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Abstract 

Background: Thailand is committed to eliminating malaria by 2024. From 2013 to 2020, the total number of malaria 
cases have decreased, from 37,741 to 4474 (an 88.1% reduction). However, infections with Plasmodium knowlesi, a 
monkey malarial pathogen that can also infect humans, have been increasingly observed. This study focused on the 
molecular analysis of P. knowlesi parasites causing malaria in Thailand.

Methods: Under Thailand’s integrated Drug Efficacy Surveillance (iDES), which includes drug-resistance monitoring 
as part of routine case-based surveillance and responses, specimens were collected from malaria patients (n = 966) 
between 2018 and 2020. Thirty-one mono P. knowlesi infections (3.1%), most of which were from eastern and south-
ern Thailand, were observed and confirmed by nested PCR assay and DNA sequencing. To evaluate whether these 
pathogens were from different lineages, cluster analysis based on seven microsatellite genotyping markers and the 
merozoite surface protein 1 (pkmsp1) gene was carried out. The P. knowlesi pyrimethamine resistance gene dihydro-
folate reductase (pkdhfr) was sequenced and homology modelling was constructed.

Results: The results of analysing the seven microsatellite markers and pkmsp1 sequence demonstrated that P. 
knowlesi parasites from eastern Thailand were of the same lineage as those isolated in Cambodia, while the parasites 
causing malaria in southern Thailand were the same lineage as those isolated from Malaysia. The sequencing results 
for the pkdhfr genes indicated the presence of two mutations, Arg34Leu and a deletion at position 105. On analysis 
with homology modelling, the two mutations were not associated with anti-malarial drug resistance.

Conclusions: This report compared the genetic populations of P. knowlesi parasites in Thailand from 2018 to 2020 
and have shown similar lineages as those isolated in Cambodia and Malaysia of P. knowlesi infection in Thailand and 
demonstrated that the P. knowlesi parasites were of the same lineages as those isolated in Cambodia and Malaysia. 
The parasites were also shown to be sensitive to pyrimethamine.
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Background
Between 2010 and 2018, the incidence of malaria 
declined globally from 71 to 57 cases per 1000 head 
of at-risk populations. However, malaria still kills over 
400,000 individuals every year [1]. In the Greater Mekong 

subregion (GMS), including Cambodia, China (Yunnan 
Province), Lao People’s Democratic Republic, Myanmar, 
Thailand, and Vietnam, the reported number of malaria 
cases fell by 76% between 2010 and 2018, and malaria 
deaths fell by 95% over the same period [1]. Thailand 
is committed to eliminating malaria by 2024. Between 
2013 and 2020, the overall malaria incidence decreased 
from 37,741 to 4474 cases (88.1% reduction). The inci-
dence of both Plasmodium falciparum and Plasmodium 
vivax malaria is declining, but the proportion of the 
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two species has changed, with P. falciparum account-
ing for 5.7% (257/4474) of cases and P. vivax for 91.6% 
(4099/4474) in 2020 [2].

One of the Plasmodium species that infects humans, 
Plasmodium knowlesi [3], is a natural parasite of the 
long-tailed macaque, Macaca fascicularis and the pig-
tailed macaque, Macaca nemestrina. Human malarial 
infection with this parasite was first reported in 1965 [4], 
and a second case presented in 1971 in Malaysia [5]. Plas-
modium knowlesi infections have also shown distribution 
across the Greater Mekong Subregion (GMS), and previ-
ous P. knowlesi infections in the GMS have been recorded 
in Malaysia [6–9], Thailand [10–12], Myanmar [13, 14], 
Laos [15, 16], Vietnam [17, 18], and Cambodia [19]. The 
distribution of P. knowlesi may obstruct the malaria elim-
ination agendas of countries of the GMS of Southeast 
Asia, especially due to asymptomatic cases, which have 
been previously reported [20].

In Thailand, the malaria information system set up by 
the National Malaria Control Programme (NMCP) of 
Thailand does not include information on P. knowlesi 
infections that occurred during the early stages of the 
system’s development; this is because the programme 
used Giemsa staining of thick and thin blood films and 
the pfHRPII-pLDH antigen rapid diagnostic test (pf-pan 
RDT) for diagnosis [21], which do not clearly distinguish 
P. knowlesi from other Plasmodium species. The NMCP 
of Thailand began using molecular techniques for confir-
mation as the most effective tool for malaria verification 
in quality control and quality assurance. Plasmodium 
knowlesi cases were subsequently detected in malaria 
patients who had visited the forest habitats of M. fascicu-
laris and M. nemestrina macaques.

