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Abstract 

Background:  Cerebral malaria (CM) is associated with sequestration of parasitized red blood cells (PRBCs) in the cap-
illaries. Often, the association of CM with cerebral oedema is related with high mortality rate. Morphological changes 
of the choroid plexus (CP) and caspase-3 expression in CM have not been reported. In addition, limited knowledge 
is known regarding the role of aquaporin (AQP)-1 in CM. The present study evaluated changes in the CP, explored 
apoptotic changes and AQP-1 expression in CP epithelial cells (CPECs) in fatal CM patients.

Methods:  CP from fatal Plasmodium falciparum malaria patients (5 non-CM [NCM], 16 CM) were retrieved and 
prepared for histopathological evaluation. Caspase-3 and AQP-1 expressions in CPECs were investigated by 
immunohistochemistry.

Results:  Histologically, apoptotic changes in CPECs were significantly observed in the CM group compared with 
the NCM and normal control (NC) groups (p < 0.05). These changes included cytoplasmic and nuclear condensa-
tion/shrinkage of CPECs and detachment of CPECs from the basement membrane. The apoptotic changes were 
positively correlated with caspase-3 expression in the nuclei of CPECs. In addition, AQP-1 expression in CPECs was 
significantly decreased in the CM group compared with the NCM and NC groups (all p < 0.001). A negative correlation 
(rs =  − 0.450, p = 0.024) was documented between caspase-3 expression in the nuclei of CPECs and AQP-1.

Conclusions:  Apoptotic changes and altered AQP-1 expression may contribute to CPEC dysfunction and subse-
quently reduce cerebrospinal fluid production, affecting the water homeostasis in the brains of patients with CM.
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Background
Cerebral malaria (CM) is the most severe complication 
of Plasmodium falciparum malaria and is a major con-
tributor to malaria fatality. The two main hypotheses 
of malaria pathogenesis are cytoadherence and secre-
tion of inflammatory cytokines. Cytoadherence of para-
sitized red blood cells (PRBCs) to endothelial cells (ECs) 
in the cerebral microvasculature can induce EC injury, 

apoptosis, inflammation, blood brain barrier (BBB) dys-
function, brain swelling, and intracranial hypertension 
[1]. Pro-inflammatory cytokines, such as tumour necro-
sis factor (TNF) and interleukins secreted by activated 
leukocytes and macrophages during malaria infection, 
can act as apoptotic ligands bound to death receptors 
and induce apoptotic pathways [2, 3]. The damage caused 
during infection can lead to morphological changes in 
various tissues and organs. Apoptosis of host cells in vital 
organs in P. falciparum malaria patients, such as in the 
brain [2], lungs [4], liver [5], and kidneys [6], have been 
documented to correlate with malaria severity. The cho-
roid plexus (CP) is a highly structured tissue that plays 
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an important role in the production of cerebrospinal fluid 
(CSF) and regulation of the blood-CSF barrier (BCSFB) 
[7]. CP is composed of clusters of capillaries, which are 
covered by epithelium, and located in the lateral, third, 
and fourth ventricles [8].

Histologically, CP consists of a central structure of 
fenestrated capillaries overlaid by a single layer of epi-
thelium with round central nuclei known as CP epi-
thelial cells (CPECs) [9]. An important water channel 
protein, aquaporin (AQP), is located on the apical surface 
of CPECs on the cell membrane. AQP can be found in 
various organs such as the kidneys, lungs, salivary glands, 
and brain [10]. The role of AQP-1 is to control water 
transport during CSF production by transporting water 
across the CP into the cerebral ventricles [11]. A previ-
ous report on an animal model showed that gene dele-
tion of AQP-1 causes a 25% reduction in CSF production, 
resulting in lower intracranial pressure [12]. However, 
a recent study on an animal model has suggested that 
AQP-1 may also contribute to hypersecretion of CSF and 
post-haemorrhagic hydrocephalus [13]. Currently, the 
role of AQP-1 in diseases is limited, and the modulation 
of AQP-1 in CM is still unclear. This work was a pioneer 
study to evaluate the histopathological changes of the CP 
in CM and to investigate the expression of caspase-3 and 
AQP-1 in CPECs. The results of this study could docu-
ment CPEC changes and the important involvement of 
AQP-1 in CM, which could contribute to a new insight in 
CM pathogenesis.

