Johnston et  al. any multiplication rate over 35 was 
resampled to be within the ranges defined by their model, 
as defined in their publication. Other models either had 
a different definition of the parasite’s multiplication rates 
(Challenger et al.) or a constant multiplication rate (Gat-
ton and Cheng, and Eckhoff). Except for Eckhoff, model 
simulations were undertaken in Matlab [27]. The Eckhoff 
model was simulated in C+ + [28]. All subsequent analy-
sis of results was performed in R [29]. For the purpose 
of comparison, all models were simulated for 600  days. 
Furthermore, the best fit of the model was not selected 
for each patient and no measurement errors were added 
(as done by Molineaux et al.), as the aim was not to rep-
licate the data but to illustrate the internal behaviour of 
the models.

Initially models were assessed via nine summary statis-
tics for the malariatherapy data set. These summary sta-
tistics were first described in Molineaux et  al. [22], and 
were later used as evaluation measures for several of the 
other models [23–25]. Briefly, the nine summary statistics 
computed are (i) the slope of the linear regression line 
from the first positive observed parasitaemia to the first 
local maximum; (ii) the  log10 parasite density of the first 
local maximum, with a local maximum defined as a para-
site density greater than the three preceding time steps 
(t−1 to t−3) and not lower than the three following time 
steps (t + 1 to t + 3); (iii) the number of local maxima; (iv) 
the slope of the linear regression through all the  log10 
local maxima; (v–vi) the geometric mean and standard 
deviation of the geometric means between the local max-
ima; (vii–viii) the proportion of positive observation in 
the first half and second half of the interval between the 
first and last positive observation; and ix) the last posi-
tive day [22]. A positive parasite density observation was 
defined as an asexual parasite density equal to, or higher 
than, 10 iRBC per microlitre, which is aligned with the 
detection threshold for the malariatherapy dataset [12]. 

In the Gatton and Cheng model the number of iRBCs is 
modelled, and thus for consistency and for comparison 
to other models, the output was converted to iRBC per 
microlitre assuming a body contains five liters of blood 
[24].

Assessment of parasite growth and host immunity 
for the re‑simulated models
In addition to the summary statistics, comparisons were 
made of estimated overall parasite multiplication rates, 
the innate, variant specific, general adaptive, and total 
immune responses, and the subsequent variation across 
the simulations that reflects individual variation and 
stochasticity. Parasites are referred to as variant specific 
to distinguish parasite subpopulation all expressing the 
same PfEMP1 variant, and thus eliciting the anti-PfEMP1 
antibodies specific to that variant. Models  were com-
pared by visual inspection of time series plots of these 
response components to identify the model’s main driv-
ers of parasite density and infection length predictions.

To assess the modelled parasite growth, for the mod-
els which use a stochastic and variant-specific multipli-
cation rate, an average inherent parasite multiplication 
rate (across variants) was defined at each time-step for 
each model. In Molineaux et al. and Johnston et al. each 
variant-specific parasite has its own multiplication rate 
drawn from a Normal distribution [22, 23]. Therefore, the 
average multiplication rate of all parasites at each time 
step is the weighted average of the variant-specific para-
site multiplication rates, as follows:

where mi is the multiplication rate of variant i, pi(t) the 
parasite density of variant i at time t, and Ptot(t) the total 
parasite density at time t. For all other models, the over-
all parasite multiplication is an input parameter and thus 
does not need to be calculated.

To investigate the modelled immune responses, 
immune responses were categorized into innate ( Sc ), 
variant-specific ( Sv) , and general adaptive ( Sm) . Between 
Molineaux et  al., Johnston et  al., and Challenger et  al., 
those three terms are directly comparable across mod-
els, but for Gatton and Cheng, and Eckhoff the terms are 
slightly different (see Additional file 1: Table S2). Where 
the variant specific immune response is tracked for each 
variant (in Molineaux et  al., Johnston et  al. and Gat-
ton and Cheng), the overall effect of the variant-specific 
immune response is the weighted average of the variant-
specific immune response, as follows:

(1)M̄(t) =

∑i=50
i=1 mipi(t)

Ptot(t)
,
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where Sv,i(t) is the effect of the immune response on 
variant i at time t, pi(t) the parasite density of variant i 
at time t, and Ptot(t) the total parasite density at time t. 
The innate and general adaptive immune responses are 
described as an effect on the total parasite density and 
are reported as such without further modifications. All 
equations and comparison between the models are sum-
marized in Additional file 1: Table S2.

Results
Overall model structure
Via the systematic review of IBMs [8], six mechanistic 
within-host models were identified as part of transmis-
sion models, as represented in Fig. 1, namely Molineaux 
et  al. [22], Gatton and Cheng [24], Johnston et  al. [23], 
Eckhoff [19], McKenzie and Bossert [18], and Gurarie 
et  al. [17]. An additional two models were identified 
through further literature search, namely Challenger 
et al. [25], and Childs and Buckee [21]. The new quanti-
tative results in the current study focus on five models, 
namely those of Molineaux et al. [22], Gatton and Cheng 
[24], Johnston et al. [23], Challenger et al. [25], and Eck-
hoff [19] (Fig.  1). The models of McKenzie and Bossert 
[18], Gurarie et al. [17], and Childs and Buckee [21] were 
included in the summary categorizations for comparison.

