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Abstract 

Background:  Malaria incidence in Brazil reversed its decreasing trend when cases from recent years, as recent as 
2015, exhibited an increase in the Brazilian Amazon basin, the area with the highest transmission of Plasmodium 
vivax and Plasmodium falciparum. In fact, an increase of more than 20% in the years 2016 and 2017 revealed possible 
vulnerabilities in the national malaria-control programme.

Methods:  Factors potentially associated with this reversal, including migration, economic activities, and deforesta-
tion, were studied. Past incidences of malaria cases due to P. vivax and P. falciparum were analysed with a spatio-tem-
poral Bayesian model using more than 5 million individual records of malaria cases from January of 2003 to December 
of 2018 in the Brazilian Amazon to establish the municipalities with unexpected increases in cases.

Results:  Plasmodium vivax incidence surpassed the past trends in Amazonas (AM), Amapá (AP), Acre (AC), Pará (PA), 
Roraima (RR), and Rondônia (RO), implying a rebound of these states between 2015 and 2018. On the other hand, 
P. falciparum also surpassed the past trends in AM, AC, AP, and RR with less severity than P. vivax incidence. Outdoor 
activities, agricultural activities, accumulated deforestation, and travelling might explain the rebound in malaria cases 
in RR, AM, PA, and RO, mainly in P. vivax cases. These variables, however, did not explain the rebound of either P. vivax 
and P. falciparum cases in AC and AP states or P. falciparum cases in RR and RO states.

Conclusion:  The Amazon basin has experienced an unexpected increase in malaria cases, mainly in P. vivax cases, in 
some regions of the states of Amazonas, Acre, Pará, Amapá, Roraima, and Rondônia from 2015 to 2018 and agricul-
tural activities, outdoor activities, travelling activities, and accumulated deforestation appear linked to this rebound 
of cases in particular regions with different impact. This shows the multifactorial effects and the heterogeneity of the 
Amazon basin, boosting the necessity of focusing the malaria control programme on particular social, economic, and 
environmental conditions.
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Background
Control of malaria transmission depends on multiple 
factors involving vector control, treatment of infected 
individuals, and prophylactic actions, requiring perma-
nent attention and control of exogenous conditions. In 
the case of Brazil, the country reduced its malaria inci-
dence due to both Plasmodium vivax and Plasmodium 

falciparum until the year of 2015 but data from recent 
years exhibited an increase in notified cases [1]. In fact, 
an increase of 25% between 2016 and 2017 revealed the 
vulnerability of these efforts [2, 3].

The Amazon basin has an area greater than many coun-
tries and a vast species diversity due to the Amazon For-
est and preserving natural resources. These regions have 
accounted for 99.5% of cases registered in Brazil in the 
last years [4]. Urban developments, deforestation activi-
ties, and different economic activities, such as mining, 
pose challenges to a large malaria control programme.
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Previous studies established a set of plausible factors 
related to economic activities [5–8]. However, the unex-
pected increase of cases from 2016 to 2018 in the Bra-
zilian Amazon region was not evaluated. In addition, 
the Amazon region presents divergences in malaria inci-
dence between municipalities and States [9], and some of 
the previous studies only focused on specific regions.

Here, incidence trends from 2003 to 2015 were ana-
lysed, defining an expected trend using a statistical 
model. This model permits to predict incidences in the 
following years according to the trends. The observed 
incidences in all municipalities in the Amazon region 
from 2016 to 2018 were compared to the expected val-
ues via analyses using a Bayesian model to investigate 
possible relationships between this increase and multiple 
factors.

Methods
Epidemiological data
A dataset of 5,972,715 individual records of malaria cases 
from January of 2003 to December of 2018 was obtained, 
with epidemiological data from the States of Amazonas 
(AM), Acre (AC), Pará (PA), Amapá (AP), Roraima (RR), 
Rondônia (RO), Mato Grosso (MT), Maranhão (MA) 
and Tocantins (TO) (see study area in additional file 1). 
Each record included: notification date, infection data, 
notification type (active or passive), notification location, 
occupation, infection location, examination results, peri-
odic control. These data were provided by the Brazilian 
Ministry of Health through a request for non-identified 
data from the Brazilian Information System of Epidemio-
logical Surveillance (SIVEP) covering the years of study. 
These data were later available on an integrated data-
set provided by Baroni et  al. [10]. The study included 
only notifications of cases by P. vivax and P. falciparum. 
Exclusion criteria were: periodic-control records after 
treatment (1,041,397 records); inconsistent information 
in dates (10,436 records); notification without complete 
information (957,879 records). Other malaria species 
and mixed malaria cases (44,920 records). Thus, a total 
of 3,918,083 individual records were analysed, which 
included 3,232,766 observations of cases by P. vivax 
infection and 685,317 observations of P. falciparum 
infections.