The present study aimed to analyse the genetic popu-
lation of P. knowlesi parasites in Thailand and compare 
them with previous published findings of parasites iso-
lated from Thailand [22, 23], Cambodia [20] and Malay-
sia [24–26]. Network analyses based on microsatellite 
markers were performed and constructed a phylogenetic 
tree based on the nucleotide sequences of the P. knowlesi 
merozoite surface protein 1 gene (pkmsp1). Furthermore, 
the P. knowlesi dihydrofolate reductase gene was isolated 
and analysed for mutations, and homology modelling of 
PkDHFR mutants was conducted.

Methods
Study sites and sample collection
Under the Thailand iDES, between 2018 and 2020, sam-
ples were collected from malaria patients (n = 966) to 
confirm Plasmodium species infection. The DNA sam-
ples were extracted using QIAmp DNA Mini Kit (Qiagen, 
Hilden, Germany) following the manufacturer’s instruc-
tions. Nested PCR based on the 18s rRNA gene was 

performed following published protocol [27]. The ampli-
fied PCR product was purified using FavorPrep (Favor-
gen, Taiwan) and sent to Macrogen (South Korea) for 
DNA sequencing. Nucleotide and amino acid sequences 
of 18rRNA were searched against the NCBI database 
using blastn (https:// blast. ncbi. nlm. nih. gov/ Blast. cgi).

Molecular markers analysis
DNA samples were analysed for P. knowlesi microsat-
ellite markers, NC03_2, CD05_06, NC09_1, NC10_1, 
CD11_157, NC12_2, and CD13_107, following a pre-
vious protocol [24]. Amplification of pkmsp1 and full 
length pkdhfr was performed by nested PCR following 
previously published protocols [24]. The amplified PCR 
products of pkmsp1 (covering nucleotides 4578 to 5376) 
and pkdhfr (covering nucleotides 1 to 708) were purified 
using the FavorPrep PCR purification kit. The purified 
PCR products of pkmsp1 and pkdhfr were outsourced to 
Macrogen (South Korea) for sequencing. Nucleotide and 
amino acid sequences of these genes were aligned and 
compared with the reference sequences from P. knowlesi 
(accession no AM910987).

Network analysis
The results of the analysis of P. knowlesi microsatel-
lite genotyping markers were used in the cluster analy-
sis using Network 10 software (https:// www. fluxus 
engineering.com/sharenet.htm), which is based on 
Median Joining algorithms. Previously published P. 
knowlesi microsatellite data from asymptomatic infec-
tions from Cambodia (n = 8) [20], Peninsular Malaysia 
(n = 16), Sarawak, and Sabah (n = 22) and P. knowlesi 
infections from wild macaques (long-tailed and pig-tailed 
macaques) in Kapit (n = 18) [24] were combined for anal-
ysis to demonstrate the association between P. knowlesi 
parasites isolated from different parts of Thailand and 
those isolated from Cambodia and Malaysia.

Phylogenetic tree analysis
To demonstrate the relationship between P. knowlesi par-
asites isolated in Thailand, Malaysia, and Cambodia, the 
DNA sequencing data of P. knowlesi merozoite surface 
protein 1 (pkmsp1) gene obtained in this study and previ-
ous data [22, 23, 25, 26]were used to construct a phylo-
genetic tree, using MEGA X (https:// www. megas oftwa re. 
net/) based on neighbour-join (NJ) and BioNJ algorithms 
with branch lengths measured as the number of substitu-
tions per site.

Homology modelling of PkDHFR mutants
Homology models of the wild type (WT) PkDHFR and 
two mutant (Arg34Leu and Thr105 deletions) proteins 
in complex with the inhibitor (pyrimethamine) were 
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constructed, using SWISS-MODEL server (https:// swiss 
model. expasy. org/ inter active) based on the x-ray struc-
ture of PvDHFR at a resolution of 1.90 Å (PDB ID: 2BL9) 
[28]. The models were validated by PROCHECK [29].

Results
Plasmodium knowlesi infection in Thailand
Of the 966 malaria collected samples, 31 (3.2%) mono-
infections with P. knowlesi were confirmed by nested 
PCR assay and DNA sequencing. The samples collected 
from eastern Thailand included isolates from Surin (n = 
1), Chanthaburi (n = 1), Trat (n = 10), and those from 
southern Thailand included isolates from Prachuap Khiri 

Khan (n = 2), Chumphon (n = 13), Ranong (n = 1), Surat 
Thani (n = 1), and Phang-nga (n = 2) in 2018 and 2019 
(Fig. 1; Table 1).