Methods
Specimen preparation
CP from P. falciparum malaria infected patients and 
normal control CP samples were obtained from the 
Department of Tropical Pathology, Faculty of Tropical 
Medicine, Mahidol University, Bangkok, Thailand. Sam-
ples from the CP were divided into three groups: nor-
mal control (NC, n = 5), non-CM (NCM, n = 5), and CM 
(n = 16). In the NC group, samples from the CP, which 
showed normal CPECs and blood vessels, were obtained 
from patients who died from accidents. The study pro-
tocol was approved by the Ethics Committee of the Fac-
ulty of Tropical Medicine, Mahidol University, Thailand 
(MUTM 2018-041-01 and MUTM 2018-041-02).

Histopathology and evaluation
Samples from the CP were processed and embedded 
in paraffin blocks. The blocks were sectioned at 4-µm 
thickness for histopathology and immunohistochemis-
try studies. The CP sections were stained with modified 
haematoxylin and eosin. Histopathological features of the 
apoptotic changes in CPECs, PRBC sequestration, and 
malaria pigment/haemozoin deposition were evaluated 

in 10 microscopic fields under high power fields (HPF) 
(400×) per slide. Features of apoptotic changes were 
cytoplasmic and nuclear condensation/shrinkage of 
CPECs and detachment of CPECs from the basement 
membrane. Apoptotic changes and PRBC sequestra-
tion were recorded in percentages. For quantification of 
malaria pigment/haemozoin deposition, Image J software 
program (National Institute of Health, USA) was used to 
determine the density of malaria pigments/haemozoin in 
the tissue in relation to the whole HPF and presented in 
percentage.

Immunohistochemistry studies of caspase‑3 and AQP‑1
The expressions of caspase-3 and AQP-1 were detected 
by immunohistochemical staining. Samples from 4-µm 
CP sections were placed on adhesive slides coated with 
poly-L-lysine. The CP sections were deparaffinized in 
xylene and rehydrated with graded concentrations of 
alcohol. Antigen retrieval from the CP was performed by 
a microwave technique with 0.1  M citrate buffer at pH 
6.0 for 10 min. To reduce endogenous peroxidase activity, 
the sections were incubated with 3% hydrogen peroxide 
in distilled water for 10 min at room temperature. After 
washing in phosphate-buffered saline (PBS, pH 7.4), the 
non-specific binding site was blocked with normal goat 
serum for 30  min at room temperature. Sections were 
incubated overnight at 4  °C with the specific primary 
antibody of rabbit polyclonal antibody directed against 
caspase-3 (1:400; Cell Signaling Technology, USA) and 
AQP-1 (1:2000; Abcam, Cambridge, UK). During the 
ensuing days, sections were washed three times with PBS 
and incubated with a secondary antibody for 30  min at 
room temperature and reacted with an avidin–biotin 
complex conjugated with horseradish peroxidase (Vector 
Laboratories, Inc., CA, USA) and performed according to 
the manufacturer’s instructions. After washing with PBS, 
3,3′-diaminobenzidine tetrahydrochloride was used to 
visualize for peroxidase activity (brown color). Sections 
were counterstained with haematoxylin, dehydrated, and 
mounted with a cover slip.

Evaluation of immunohistochemical staining
The immunohistochemistry study was assessed based on 
both semi-quantitative and qualitative results as well as 
the distribution of caspase-3 and AQP-1 in the CP. For 
semi-quantitative data, each slide was evaluated in 10 
different microscopic fields at 400× magnification for 
immunopositive cells. The percentage of immunoposi-
tive cells in each field was calculated and compared with 
the number of total cells. For qualitative data, the inten-
sity of immunopositive cells was graded on a scale of 0 
to 3 as follows: no staining = 0; weak positive staining = 1; 
moderate positive staining = 2; and strong positive 
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staining = 3. The total score (TS) was calculated from 
the product of the percentage of immunopositive cells 
and intensity of staining [2]. For caspase-3 expression, 
both cytoplasmic and nuclear staining were recorded. 
The sections were examined in a blinded manner with-
out prior knowledge of the patients and clinical status. 
Histopathology and immunohistochemistry were evalu-
ated by two independent observes (CS and SG) who were 
unaware of the patients’ clinical outcomes. When inter-
observer disagreement occurred, a third investigator was 
requested to evaluate the samples (PV).