Population data and Brazilian maps
Annual records of population sizes per municipalities in 
the Amazon basin from 2003 to 2018 were obtained from 
the Brazilian Institute of Geography and Statistics (IBGE) 
[11]. Brazilian maps were also acquired from the maps 
and cartography website of IBGE [12].

Deforestation data
The accumulated annual amount of deforestation in km2 
per municipality was obtained from the PRODES project 
of the National Institute of Spatial Research [13].

Bayesian models and incidence prediction
A Bayesian model was used to analyse the malaria inci-
dences of 808 municipalities in 192 months (from Janu-
ary of 2003 to December of 2015). Spatial variation was 
labelled as i  = 1, …, 808 and temporal variation was 
labelled as t  = 1, …, 192. The number of cases yit in 
municipality i at month t was modelled as counts using a 
Poisson distribution with mean λit:

where λit  =  ρitϵit with ρit as incidence rate and ϵit as off-
set; the sizes of municipality populations per 100,000 
inhabitants are applied in the model as offset terms. 
Here, incidence rate is described by a linear predictor in 
logarithmic scale:

with α as average incidence in all municipalities, γk as 
month effect (k  = 1, …, 12) according with Random Walk 
Model of order two (rw2) [14], φl as year effect (k = 1, …, 
16) according with independent Gaussian random effects 
(iid) and βi as municipality effect according with “iid”. In 
a second representation a spatial and temporal effect is 
added:

where νi is a spatial random effect according to Besag–
York–Mollie (bym) specification [15], and δt as temporal 
random effect derived from the Random Walk Model of 
order one (rw1) [14]. Estimation with these models were 
obtained with implementations using the Integrated 
Nested Laplace Approximation (INLA) [16, 17]. This 
approach is a Bayesian method that provides computa-
tional efficiency through INLA package in R. The default 
prior distributions in INLA [logGamma(0,0.00005)] were 
used on the log of unstructured precision in iid, rw1 and 
rw2 random effects. The default prior distribution [log-
Gamma(0,0.005)] were used on the log of unstructured 
precision and on the log of spatial precision in bym ran-
dom effect.

Two models were used: a base model (model 1 Eq.  2) 
and base model plus spatial and temporal effects (model 
2 Eq. 3). Data on malaria cases from 2003 to 2015 were 
analysed applying these models per state using INLA and 
evaluated using the deviance information criterion (DIC) 
that assesses the quality of these Bayesian models [18]. 

(1)yit ∼ Poisson(�it),

(2)ηit = log (ρit) = α + γk + φl + βi,

(3)ηit = log (ρit) = α + γk + φl + βi + νi + δt ,
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Model 2 was chosen for predicting the incidences from 
2016 to 2018, after resulting in the least DIC for all states 
(see additional file 2).

Difference between predictions and observed incidences
Incidence data from January 2003 to December 2015 
were analysed for modelling and fitting, which permit-
ted to obtain predictions from 2016 to 2018. The differ-
ences between the observed incidences and predicted 
incidences were calculated per month in each munici-
pality from January 2016 to December 2018. In order to 
find the impact by year, the average differences between 
predictions and observed incidences were calculated per 
year (2016, 2017 and 2018). These yearly average differ-
ences were used to map the impact by year, implying an 
estimation discrepancy.

Difference maps displayed the average difference of 
prediction in 2016, 2017 and 2018 for P. vivax and P. 
falciparum incidence. These maps were generated in R 
using lattice package [19].

A positive difference is defined as the incidence above 
prediction, representing an unexpected increase of cases 
given past trends. Municipalities with a positive differ-
ence above 25 cases of P. vivax and above 10 cases of P. 
falciparum were selected for illustrating heat maps. Such 
maps were generated with these estimations using R 
using ggplot2 library [20].