Diversity and network analysis of microsatellite 
and pkmsp1 genotyping
To evaluate the lineage relationships among these P. 
knowlesi infections, microsatellite genotyping and cluster 
analyses were performed. The overall mean heterozygo-
sity was relatively low (He = 0.327, SE = 0.043), the mean 
number of alleles was 3.1, and the multiplicity of infec-
tion was 1.032. No significant difference in microsatel-
lite genotypic diversity was found between samples from 

Fig. 1 Study sites of specimen collection for the study
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eastern and southern Thailand. Haplotype network anal-
ysis was performed with the microsatellite marker results 
(Fig. 2) and showed that P. knowlesi isolated from eastern 
parts of Thailand, including Surin, Chanthaburi, and Trat, 
were the same haplotype as P. knowlesi parasites isolated 
from Battambang, Cambodia. Contrastingly, most of the 
P. knowlesi parasites isolated from southern parts of Thai-
land, (Prachuap Khiri Khan, Chumphon, Ranong, Surat 
Thani, and Phang-nga) were in the same lineage as the 
parasites isolated from Malaysia [24].

Plasmodium knowlesi samples from Thailand were used 
to create a dendrogram of the merozoite surface protein 
1 (pkmsp1), which was compared to previous findings 
from Thailand [22, 23], and Malaysia [25, 26] was devel-
oped (Fig.  3). Plasmodium knowlesi samples collected 
from southern Thailand, including those connected by 
nodes, represent descendants from a common ancestor 

and are more genetically similar to the P. knowlesi isolates 
from Malaysia; while P. knowlesi isolates from eastern 
Thailand showed high similarity with P. knowlesi isolates 
from Cambodia. Moreover, the malaria isolated from Tak 
province are closely related to those isolated from Prach-
uap Khiri Khan.

Pkdhfr gene analysis
Full-length pkdhfr DNA sequences were ampli-
fied successfully from 16 isolates and were aligned 
with the reference sequence from P. knowlesi strain H 
(PKNH_0509600) to investigate the variations of the 
gene. The five mutations in the biding pocket of PkD-
HFR, equivalent to P. vivax DHFR (I13, F57, S58, S117, 
I173), were not observed in this study. However, two 
mutations were found, including Arg34Leu (11/16) and a 
three-nucleotide deletion at Thr105 (5/16). The PkDHFR 

Table 1 Collected samples from iDES for PCR species confirmation

PF PV PO PM PK Mixed PF+PV Total

2018 29 139 0 0 2 5 175

2019 50 289 0 14 20 2 375

2020 24 369 0 12 9 2 416

Total 103 797 0 26 31 9 966

Fig. 2 Network analysis based on microsatellite markers. Previous published findings were obtained from [20, 24]
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mutation at Arg34Leu is equivalent to that in PvDHFR 
at Arg34. Although it was an amino acid deletion at 
Thr105, it did not affect the reading frame and resulted 
in no premature termination. This position is equivalent 
to the tandem repeat regions (amino acids 88 and 103 
GGDNTS) in PvDHFR, which have been observed pre-
viously [30]. The Arg34Leu mutation was found in the 
isolates from southern Thailand, while the Thr105 dele-
tion was found in isolates from eastern Thailand, which 
is close to Cambodia. The Thr105 deletion was also found 
in all P. knowlesi isolates (n = 8) from Cambodia.

Homology modelling of PkDHFR mutants
Three-dimensional structural models of the two mutants 
(Arg34Leu and Thr105 deletion) in complex with 
pyrimethamine was constructed and assessed the effect 
of these mutations on protein-ligand binding. Neither 
Arg34 nor Thr105 are part of the binding pocket and are 

located far from the inhibitor-binding site (Fig.  4). As a 
consequence, neither the mutation at residue 34 nor the 
deletion of residue 105 disrupted interactions with the 
pyrimethamine inhibitor, which was confirmed by bind-
ing analysis (Fig. 5).

Discussion
The six GMS countries have endorsed a malaria elimi-
nation plan with the goal of eliminating P. falciparum 
malaria by 2024 and all malaria by 2030 [31]. Although 
the number of P. falciparum and P. vivax infections has 
decreased substantially, the incidence of zoonotic malaria 
from P. knowlesi continues to increase in the GMS sub-
region [32]. The ongoing increase in P. knowlesi inci-
dence presents a major challenge to regional malaria 
control and prevention activities. P. knowlesi infections 
have been reported in almost all countries in Southeast 
Asia, and cases have occurred in travelers returning from 

Fig. 3 Phylogenetic tree analysis based on pkmsp1 gene. The data obtained from this study are highlighted in yellow. M represents pkmsp1 from 
wild macaques, H represents pkmsp1 from human infection. Previous published findings were obtained from [20, 22, 23, 25, 26]
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these countries. However, most infections were reported 
in Malaysian Borneo [32, 33]. The P. knowlesi infections 
(3.1%) included in this study were found during the Thai-
land iDES scheme between 2018 and 2020. Furthermore, 
asymptomatic P. knowlesi infections have previously 
been found at the Thai-Cambodia border [20]. Plasmo-
dium knowlesi infection can result in high parasitaemia 
and death, and the diagnosis should be confirmed by 
PCR [32]. Therefore, highly specific and sensitive molec-
ular tools and identification are required for malaria 
detection.