Most models reviewed here can generally be described 
in a simple discrete form

Here parasite densities or number of parasites Yt, at 
time t, depend on the parasite’s multiplication rate mt 
reduced by host effects Rt which can include immune 
response or RBC resource limitation. The immune 
response can represent up to four components: the innate 
immune response, and the antibody-driven immune 
response defined by variant specific, the  cross-reac-
tive  immune response, and adaptive immune responses, 
each component including different levels of stochastic-
ity and different functions. The models can be relatively 
simple and reproduce a smoothed time-course of an 
infection, such as in McKenzie and Bossert, or include a 
higher level of complexity to describe more granular par-
asite dynamics including the typical peaks and throughs 
observed in clinical data. The latter usually involves 
explicit or implicit inclusion of a range of variant-specific 
parasites.

Each model was reviewed via their detailed descrip-
tions and equations in their respective publications. The 
models are fully described in the Additional file  1 and 
their main characteristics are described in Table 1, with 

(2)Sv(t) =

∑i=50
i=1 Sv,i(t)pi(t)

Ptot(t)
,

Yt = mtYt−1Rt .

more details of their immune response dynamics sum-
marized in Table 2. The type of equations used were clas-
sified along with the level of stochasticity integrated into 
the models, and detailed which dataset/s were used for 
calibration. Further categorization included the key fea-
tures of parasite growth and immune dynamics for each 
model and are  summarized in tables (Tables  1 and 2). 
Equations were classified and divided into four descrip-
tions (1) parasite growth defined by the merozoite mul-
tiplication factor; (2a) triggering of, and effect of, the 
innate immune response; (2b) PfEMP1 variant-specific 
immunity dynamics; and (2c) the general or non-PfEMP1 
immune response dynamic. Figure 2 illustrates the sim-
plified dynamics and feedback between the host and 
parasite for the different models. The description of the 
parasite growth in each model is described in Table  1 
(row “Assumed multiplication rate”) and the immune 
responses are described in Table 2. The complete descrip-
tion of each model is given in Additional file 1, and a brief 
summary is provided here. 

Model specificities
Molineaux et  al. describe a mechanistic malaria para-
site growth model including three components of the 
immune response, namely an innate immune response 
acting early in the infection; a variant-specific immune 
response for each variant-specific parasite popula-
tion; and a general adaptive immune response acting on 
total parasite population. This model was intended to 
reproduce parasite densities from patients in the malar-
iatherapy dataset [12], and describes each of the 50 vari-
ant-specific parasite populations within an infection. The 
model of Molineaux et al. was adapted by Johnston et al. 
by replacing two patient-specific parameters which trig-
ger innate and general adaptive immune response with 
values drawn from a distribution (see Additional file 1). 
Challenger et  al. further simplified the model by track-
ing total parasite density instead of 50 variant-specific 
parasite densities to reduce memory and computational 
requirements. The Johnston et  al. and Challenger et  al. 
models are referred to as Molineaux-adapted models in 
this manuscript.

At a similar time to the publication of Molineaux et al., 
Paget-McNicol et  al. [30] published a stochastic model 
also including three immune response components and 
exploring different assumptions on switching dynam-
ics of the PfEMP1 variant expression. This model was 
later adapted by Gatton and Cheng [24]. Instead of a set 
of discrete model equations with stochastic parameters 
describing the asexual parasite density in the blood as 
in Molineaux et al., the Gatton and Cheng model is sto-
chastic and represent the total number of asexual para-
sites as a decision tree, where parasite numbers trigger 
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Fig. 2 Schematic overview of the main within host dynamics. A simplified representation of the main immune and parasite dynamics for a 
Molineaux et al. and Johnston et al., b Challenger et al., c Gatton et al., d Mckenzie and Bossert, e Eckhoff, f Gurarie et al., and g Childs and Buckee. 
Each model is represented by the main parasite components (left box), the host-immune component (right box) and additional factors influencing 
parasite dynamics (bottom circles). Models either describe overall infected red blood cells (iRBC) or total iRBC result from a sum of variant specific 
iRBC (var 1,..,i). Asexual multiplication (m) and variant switching of the parasite are represented by black arrows, and feedbacks between parasite 
and host components are represented by green arrows or red bar-headed lines for positive or negative effects, respectively. The weaker effect due 
to cross-reactive immune response is represented by dashed bar-headed lines. A more detailed description of the models can be found in the 
supplementary material, or in the source publications [17, 18, 21–26]
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choice of path in this decision tree and corresponding 
model equations [24]. This model differs significantly 
from Molineaux et  al. in regard to assumptions around 
the variant switching dynamics. Additionally, Gatton 
and Cheng include cross-reactivity between variant-
specific immune responses, which was not present in the 
model of Molineaux et al., although the general adaptive 
immune response might capture the effect of cross-reac-
tivity implicitly.