Model with deforestation, occupation categories, 
and imported cases
Incidence data also reported the individual occupa-
tion and place of infection (SIVEP data). Occupation 
categories are agriculture, livestock, housing, tourist, 
gold-mining, vegetable extraction, hunting/fishing, road 
building, mining, traveler, and other ones. The propor-
tions of occupations per municipality was obtained after 
grouping occupation categories: agricultural activities 
(agriculture and livestock), outdoor activities (vegeta-
ble extraction, hunting/fishing and road building), min-
ing (gold mining and mining), travelling and housing. In 
addition, the annual proportion of imported cases was 
calculated with malaria cases with countries in the bor-
der as likely place of infection to evaluate the impact of 
imported cases in last three years. PRODES reported 
data on the accumulated deforestation by municipality 
per year. Due to this reason, all variables in this model 
with covariates were yearly counts. The annual incidence 
was analysed using as covariates the annual accumulated 
deforestation in km2, the annual proportion of cases by 
occupation categories, and imported cases by municipal-
ity from 2003 to 2018.

The Bayesian model represents malaria incidence of 
808 municipalities in 16 years (from 2003 to 2018) adding 

a random effect of deforestation and each occupation 
category. Spatial variation was labelled as i  = 1, …, 808 
and temporal variation was labelled as t  = 1, …, 16. yit is 
malaria incidence in municipality i at year t. Variable yit 
models counts described by a Poisson distribution with 
mean λit (see Eq. 1). Equation 4 is derived on the struc-
ture of Eq.  3 adding the variable effect before 2016 and 
after 2015:

xn,i represents the variable n at year i, ωi is a binary vari-
able for representing the period from 2016 to 2018 (ω14, 
ω15, ω16  = 1 and ωi  = 0 for i  < 14), ζ1,  n is the random 
effect of variable n in all period, ζ2 is the random effect 
after 2015 and ζ3, n is the random effect of variable n after 
2015. Variables with unexpected increase in their effect 
on incidence after 2015, and variables with ζ3, n intervals 
greater than 0 were selected for results.

Data preparation and model scripts are provided in the 
URL: https://​github.​com/​Mario-​Canon-​Ayala/​On-​multi​
facto​rial-​drive​rs-​for-​malar​ia-​rebou​nd-​in-​Brazil.

Results
Model validation and expected incidence after 2015
Analysis from statistical model permitted to generate 
samples that describe the time series of malaria inci-
dences due to P. vivax and P. falciparum across cities 
and states in the Brazilian Amazon basin. These series 
can be compared to the observed incidence in all states 
from 2003 to 2015 for both P. vivax and P. falciparum, 
after fitting these models with the complete data from 
this period. The analysis is carried at municipality levels 
and presents the aggregate values at state levels. The pre-
dictions with the Bayesian model indicated trends with 
malaria incidence from 2016 to 2018 according to state-
past trends (2003–2015), and the observed incidences 
were above predictions in some states (Fig. 1). This is the 
case of P. vivax incidence in Amazonas (AM), Acre (AC), 
Pará (PA), Amapá (AP), Roraima (RR), and Rondônia 
(RO) where observed incidence surpassed predictions 
indicating that these States experienced an unexpected 
growth of cases. This effect also occurred with P. falcipa-
rum incidence in AM, AC, AP, and RR with less severity 
than P. vivax incidence.

A set of municipalities presented incidence above 
predictions—positive differences—where the north-
west region of Amazonas (AM), the northwest region of 
Acre (AC), and the northwest region of Rondônia (RO) 
obtained the highest positive differences for both P. vivax 

(4)

ηit = log(ρit) = α + γk + φl + βi + νi + δt

+

7∑

n=1

(ζ1, nxn, i + ζ2ωi + ζ3, nωixn, i),

https://github.com/Mario-Canon-Ayala/On-multifactorial-drivers-for-malaria-rebound-in-Brazil
https://github.com/Mario-Canon-Ayala/On-multifactorial-drivers-for-malaria-rebound-in-Brazil
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and P. falciparum incidence (Fig.  2). Positive difference 
for P. vivax also involved more regions than P. falcipa-
rum and five regions contained municipalities with posi-
tive difference above 50 monthly cases above prediction: 
northwest and centre region of Amazonas (AM) next to 
centre and south region of Roraima (RR), the northeast 
region of Pará (PA) with border area next to Amapá (AP) 
(Marajó region), southeast of Pará (PA), the northwest 
region of Acre (AC) and northwest region of Rondônia 
(RO) (Madeira-Mamoré region) next to the south of 
Amazonas (Purus region).