To understand the source of P. knowlesi infections 
in Thailand, microsatellite markers and nucleotide 
sequences of pkmsp1 were analysed for comparison with 
those of P. knowlesi isolated from prior reported find-
ings of Thailand [22, 23], Cambodia [20] and Malaysia 
[24–26], which share borders with Thailand and may be 
the sources of the P. knowlesi. The microsatellite marker 
and nucleotide sequencing results of pkmsp1 obtained in 
this study showed that P. knowlesi isolated from southern 
Thailand were similar to parasites isolated from Malaysia 
[24–26], suggesting that P. knowlesi in southern Thailand 

Fig. 4 3D structural models of PkDHFR WT in complex with pyrimethamine. A Top view and B side view. Residues 34 and 105 are depicted in ball 
and stick colored red and orange, respectively. Pyrimethamine is shown in ball and stick colored yellow

Fig. 5 Molecular interactions between PkDHFR A WT, B Arg34Leu and C Thr105 deletion and pyrimethamine inhibitor. Binding analysis suggested 
that Arg34Leu mutant and Thr105 deletion did not alter binding of DHFR to the inhibitor
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may be transmitted from Malaysia. Contrastingly, P. 
knowlesi isolated from eastern Thailand were highly simi-
lar to those isolated from Cambodia [20], suggesting this 
country may be the source of the parasites in that area. 
The clustering of the parasite lineages is likely to be a 
result of the migration of macaques, as human-to-human 
transmission has not been identified and the Anopheles 
vector can only fly a few kilometres. These findings pro-
vide information on the source of infection and how P. 
knowlesi malaria may be transmitted.

Molecular clinical and epidemiological studies have 
clearly shown that specific point mutations in the parasite 
dihydrofolate reductase gene (dhfr) lead to resistance to 
pyrimethamine. The mutations cause alterations in cru-
cial residues in the active sites of these enzymes, resulting 
in reduced drug affinity [34–37]. Plasmodium knowlesi 
dihydrofolate reductase (pkdhfr) mutations, found in 
field isolates from many countries, and ex  vivo enzyme 
activity has been the focus of a number of studies. In this 
study, Arg34Leu and Thr105 deletions were observed 
in isolates from Thailand. The three-dimensional struc-
tural models of the two mutant proteins in complex with 
pyrimethamine showed that both Arg34 and Thr105 are 
not part of the binding pocket and are located far from 
the inhibitor-binding site, suggesting that the mutation at 
residue 34 and deletion of residue 105 are not associated 
with pyrimethamine resistance. Other studies have found 
a number of pkdhfr mutations, including Arg34Leu from 
Sabah, Malaysia, with no signs of positive selection [38]. 
Moreover, ex vivo enzyme activity has also been studied, 
but there was no association with antifolate resistance 
[39]. Anti-malarial drug exposure only occurs in human 
hosts, and if the transmission of P. knowlesi remains 
zoonotic and there is no selection pressure, the malaria 
would be unlikely to develop anti-malarial resistance. 
Although there has yet been no anti-malarial resistance 
reported in P. knowlesi, new anti-malarials should be 
adopted to counteract emerging anti-malarial resist-
ance in the GMS [40]. These new anti-malarials could 
aid in resolving anti-malarial resistance issues with other 
Plasmodium species or used in combination to increase 
anti-malarial efficiency. Furthermore, as monkeys are 
not treated for malaria, the elimination of P. knowlesi 
is impossible as long as macaques continue to act as 
zoonotic hosts. This is particularly evident from the 
experience in Sarawak in Malaysia, where P. knowlesi is 
now almost the only remaining malaria infecting humans 
[41].

Conclusions
This study on P. knowlesi infections in Thailand dem-
onstrated that the parasites are of the same lineage as 
P. knowlesi isolated in Cambodia and Malaysia and are 

still sensitive to pyrimethamine. This is useful informa-
tion for understanding P. knowlesi infections in Thai-
land and for supporting the continuations of malaria 
elimination programme.
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