More recently, two additional models by Eckhoff [19] 
and by Childs and Buckee [21] were developed. Eck-
hoff’s model represents both continuous events such 
as immune responses to iRBC and discrete events such 
as the bursting of schizont and the associated immune 
responses. It also includes immune memory, captur-
ing faster immune responses when an individual is 
re-exposed to a previously seen parasite variant. Addi-
tionally, it includes cross-reactivity between variant-spe-
cific antibody responses. In the early infection days, the 
probability of switching to a new variant increases with 
growing parasite population. The model developed by 
Childs and Buckee [21] is deterministic and in their work 
they explored a wide parameter space to assess varia-
tions in the infection dynamics with parameter choice. 
This model includes four different immune responses, 
namely innate; variant-specific; general adaptive immune 
responses; and similarly to the models of Eckhoff, and 
of Gatton and Cheng, includes cross-reactive immune 
response across parasite variants. Childs and Buckee 
investigate different variant switching dynamics, and 
explicitly limit parasite growth by available RBCs and 
competition of immune cells for each variant-specific 
immune response.

Despite these models incorporating detailed variant 
switching, the malariatherapy calibration datasets con-
tain no information on gene expression profiles. Thus, 
there is no data describing variant expression and vari-
ant switching dynamics in the included patients. Instead, 
the models utilized understandings from the literature at 
the time of model development on potential structured 
switching; some of the models emphasize and discuss the 
uncertainty around the switching assumptions. Molin-
eaux et al. and Johnston et al.assume that immune pres-
sure drives the switch to the expression of a new variant, 
based on biological studies with Plasmodium knowlesi 
infections in monkeys [7]. In contrast, Paget-McNicol 
et al. refute the theory that switching depends on immu-
nity because it can also be observed in  vitro [31], and 
Gatton and Cheng’s modified model also assumes no link 
between variant switching mechanisms and host immune 
pressure. To avoid all variants being expressed with equal 
chances, the models either assume different switching 
probabilities for each variant according to a geometric 

distribution (as in Molineaux et  al., and in Johnston 
et  al.), limit the number of available variants to switch 
to in each cycle (as in Eckoff), or assume two groups of 
variants, with either fast or slow switching behaviour (as 
in Gatton and Cheng). The model in Childs and Buckee 
explores different switching networks where all variants 
can switch to all other variants but with different prob-
abilities and favouring some variants over others (which 
was adapted from [32]).

The two last models in this review, Gurarie et  al. and 
McKenzie and Bossert, are simpler models which do not 
include variant switching and variant-specific immune 
responses: thus, including only two immune response 
components. Gurarie et al. propose a discrete model that 
assumes the effect of the adaptive immune response is 
forced to have “random falls” which implicitly allow for 
the immune response to lose effectivity when the parasite 
switches to a new variant. These falls in immune response 
decrease in magnitude during the course of an infec-
tion, as it is assumed that the general adaptive immune 
response builds up. The model of McKenzie and Bossert 
is the only model presented here which is built around a 
set of differential equations in a continuous time frame. 
Capable of representing the general infection pattern 
(high initial peak followed by a decrease in parasitae-
mia), the model is not designed to reproduce consecutive 
peaks and droughts observed in the malariatherapy time-
series data. This model was developed to allow for differ-
ent genotypes to infect the host, and to explore the effect 
of different gametocyte dynamics on malaria transmis-
sion. This model does not include variants nor allow for 
variant switching dynamics to impact immune dynamics.

Including inter‑individual variability
The models attempt to replicate time-series observed in 
subsets of the malariatherapy data, either with formal or 
less formal fitting, or at least attempting to reproduce the 
general pattern observed. The Molineaux et al. model was 
fitted to 35 (out of 318) patients from the malariatherapy 
data, who were spontaneously cured and received no 
other treatment. Other models used a larger number of 
malariatherapy patients (Table  1) to be less restrictive 
and avoid selection biases. More details on model fit-
ting can be found in Additional file 1: Table S3. There is 
considerable variation in infection dynamics across the 
malariatherapy patients, both in magnitude and structure 
of peaks of parasite numbers, and in length of infections 
(Figs.  3, 4). This inter-individual variability inherently 
includes detection and clinical measurement error but 
is also a result of the stochastic nature of the biological 
mechanisms involved. These dynamics and observed 
variability are challenging to replicate. In order to cap-
ture the variability, models often implement stochasticity 
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either in the parameters defining parasite multiplication 
rate and/or in the implementation and effect of the innate 
and general adaptive immune responses (Molineaux et al. 
and Molineaux-adapted); by creating a stochastic model 
with most variables defined by Binomial or Normal dis-
tributions (Gatton and Cheng, and Eckhoff); or by fitting 
parameters separately to each patient (Molineaux et  al., 
Mckenzie and Bossert, and Gurarie et al.). Similarly, the 
model developed by Childs and Buckee is deterministic 
but can include different infection patterns by varying 
parameter values within the ranges specified in the pub-
lication [24].