Statistical analysis
Data were recorded into a computer database and ana-
lysed with SPSS software version 18.0 (SPSS, USA). All 
quantitative data were represented as mean ± standard 
error of mean (SEM). The test for normality of distribu-
tion was calculated using the Kolmogorov–Smirnov Test. 
The independent t-test was used to analyse differences in 
clinical data between the NCM and CM groups. Com-
parisons of differences in clinical data (admission and last 
parasitaemia), histopathological changes, and caspase-3/
AQP-1 expressions between groups were calculated using 
the Mann–Whitney U test. The correlations between the 
TS of caspase-3/AQP-1 expressions and histopathologi-
cal changes/clinical data were analysed using Spearman’s 
correlation. A p-value of < 0.05 was considered statisti-
cally significant.

Results
Summary of clinical data from malaria patients
Table  1 summarizes the clinical parameters, including 
age, gender, febrile days, haemoglobin level, white blood 
cell count, and parasite count between the NCM and CM 
groups. Levels of parasitaemia on admission and before 
death were significantly higher in the CM group than in 
the NCM group (p < 0.05). The causes of death for the 

NCM group included co-infection with gram-negative 
organisms, disseminated intravascular coagulation, left-
sided heart failure with severe pulmonary oedema, pneu-
monia, and acute respiratory distress syndrome. The 
time elapsed between death and sampling of the CP was 
between 3 and 5 h in all groups.

Histopathological changes of CP in P. falciparum malaria 
patients
Normal histology of the CP showed a layer of CPECs sur-
rounding a core of capillaries. Figure 1 Panel A represents 
the histopathological changes of the CP in the NC, NCM, 
and CM groups. For the NC group, the cytoplasm stained 
homogeneously pink, and the nucleus appears oval, 
clear, and visible. The CP from the NCM group showed 
shrinkage of CPECs and detachment of a few CPECs 
from the basement membrane. Marked nuclear conden-
sation, CPEC shrinkage, and detachment of CPECs from 
the basement membrane were noted in the CM group. 
CPECs in the NCM group showed lesser degree of apop-
totic changes compared to those in the CM group. Fig-
ure 2 shows the comparative apoptotic changes of CPECs 
in the NC, NCM, and CM groups (data in Additional 
file 1: Table S1). In both malaria groups (NCM and CM), 
CPECs showed significant increase in apoptotic changes 
compared to those of the NC group (all p < 0.001). The 
CM group had the apoptotic changes, which were sig-
nificantly increased compared to those of the NCM 
group (p < 0.05). Regarding PRBC sequestration in the 
capillaries of the CP, the CM group (3.46 ± 1.00) showed 
significantly higher sequestration than the NCM group 
(0.11 ± 0.07) (p = 0.002) (Fig.  3A). However, no signifi-
cant difference was observed in malaria pigment/ haemo-
zoin deposition between NCM (0.02 ± 0.01) and CM 
groups (0.05 ± 0.01) (p = 0.086) (Fig. 3B). In addition, no 
correlation between malaria pigment/ haemozoin depo-
sition and apoptosis of CPECs was observed (Additional 

Table 1  Clinical data of the malaria patients

* Significant difference of p < 0.05

Parameters Non-cerebral malaria
(n = 5)

Cerebral malaria
(n = 16)

p-value

Age (years) 43.80 ± 11.13 36.81 ± 4.95 0.524

Sex (M:F) 3:2 10:6 –

Days of fever 5.75 ± 0.94 3.87 ± 0.69 0.146

First Hb (g/dl) 9.98 ± 0.58 10.05 ± 0.64 0.948

Last Hb (g/dl) 9.18 ± 0.90 9.74 ± 0.62 0.630

First WBC (cell/mm3) 12,371.04 ± 4,342.15 12,458.31 ± 2,005.65 0.984

Last WBC (cell/mm3) 15,474.04 ± 6,748.08 15,297.46 ± 2,193.29 0.981

Parasitaemia (admission) (/µl) 132,035 ± 131,988.30 587,787.30 ± 159,714.30 0.039*

Parasitaemia (last) (/µl) 10.50 ± 10.50 294,182.90 ± 125,024.70 0.014*
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file 2: Fig. S1). The interstitium of the CP showed mini-
mal swelling and scant inflammatory cells in all groups.  