A general rise in the number of municipalities with 
a positive difference of P. vivax occurred from 2016 to 
2018 (see Fig.  3). The northwest region of AM started 
with positive differences, above 50, in 2016. The 

positive differences extended to all municipalities in 
the north region, southwest and south-center of AM, 
and most of the municipalities in RR between 2017 and 
2018. The northwest region of RO maintained a simi-
lar pattern in 4 municipalities, and the positive differ-
ence in AM extended next to this region in 2018. The 
positive difference of the northeast region in PA and AP 
extended from 10 municipalities in 2016 (8 in PA and 2 
in AP) to 17 municipalities in 2018 (13 in PA and 4 in 
AP). An increase also occurred in the southeast of PA, 
where positive difference extended from 2 municipali-
ties in 2016 (2 in PA) to 4 municipalities in 2018 (3 in 
PA and 1 in AM). AC only maintained positive differ-
ences in two municipalities (Mâncio Lima and Cruzeiro 
do Sul).
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Fig. 1  Comparison between model prediction and malaria incidence per state. Blue and cyan lines represent the observed incidences and 
predicted incidences for P. vivax; green and red lines represent observed incidence and predicted incidence for P. falciparum; figures illustrate 
incidence and prediction per month. Dashed lines indicated the moment (January 2016) when the prediction starts based on previous data
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For P. falciparum, municipalities with positive differ-
ence increased in the northwest region of AM in São 
Gabriel da Cachoeira, Santa Isabel do Rio Negro, and 
Barcelos (see Fig. 4). In general, AM showed an increase 
in positive difference from 2016 to 2018, whereas the 
prediction difference decreased over time for AP state. 
The states RO and AC maintained positive differences in 
Porto Velho (RO), Mâncio Lima (AC), and Cruzeiro do 
Sul (AC).

Model with deforestation, occupation categories, 
and imported cases
The analysis with the models by state estimated the ran-
dom effect of each variable after 2015 (ζ3, n). Credibility 
intervals were entirely above 0, i.e., with a positive cred-
ibility interval, and mostly for P. vivax for a few variables. 
In particular, deforestation, outdoor activities, agricul-
tural activities, and travelling activities appear linked to 
the unexpected increase of malaria cases in some states, 
mostly in P. vivax cases (see Table 1). Deforestation only 
obtained a positive credibility interval in P. vivax inci-
dence in Roraima (RR) suggesting an effect due to defor-
estation in the unexpected increase in P. vivax incidence 
in this state after 2015. Outdoor activities (hunting/fish-
ing, vegetable extraction, and road building) obtained an 
entirely positive credibility interval, also suggesting fac-
tors in the unexpected increase in malaria incidence in 
Amazonas (AM), either P. vivax and P. falciparum inci-
dence, and P. vivax incidence in Pará (PA) after 2015. 
Agricultural activities might explain the unexpected 

increase in P. vivax incidence in Pará (PA) and Rondônia 
(RO), after 2015. Finally, the results suggested that trav-
elling activities might explain the unexpected increase in 
P. vivax incidence in Rondônia (RO). A negative random 
effect in Rondônia (RO) was found only for a proportion 
of imported cases, implying that an increase in imported 
cases in this state represented a decrease in P. vivax inci-
dence after 2015.

No variable was found significant to explain the trends 
in the random effect of either P. vivax and P. falciparum 
incidence in Acre (AC) or Amapá (AP).

Discussion
Plasmodium vivax incidence surpassed the past trends 
in Amazonas (AM), Amapá (AP), Acre (AC), Pará (PA), 
Roraima (RR), and Rondônia (RO), implying a rebound of 
these states between 2015 and 2018. In addition, P. falci-
parum also surpassed the past trends in AM, AC, AP, and 
RR with less severity than P. vivax incidence. Outdoor 
activities, agricultural activities, accumulated deforesta-
tion, and traveling might explain the rebound in malaria 
cases in RR, AM, PA, and RO, mainly in P. vivax cases. 
None of the study variables explained the rebound of 
either P. vivax and P. falciparum cases in AC and AP, or 
the rebound of P. falciparum cases in RR and RO.

According to Fig. 2, some regions clusters concentrated 
the municipalities with incidences above predicted val-
ues in Amazonas, Acre, Roraima, Amapá, and Rondônia. 
Carlos et  al. found the highest annual parasite index in 
these regions in the period from 2015 to 2016, and they 
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Fig. 2  Monthly difference of prediction from 2016 to 2018 (average per each year). Red regions represent municipalities with a positive difference 
(incidence above prediction), and blue regions represent municipalities with a negative difference (incidence below prediction). The first row 
displays P. vivax prediction differences and the second row displays P. falciparum prediction differences
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also found that imported cases between regions and 
neighbouring countries played a role in malaria transmis-
sion [21]. Lana et  al. also found some clusters in those 
regions that have provoked the majority of malaria cases 
in the Amazon basin from 2004 to 2018, similar to the 
current findings [22].