Time series of parasite density
Time series of parasite density, summary statistics 
(described in Methods) of true parasitaemia profiles 
from 315 and 35 malariatherapy patients [12], alongside 
time series and summary statistics calculated from 1750 
simulated parasitaemia profiles for the five models, are 
shown in Figs. 3 and 4, and in Additional file 1: Table S1 
with distribution of infection length in Additional file 1: 
Figure S3. Although care was taken with new or adapted 
code, there may be small differences from the original 
publications.

The observed  log10 parasite densities of the patients 
from the malariatherapy data varies significantly across 
the patients, a variability which appears to be accounted 
for in the models (Fig. 3). The 35 patient subset included 
only infections that ended naturally, and excluded acute 
very short infections. In Molineaux et  al., most infec-
tions cease before day 200, with a subset of simulated 
parasitaemia appearing to be chronic infections that do 
not end before the end of the simulation. The model of 
Johnston et  al. increased the variant-specific immune 
response decay compared to Molineaux et  al., thereby 
decreasing the immune response’s efficiency. This results 
in increased simulated infection lengths compared to 
the simulations in Molineaux et  al. The general shape 
of decay in parasite densities from Johnston et  al. also 
appears to be more exponential-like compared to the 
other models, which is most likely a result of the stronger 
effect of the general adaptive immune response. In Chal-
lenger et al., simulations indicate a general pattern of two 
peaks, the first is followed by a decrease as a result of the 
innate immune responses, followed by a second wave of 
parasitaemia that is controlled by the variant-specific and 
general immune responses. Simulations from Gatton and 
Cheng indicate a slightly different time course of peaks 
compared to those predicted from Molineaux et al. and 
the models adapted from Molineaux et  al. Simulations 
from Gatton and Cheng indicate a general first peak with 
a sharp decrease in parasite densities with initial innate 
immune responses, followed by new peaks in parasite 
densities given the probabilistic approach taken in Gat-
ton and Cheng (see Additional file  1: Table  S2 for the 
equations). The general decline in predicted parasite den-
sities (decreasing peaks) is not reflected in the summary 
statistics (Fig. 4). In Eckhoff’s model the first peak is fol-
lowed by much lower peaks, resulting in a steeper slope 
of peaks in the summary statistics (Fig.  4). The average 
infection lengths are consistent with the 35 malariather-
apy dataset, although it is worth noting that the Eckhoff 
model was fitted to a larger dataset from the malaria-
therapy patients including more than the 35 patients in 
Molineaux et al.

Total parasite multiplication rate during infection
Each variant-specific parasite density in the simulations 
was tracked in all models except Challenger et  al. and 
Eckhoff, the former because the equations do not explic-
itly model each variant and the latter due to the computa-
tional complexities of tracking each variant. The average 
multiplication rate at each time step is shown in Fig.  5. 
For Gatton and Cheng, and for Eckhoff, the multiplica-
tion rate of the parasites, defined as the multiplication 
rate without the effect of any host immune response, 
is fixed at 16 per cycle and remains the same for all 
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Fig. 3 Observed and predicted total asexual parasite density. From 
top to bottom, the observed  log10 asexual parasite density in time 
of the 315 patients from the malariatherapy dataset, the 35 patients 
from the malariatherapy dataset, and the predicted  log10 asexual 
parasite density in time from the Molineaux et al. (M), the Johnston 
et al. (J), the Challenger et al. (C), the Gatton and Cheng. (G), and 
the Eckhoff simulations (E). The solid line represents the median 
across the 1750 simulations per model or patients for the dataset, 
the colored shaded area the interquartile range (Q25–Q75) and the 
light grey shaded area the minimum and maximum. The horizontal 
dashed line indicated the threshold of positive observation (10 PRBC/
μl)
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simulations and time (Fig. 4d, e). For Johnston et al. and 
Molineaux et  al., each variant-specific parasite has its 
own multiplication rate drawn from a Normal distribu-
tion with mean of 16. For each time step, the overall mul-
tiplication rate for Johnston et al. and Molineaux et al. is 
thus the weighted average of the variant-specific multipli-
cation (see Methods).

Therefore, these two models have a constant multi-
plication rate, in time, for each variant-specific parasite. 
However, the overall multiplication rate fluctuates over 
time, representing the competition between variant-spe-
cific parasites (with different multiplication factors), with 
new variants appearing, and other variants disappearing 
throughout the infection. For some simulations (Molin-
eaux et al. and Johnston et al.), the overall multiplication 
rate is high at the beginning of the infection (Fig. 5a, b) 
and causes a peak in parasitaemia density. The predicted 
infection length for a subset of simulations from both 
Molineaux et al. and Johnston et al. is very long, and in 
these subsets of simulations, the overall multiplication 
rate is in fact high throughout the infection (see Addi-
tional file 1: Fig. S2).