Expression of caspase‑3
Both nuclear and cytoplasmic accumulations of effector 
caspase-3 expression were observed in CPECs. Consider-
ing the percentage of immunopositive cells and intensity 
of staining, the TS for caspase-3 was compared across all 
groups. Figure 1 Panel B illustrates the caspase-3 expres-
sion in the CPECs in the NC, NCM and CM groups. 
Table 2 summarizes the TS of caspase-3 expression in the 
CPECs. In the NC group, cytoplasmic accumulation was 
significantly more prevalent compared to nuclear locali-
zation. For nuclear localization, caspase-3 expression 

in the CPECs was significantly highest in the CM 
group compared to that of the NC (p < 0.001) and NCM 
(p = 0.018) groups. There was a significant difference in 
caspase-3 cytoplasmic localization between the NC and 
NCM groups (p = 0.005). In addition, the CM group 
showed a significant increase in both nuclear and cyto-
plasmic accumulation of caspase-3 compared to those of 
the NC and NCM groups (all p < 0.001).

Nuclear accumulation of caspase-3 in CPECs was 
positively correlated with the apoptotic changes of 
CPECs (cytoplasmic and nuclear condensation/ shrink-
age of CPECs, rs = 0.537, p = 0.007) (Fig. 4A) and degree 
of CPEC detachment from the basement membrane, 
(rs = 0.799,  p < 0.001) (Fig.  4B). However, cytoplasmic 

Panel A
Histopathology

Panel B
Caspase-3

Panel C
Aquaporin-1

Non- 
cerebral 
malaria

Control 

Cerebral 
malaria

Fig. 1  Histopathology, caspase-3, and aquaporin-1 expressions of CPECs in the normal control (NC), non-cerebral malaria (NCM), and cerebral 
malaria (CM) groups. In A, the normal CP displays a central structure of capillaries, which is overlaid by a single layer of CPECs attached to the 
basement membrane. The CP from the NCM group shows shrinkage of CPECs and detachment of a few CPECs. Marked nuclear condensation, 
CPEC shrinkage (inset, arrows), and detachment of CPECs from the basement membrane are noted in the CM group. B illustrates caspase-3 
expression in CPECs. The NCM and CM groups display enhanced nuclear expression of caspase-3, which is significantly increased in the CM group. 
C demonstrates aquaporin (AQP)-1 expression in CPECs. The NC group shows high expression of AQP-1 in CPECs. A marked decreased in AQP-1 
expression was noted in the CM group. (Images in (A): 200 × magnification; images in (B) and (C): 400 × magnification)
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accumulation of caspase-3 was negatively correlated 
with cytoplasmic and nuclear condensation/ shrinkage 
of CPECs (rs =  − 0.492,  p = 0.015). No correlation was 
observed between cytoplasmic accumulation of cas-
pase-3 and the degree of CPEC detachment from the 
basement membrane (rs =  − 0.299,  p = 0.892), PRBC 

sequestration (rs = 0.188, p = 0.442), and presence of 
malaria pigments/haemozoin (rs = 0.172, p = 0.469) 
(Additional file 3: Fig. S2).

Expression of AQP‑1
AQP-1 expression stained brown color at the apical sur-
face and cytoplasm of CPECs Fig. 1 Panel C demonstrates 
the comparative immunostaining for AQP-1 in the NC, 
NCM, and CM groups. The quantification of AQP-1 
expression in CPECs in the different groups is tabulated 
in Table 3. CPECs from the NC group showed full expres-
sion of AQP-1 with maximal intensity. In contrast, AQP-1 
expression was significantly decreased in the CM group 
when compared with those of the NC and NCM groups 
(all p < 0.001). For staining intensity, moderate posi-
tive staining was observed in the NCM group, whereas 
weak staining was observed in the CM group. The TS 
of AQP-1 was negatively correlated with the apoptotic 
changes of CPECs, cytoplasmic and nuclear condensa-
tion/shrinkage of CPECs (rs =  − 0.473,  p = 0.017) and 
degree of CPEC detachment from the basement mem-
brane (rs =  − 0.520, p = 0.008) (Fig. 4C and D).