Results from the Bayesian models showed multiple fac-
tors playing a role in the rebound of malaria cases, espe-
cially the increase of P. vivax cases. The most important 
factors were related to human labour activities, such 
as outdoor activities (vegetable extraction, hunting/
fishing, and road building), and agricultural activities 

might explain the rebound in P. vivax in Pará. In fact, 
the state of Pará has presented infrastructure projects 
that increase the malaria risk in this state [23], and this 
state has presented shortcomings in health access [24]. 
In addition, a previous study identified the land use for 
cattle production in the Carajás region of Pará as a risk 
factor between 2014 and 2018, although the current work 
found the principal unexpected contributor of cases in 
the Northwest region in Marajó region [25]. This study 
also identified mining as a risk factor in this region as a 
previous study found in Tapajós region [26]. However, 
the current calculated random effect did not show an 
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Fig. 3  Municipalities with positive differences of prediction (average per each year) above 25 cases for P. vivax. The states of Roraima (RR), Rondônia 
(RO), Pará (PA), Amapá (AP), Amazonas (AM), and Acre (AC) contain these municipalities
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unexpected increase in malaria risk by mining activi-
ties after 2015, suggesting that mining might maintain 
the same effect from previous years. Building, farming, 
and cattle production have represented a risk factor of 
malaria in this state, and results here suggest that they 
might have increased their impact between 2016 and 
2018 [27].

Also, results here show an effect due to outdoor activi-
ties in the rebound of either P. vivax and P. falciparum 
cases in Amazonas state after 2015. This was the only 
state where the Bayesian analysis found a positive ran-
dom effect, analysing P. falciparum cases after 2015, in 
agreement with the most affected region by P. falciparum 
cases located between Amazonas and Acre in previous 
works [21]. This state presented the most proportion of 
the indigenous population in Brazil, and the combination 
of hunting and fishing is the principal economic activ-
ity of this population. Results here suggest that these 
economic activities might have a factor in the increased 
malaria incidence after 2015 in this state. In fact, Martins 
et al. found a high risk of malaria cases in the indigenous 
population at this state between 2007 and 2019 [28]. 

Economic activities such as agriculture, mining, tourist, 
and vegetable—products extraction have raised malaria 
transmission in the northwest of Brazil. However, the 
results here suggest that these activities maintained the 
same effect over malaria incidence in Amazonas between 
2015 and 2018 in comparison to the previous years [5].

Results from applying the Bayesian model showed 
that agricultural activities and travelling activities might 
explain the rebound of P. vivax cases in Rondônia after 
2015. This state has developed infrastructure projects and 
economic activities increasing malaria risk since before 
2000, but it has experienced a decrease in malaria cases 
in the last decade [29]. This state has also presented high 
deforestation rates related to agricultural activities sug-
gesting that this economic activity might have increased 
malaria cases from 2015 to 2018. Padilha et  al. found 
that the increase in accumulated deforestation decreased 
malaria cases in Rondônia, contrasting with the random 
effect associated with deforestation that did not find a 
change after 2015, implying that deforestation might 
have maintained a similar impact from previous years 
[30]. Porto Velho, the capital of Rondônia, has presented 
a high rate of human mobility and malaria transmission 
in periurban areas linking with the positive random effect 
of travelling activities [31].

The current results showed that Roraima experienced 
a rebound of malaria cases in eight municipalities (seven 
for P. vivax and two for P. falciparum). However, the 
accumulated deforestation random effect only had an 
increase over P. vivax after 2015, suggesting that eco-
nomic variables and imported cases maintained the same 
effect as previous years had. Previous works [32] found 
the socioeconomic situation in Venezuela to have sig-
nificant effects on the malaria rebound in Roraima. How-
ever, the current results did not show a positive effect 
associated with imported cases, placing more impor-
tance on autochthonous cases or possibly not capturing 
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Fig. 4  Municipalities with positive monthly differences of prediction (average per each year) above 10 cases of P. falciparum. The states of Roraima 
(RR), Rondônia (RO), Amapá (AP), Amazonas (AM), and Acre (AC) contain these municipalities

Table 1  Effects of variables after 2015 (ζ3, n)

The mean represents the effect (increase or decrease) on incidence with each 
variable increase. Mean in occupations (agricultural, outdoor, mining, and 
traveling) represents the increase in incidence for 1% more cases reported in 
each category