In Challenger et al., the multiplication rate at each time 
step is an input parameter of the model. It is both drawn 
from a Normal distribution with mean 16 and correlates 
with the previous time step [25] (see Additional file  1: 
Table  S2). Thus, the median multiplication rate across 
all simulations remains constant at 16 by design (Fig. 5c). 
Taking the example of a single simulation (Fig.  6), the 
pattern of overall parasitaemia in the Challenger model 
is less driven by the average growth rate in time com-
pared with the simulations for Molineaux et  al. and 
Johnston et al. (Fig. 6a–c). Molineaux et al. reported that 
a varying overall parasite multiplication rate, and thus 
the parasite inherent proliferation rate (without immu-
nity), is essential to recreate observed peaks in parasitae-
mia in the dataset. Furthermore, long-lasting infections 
only occurred in models that express highly multiplying 
variants. Overall, this indicates infection dynamics in 
Molineaux et al. and Johnston et al. are primarily driven 
by stochasticity in the inherent growth of the parasites, 
whereas in Challenger et  al., Gatton and Cheng, and 
Eckhoff, the stochasticity in their predicted dynamics is 
driven more by immune responses and subsequent kill-
ing effects.

Fig. 4 Descriptive summary statistics of the observed and predicted time course of total asexual parasite density. The nine descriptive summary 
statistics as defined in Molineaux et al. (see methods), for the dataset and the 5 models (by colour). Squares indicate the median, and bars the 
interquartile range. In each plot, from left to right, the estimates are shown for the 315 patients (D) and the 35 patients (d) from the malariatherapy, 
and for the simulated models of Molineaux et al. (M), Johnston et al. (J), Challenger et al. (C), Gatton and Cheng (G), and Eckhoff (E)
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Immune response dynamics in the models
In terms of immune response variability between the sim-
ulations (and thus assumed to exist between individuals), 
the highest variance across individuals arises from the 
variant-specific immune response, followed by the innate 
immune response, with the general adaptive response 
being reasonably consistent across individuals for the 
models (Additional file 1: Fig. S3). The key assumptions 
around immune dynamics for each model are summa-
rized in Table  2. The simulated immune responses are 
shown for five models in the middle row plots in Fig. 5, 
and examples of single simulations are shown in Fig.  6. 
Note that in Gatton and Cheng and in Eckhoff, the effects 
of the immune responses are drawn from Binomial distri-
butions; thus, the variability in the effects of the immune 
responses are not entirely captured in the immune time 
plots of Figs. 5 and 6.

The innate immune response is mainly active at the 
beginning of the infection (approximately the first 
20–50 days in the different models) as it responds directly 
to high levels of parasite density. In Eckhoff’s model, the 
innate immune response is modulated by the adaptive 
immune response, reducing with increasing antibodies 
against the parasite population, making this model the 
only one with direct feedback between innate and adap-
tive immune response.

The variant specific immune response, effective against 
variant-specific parasite after delay, is modeled for each 
variant explicitly in Molineaux et al., Johnston et al., Gat-
ton and Cheng, and Eckhoff. The increased decay rate 
in Johnston et al. compared to Molineaux et al. leads to 
a reduction in the immune responses (Fig.  5). In Chal-
lenger et al., once the variant-specific immune response 
is activated, it is quickly efficient in reducing parasite 
densities compared to the other two models (steeper 
slope in the variant-specific immune response curve 
in  Fig.  5  and  Additional file  1: Fig. S2). This efficient 
immune response likely explains the steep decrease after 
the first wave of parasite density. In Gatton and Cheng, 
the variant-specific response is activated when the var-
iant-specific parasite density reaches the threshold of 
12 PRBC/μl [24], and the magnitude is increased if the 
antibody was already produced during the infection. 
When there are high peaks throughout the infection, the 

variant-specific immune response remains very active 
throughout the predicted infections from Gatton and 
Cheng.

The general adaptive immune response increases in 
time since the start of the infection, responding to the 
cumulative parasite density (Molineaux et al., Molineaux-
adapted, Eckhoff, McKenzie and Bossert, and Gurarie 
et al. models), time (Gatton and Cheng) or a combination 
of both time and parasite density (Childs and Buckee). An 
important finding is that by comparing all three immune 
responses and the total net immune response (Figs. 5 and 
6), the general immune response is the main effector of 
reducing parasite density in all models approximately 
after 50 days from start of infection. However, the variant 
immune response will ultimately end the infection. The 
decrease of the critical density for the general adaptive 
immune response in Johnston et al. and Challenger et al., 
compared to Molineaux et  al. (see model description 
and Additional file 1: Table S2) leads to a higher effect of 
the general adaptive immune response in those models, 
which compensates for the weaker effect of the variant-
specific immune response.

Discussion
In this study, eight published mechanistic within-host 
models of the asexual blood-stage dynamics of P. falci-
parum were reviewed, five of which were reproduced 
via simulation analysis. Several features and simula-
tion outputs from the models were compared includ-
ing the predicted time-series of asexual parasitaemia, 
modelled growth rates, innate immune responses, var-
iant-specific immune responses, and general adaptive 
immune responses. The models varied widely in com-
plexity. Rather simple models such as McKenzie and 
Bossert have the advantage that they do not rely heav-
ily on assumptions of unknown biological mechanisms, 
while more complex models, such as Eckhoff or Childs 
and Buckee capture more detailed, yet less well under-
stood, immune and parasite mechanisms. Understanding 
the variation in multiplication rates, versus immune and 
other host factors, or random effects and measurement 
error, and their impact on parasite density variations is 
particularly important when the models are included in 
broader investigations of the effect of a vaccine, drug or 

Fig. 5 Asexual parasite densities, immune responses, and multiplication rates in different models. Each panel shows, from top to bottom, 1. The 
 log10 asexual density as in Fig. 3, with the horizontal dashed black line indicates the threshold of positive density (10 PBRC/μl); 2. The stacked 
magnitude (as the |log2(Rt + 1)| with Rt the median effect of each immune response) of the innate (orange), variant specific (red), and general 
adaptive (yellow) immune response, such that the maximum effect equals 1 and no effect equals 0; and 3. The overall (across variants, see Methods) 
multiplication rate, with the horizontal dashed line representing a multiplication rate of 16. The x-axis represents days of infection. Results are shown 
for a Molineaux et al., b Johnston et al., c Challenger et al., d Gatton and Cheng, and e Eckhoff. The x-axis represents days of infection, the solid line 
the median, the shaded area the interquartile range (Q25–Q75) and the grey lines the minimum and maximum resulting from the 1750 simulations

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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other interventions aimed to modify parasite growth pat-
terns. The overview presented here provides a general 
understanding of those models.

Model composition varies in complexity and uncertainty
Parasite and host dynamics are represented in the 
mechanistic models via detailed description of the para-
site replication dynamics, and up to four host immune 
responses. Each model has its own additional complex-
ity, specifications, and advantages. For example, to obtain 
increased detail of the host’s response, some models 
include red blood cell availability and limit the maximum 
immune response capacity. Or, to include more details 
in the parasite dynamics, some models include specific 
variant switching mechanisms. Models generally define 
a negative feedback loop between the parasite density or 
cumulative parasite density since the start of the infec-
tion and the effect of the immune responses, and in addi-
tion some models add the time of infection (Gatton and 
Cheng, Childs and Buckee, Eckhoff) as a determinant for 
the magnitude of the general immune response.

Including stochasticity in the models is particularly 
relevant for the within host dynamics of P. falciparum 
as the infection patterns observed in the malariather-
apy data are highly variable among patients. Yet this is 
a challenge for modellers as it requires more complex 
models that include stochasticity, and it requires cap-
turing inter-individual variation in the fitting process. 
Molineaux et  al. proposed nine summary statistics for 
the 35 malariatherapy patients as outcomes of inter-
est to be reproduced. Other models have used those 
summary statistics to describe the dataset, although 
most did not include all nine. Given the limitations 
of the malariatherapy dataset, the models should not 
aim to reproduce all nine features, nevertheless char-
acteristics such as a wide range of infection lengths, a 
high early peak representing the acute infection phase, 
sometimes followed by chronic infection, should be 
accounted for. In the context of within host models 
used for modelling transmission and impact of inter-
ventions, additional key features to capture, which were 
not included in the current analysis, are infectiousness 
and symptomatology.

Our analysis highlighted that the Molineaux et al. and 
the Molineaux-adapted models have likely allocated too 
much stochasticity to the individual parasite multiplica-
tion rates, thus masking other mechanisms, and plac-
ing relatively less importance on immune responses and 
other host factors. Furthermore, for these models, their 
assumptions concerning the inherent multiplication 
rates of the parasites differ from other models, along 
with assumptions of large variability in the variant-spe-
cific parasite multiplication rates in the absence of any 
immune response. These dynamics were found to be 
essential in the Molineaux et al. and Molineaux-adapted 
models to reproduce clinical malariatherapy patterns of 
infection, rather than immune responses [22]. In particu-
lar, in Molineaux et al. and Johnston et al., longer infec-
tions result from the expression of variants with a high 
multiplication rate towards the end of the infections for 
later variants. In contrast, the other models did not rely 
on variation to capture infection patterns. Instead, vari-
ation was mainly included in the control of infection due 
to immune responses and switching mechanisms.