State Variable Species Mean (95% CI) Unit

RR Deforestation P. vivax 3.53% (0.53–3.53) km2

AM Outdoor P. vivax 8.25% (2.31–14.54) 1%

AM Outdoor P. falciparum 11.69% (0.64–23.98) 1%

PA Agricultural P. vivax 1.34% (0.01–2.69) 1%

PA Outdoor P. vivax 3.82% (0.46–7.28) 1%

RO Agricultural P. vivax 1.36% (0.48–2.26) 1%

RO Travelling P. vivax 21.27% (5.17–39.83) 1%

RO Imported P. vivax − 7.61% (− 13.13 to − 1.74) 1%
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the migration effect. Migration might also account for 
an increase in deforestation effect that might explain the 
positive random effect after 2015 [33].

The results did not show a clear driver of malaria 
increase in Acre, however previous studies indicated 
fish farming in the last decade had provided environ-
mental advantages to Anopheles mosquitoes con-
struction in Acre. Priority should be given to health 
attention, and Acre also has experienced an increase 
in economic activities in periphery zones boosting 
malaria transmission [6, 8, 34]. A previous study found 
a positive relation between deforestation and malaria 
incidence at this state in contrast to the non-positive 
effect with this variable after 2015, suggesting a simi-
lar deforestation effect from previous years [30]. Nev-
ertheless, accumulated de-forestation has exhibited a 
non-linear effect due to the dynamics of environmental 
conditions in the Amazon basin [35]. In general, cur-
rent results showed the divergence in possible drivers 
of malaria rebound because epidemiology of malaria 
across regions in the Amazon basin is heterogeneous, 
as Canelas et al. had found [9].

The results also did not indicate a clear driver of 
malaria in Amapá, despite the unexpected increase of 
P. vivax cases in 2018, suggesting a similar effect of the 
study variables from previous years. Previous studies 
have evidenced the fragility of the malaria programme in 
this state due to the human mobility in the French Guy-
ana border area and the high risk of malaria transmis-
sion that the indigenous population had taken [36–38]. 
Nevertheless, Fig.  2 evidenced the unexpected increase 
in cases in the distant municipalities from the border 
area, implying an internal cause of the increase in malaria 
cases in this state. The malaria rebound in Pará might 
explain the increase in malaria cases in Amapá by the 
proximity with Marajó region, the main cluster of malaria 
rebound in Pará.

The Brazilian-Amazon basin has a multifactorial set 
of environmental, social, and economic conditions 
related to the unexpected increase in malaria inci-
dence. First, human activities in the Amazon region 
have induced deforestation that drives malaria transmis-
sion, even though a recent study also showed negative 
feedback where malaria burden reduces forest clearing 
[39]. Malaria incidence and deforestation have a rela-
tion because human development and environmental 
conditions promote a dynamic where deforestation can 
increase malaria burden [40]. The current results showed 
that deforestation had a positive effect on P. vivax inci-
dence in Roraima from 2015 to 2018, despite not allow-
ing to refute this effect in the unexpected increase of 
cases in other areas of the Amazon basin because the 
unimodal relationship between deforestation and malaria 

burden might mask a positive or negative effect of this 
variable [35]. In addition, the inferences between disease 
incidence and environmental variables can generate dis-
turbances in the conclusions due to the analysis assump-
tions [41].

State-based analysis for inferring variable relations has 
a set of limitations. The first limitation is the variation 
between municipalities because mixed random effects 
between municipalities can underestimate the impact 
of some variables. Secondly, a few municipalities in the 
Amazon basin accounted for most of malaria cases, and 
the inclusion of a state analysis can also drive an under-
estimation of variable effects [22]. However, the current 
study found a set of plausible causes in malaria rebound 
for some states from 2015 to 2018 and also found a spa-
tio-temporal pattern of malaria cases at this period.

Conclusion
The Brazilian Amazon basin has experienced an unex-
pected increase in malaria cases, mainly in P. vivax 
cases, in some regions of the states of Amazonas, Acre, 
Pará, Amapá, Roraima, and Rondônia from 2015 to 
2018 and agricultural activities, outdoor activities, trav-
elling activities, and accumulated deforestation appear 
linked to this rebound of cases in particular regions 
with different impact. This reveals the heterogeneity 
of the Amazon basin, demonstrating the necessity of 
focusing the malaria control programme on the par-
ticular social, economic and environmental conditions.
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