For models including multiple parasite variants, the 
variant switching dynamics are an important mecha-
nism driving the parasitaemia predictions. The switching 
dynamics define how the parasite goes from expressing 
one PfEMP1 variant to another one at the next genera-
tion to evade the immune response. Switching dynam-
ics in the models have been assumed to respond to the 
variant specific immune response (Molineaux et  al. and 
Johnston et  al.), to the current variant population size 
(Eckhoff), or were determined by more sophisticated 
switching networks (Childs and Buckee, Gatton and 
Cheng). Both the variant switching dynamics and the 
variant-specific immune response are essential driv-
ers of infection patterns and inter-individual variability 
in all models (except McKenzie which does not include 
variants). With detailed var gene transcription analy-
sis studies limited to early days of infection in volunteer 
infection studies (VIS) [33–35], data available to inform 
the models on switching dynamics over the entire course 
of an infection remain insufficient.

The various assumptions around the mechanisms of 
action of the different immune responses and the inter-
play between parasite and host highlight the challenge of 

(See figure on next page.)
Fig. 6 Example of asexual parasite densities, immune responses, and multiplication rates in single simulations from different models. Each panel 
shows, from top to bottom, 1. the  log10 asexual density and variant specific asexual parasite density, with the horizontal dashed black line indicates 
the threshold of positive density (10 PBRC/μl); 2. The stacked magnitude (as the |log2(Rt + 1)| with Rt the effect of each immune response) of the 
innate (orange), variant specific (red), and general adaptive (yellow) immune responses, with 1 representing maximum effect and 0 no effect for 
each immune response type; and 3. The overall (across variants, see Methods) multiplication rate, with the horizontal dashed line representing a 
multiplication rate of 16. The x-axis represents days of infection. Results are shown for a Molineaux et al., b. Johnston et al., c Challenger et al., d 
Gatton and Cheng, and e Eckhoff
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Fig. 6 (See legend on previous page.)
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realistically reproducing the time-series observed in the 
malariatherapy dataset, especially the inter-individual 
variability. This challenge is confounded since there is 
limited knowledge of the biological mechanisms at play.

Parasite multiplication rates might be lower than initially 
assumed
It is commonly agreed that a single iRBC produces 16 
merozoites [3], of which a portion successfully invade 
new erythrocytes. Growth rates in vivo are more difficult 
to measure, and compared to the assumed multiplica-
tion factor of 16, includes the host-parasite interactions, 
which reduce the observed parasite growth. Several inde-
pendent statistical models previously estimated parasite 
growth at onset of infections in both malariatherapy or 
VIS. Estimates from the malariatherapy dataset range 
between 10 and 18 [36], or 6 and 24 [20]. In malaria VIS 
the growth factor was estimated to be between 12 and 
15 [37], and in the control cohort of vaccines AMA1-
based vaccine challenge between 14 and 21 [38]. More 
recently, estimated  ex vivo multiplication factors for 
different malaria genotypes were found to be between 
2–11 for laboratory strains and new clinical isolates [39]. 
One hypothesis explaining the variation among parasite 
growth relies on the differential capacity of the PfEMP1-
variants to evade splenic clearance, with the hypothesis 
that a subgroup of PfEMP1 expressing parasites might be 
fast growing (due to increased cytoadherence and thus 
decreased splenic clearance) [40]. This mechanism may 
explain differing growth rates among parasites expressing 
different variants, and explain apparent higher multipli-
cation rates in naïve individuals if their parasites express 
the fast growing PfEMP1 subgroup [40]. Variance in par-
asite multiplication rates among clones and among infec-
tions across individuals is possible due to this variance in 
successful avoidance of splenic clearance during blood-
stage replication, however, it is unclear whether the range 
should include an overall multiplication factor as large 
as 32 or 35, as in some models reviewed here (namely in 
[21–23, 25]). RBC availability might also constrain suc-
cessful invasion of RBCs and thus affect the effective rep-
lication of the parasite. Recent in vitro studies highlighted 
distinct RBC invasion strategies of P. falciparum strains, 
with parasites that favour RBCs of different age [41], and 
different parasite strains either invading a larger frac-
tion of RBCs at lower rates or invading smaller fraction 
of RBCs at a higher rates [41]. In addition to potential 
age-dependent differences in RBC availability, it is known 
that certain RBC polymorphisms, for example sickle cell 
traits and blood groups [42] impact the invasion of RBCs. 
These studies suggest that variability in effective parasite 
growth, both within host and across individuals, might 

be attributable to heterogeneous RBC accessibility and 
susceptibility to parasite invasion.

Variant switching and immune response modeling are 
limited by current knowledge
Switching mechanisms are not well understood, and it 
remains unclear if the switching mechanisms are driven 
by antibody response (as in [22]) or are not directly influ-
enced by the immune pressure (as in [21, 24]). In contrast 
to the assumptions made in the models reviewed here, 
it is likely that parasites express more than one vari-
ant, if not all variants, during the first blood stage gen-
eration [34]. As highlighted by Childs and Buckee [21], 
this finding challenges the current understanding on the 
underlying mechanisms leading to chronic infections. 
Cross-reactivity, suggested as a mechanism necessary for 
chronic infections [43] and included explicitly in Gatton 
and Cheng, Childs and Buckee, and in Eckhoff would not 
allow for chronic infections if all variants are expressed 
at infection onset [44], and models would have difficul-
ties to recover long infection patterns. The lack of under-
standing about the switching dynamics supports the 
assumptions in Challenger et al., as they only model total 
parasitaemia without modeling switching between vari-
ants. The models described by McKenzie and Bossert, 
and Gurarie et  al., are less complex and do not model 
variant-specific parasitaemia, offering potential mod-
eling alternatives when detailed mechanisms of immune 
response are not needed. To our knowledge, there are 
few biological studies on the kinetics and interplay of the 
immune responses as defined by the models (innate, vari-
ant specific, and/or adaptive immune response). As such 
it is unclear how much each immune component affects 
the overall time course of infection. Therefore, it is not 
surprising that models differ in the relative importance 
of general or variant-specific immune responses. Moreo-
ver, in the absence of a clear biological understanding of 
the variability in infection time-series, model stochastic-
ity remains an important driver of the modelled immune 
and parasite dynamics.

Further data for new models
Blood samples can only inform on the level of circulating 
parasites (and associated measures), thus current tools 
are blind to parasites while sequestered and hidden in 
capillaries to avoid splenic clearance [1]. Consequently, 
it remains difficult in humans to experimentally assess 
localized host-parasite interactions for a full understand-
ing of the role of different immune actors and potential 
resource limitation. Nevertheless, a few data sources on 
circulating parasites are available.
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It is essential to highlight here that the malariatherapy 
dataset cannot be considered as a typical time course of 
an infection, as the data come from patients with severe 
neurosyphilis, who were malaria naïve (although previ-
ous infection cannot be completely ruled out as some 
patient lived in area where malaria was endemic at that 
time), and did not include children. Furthermore, inocu-
lations were limited to a restricted set of parasite strains, 
measurements were prone to errors, and data did not 
include any measurements which could directly inform 
immune response and RBC dynamics, nor parasite gene 
expression dynamics. Thus, although the malariather-
apy data are the only detailed data available on infec-
tion time-course, models are not strictly evaluated by 
their ability to reproduce malariatherapy-like infections. 
Data on early infections are available in high detail from 
VIS. They provide precise quantification of parasitae-
mia at much lower detection threshold than the malar-
iatherapy data, and variant expression dynamics or other 
genetic traits relevant for understanding the dynamics 
in the first few days of blood stage infection can now be 
informed by such studies. Note that most of the para-
site densities measured in VIS fall below the 10 iRBC/μl 
detection threshold in the malariatherapy records, and 
untreated infections last ten days at most. Thus, most 
parasitaemia levels available from VIS would probably 
correspond to pre-recorded infection times in the malar-
iatherapy records, making a direct comparison between 
the two datasets difficult. Beyond early infections, mod-
els need to rely on longitudinal field data to assess their 
performance. Longitudinal field data are extremely 
important to explore the dynamics in realistic settings, 
with individuals living in endemic areas who are repeat-
edly exposed to malaria, including children who are most 
at risk for the disease, and including a range of genetic 
diversity and complexity of infection. Because immunity 
builds up with age and exposure [45], and genetic diver-
sity is a result of immune pressure, longitudinal and cross 
sectional field studies which include genetic analysis give 
important insights in malaria infection dynamics.

The current analysis and review focused on infec-
tions in naïve individuals and did not include a review 
of the models for their ability to capture infections in 
pre-exposed individuals. Although data is lacking, the 
immune effect of pre-exposure could be added to the 
models as a second step, for example by adding an over-
all reduction factor that would lower the magnitude of 
the parasite density in function of age and/or exposure, 
similar to an empirical model by Maire et al. [46]. The 
effect of co-infection was not included here and its 
implementation was a focus of the Childs and Buckee’s 
model [21], which hypothesizes that co-infections and 
super-infections have different effects based on the 

timing of the second infection, and that the effects of 
multiple infections seem to be poorly understood, and 
thus poorly included in models [21]. Recently many 
field studies focusing of genetic data and analysis are 
giving insights in the effect and dynamics of multiple 
infections on a population scale (for example [47, 48]), 
yet empirical data on the time course of complex infec-
tions are sparse and insufficient to validate models of 
co-infections, relying on data from mouse models for 
detailed infection dynamics [49, 50].

Conclusions
This review provides insights on existing models of 
asexual P. falciparum blood-stage infections, and 
some insights on both known and unknown biological 
mechanisms driving infection dynamics. Blood-stage 
parasite densities are at the core of malaria transmis-
sion, morbidity and mortality. Thus, population models 
that include models of within-host parasite dynamics 
to estimate the impact of blood-stage drugs or vac-
cine, or estimate the impact of parasite resistance, 
should be aware of the underlying assumptions made 
in the within-host model and how those changes effect 
infection dynamics. Complex within host models offer 
a great range of hypothesis on unknown parasite and 
host mechanisms, which is an end in itself, but in the 
context of implementing within-host models in broader 
transmission models, simpler models might be equally 
useful.
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