In addition, AQP-1 expression was negatively cor-
related with caspase-3 accumulation in the nucleus of 
CPECs (rs =  − 0.450, p = 0.024) (Fig. 5). No correlation 
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Fig. 2  Apoptotic changes of CPECs in the normal control (NC), 
non-cerebral malaria (NCM), and cerebral malaria (CM) groups. 
*Significant difference of p < 0.001 compared with the NC group. 
**Significant difference of p < 0.05 compared with the NCM group. 
Data are presented as mean ± SEM
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Fig. 3  Comparative parasitized red blood cell sequestration (A) and malaria pigment/haemozoin deposition (B) in the non-cerebral malaria (NCM) 
and cerebral malaria (CM) groups. *Significant difference of p < 0.05 compared with the NCM group. Data are presented as mean ± SEM

Table 2  Total score of caspase-3 in CPECs in normal control, non-cerebral malaria and cerebral malaria groups

* Significant difference of p < 0.05 compared with NC group

**Significant difference of p < 0.05 compared with NCM group. Data are presented as mean ± SEM

Groups Total score of caspase-3 (% positive cells × staining intensity)

Nuclear staining Cytoplasmic staining Nuclear and 
cytoplasmic 
staining

Normal control 5.93 ± 0.57 80.67 ± 7.37 40.07 ± 4.49

Non-cerebral malaria 45.33 ± 7.97* 60.33 ± 8.02* 47.67 ± 3.90

Cerebral malaria 67.11 ± 4.09*,** 75.00 ± 6.18 104.56 ± 8.65*,**
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was observed between caspase-3 expression in the 
cytoplasm alone or cytoplasm and nucleus and AQP-1 
expression in CPECs (rs =  − 0.062, p = 0.768; 
rs =  − 0.349, p = 0.087, respectively). In addition, no 
correlation was observed between AQP-1 and PRBC 
sequestration (rs = 0.091, p = 0.711) and presence of 
malaria pigments/haemozoin (rs = 0.311, p = 0.183) 
(Additional file 4: Fig. S3).

Discussion
An important process underlying CM is cytoadhesion of 
PRBCs to the cerebral vascular endothelium and subse-
quent sequestration in the microvasculature. In addi-
tion, rosette formation and agglutination can worsen 
microvascular obstruction, resulting in transient cere-
bral ischaemia. Injury to ECs from post-adhesion events 
and malaria pigments/haemozoin can lead to cerebral 

Fig. 4  Correlations between caspase-3 (A and B) and AQP-1 (C and D) expressions and apoptotic changes in choroid plexus epithelial cells

Table 3  AQP-1 expression in CPECs in normal control, non-cerebral malaria and cerebral malaria groups

* Significant difference of p < 0.001, compared with NC

**Significant difference of p < 0.001, compared with NCM

Groups AQP-1
expression (%)

Staining intensity Total score 
(% positive cells
staining intensity)

Normal control 100.00 ± 0.00 3.00 ± 0.00 300.00 ± 0.01

Non-cerebral malaria 98.05 ± 0.74* 2.00 ± 0.10* 197.55 ± 9.78*

Cerebral malaria 95.31 ± 0.43*,** 1.33 ± 0.05*,** 127.26 ± 5.06*,**
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haemorrhage and nervous tissue damage [1]. The present 
study investigated changes in the CP, including apoptotic 
changes and expression of AQP-1 in CM. CP is responsi-
ble for the production of CSF, which as part of the BCSFB 
has an important role of preventing foreign body entry 
into the ventricles [7]. Generally, pathological changes to 
the CP include damage to three compartments, namely 
CPECs, the interstitium, and blood vessels [14]. The cur-
rent study documented the significant apoptotic changes 
of CPECs in the CM group. Changes consisted of cyto-
plasmic and nuclear condensation/shrinkage of CPECs 
and detachment of CPECs from the basement mem-
brane. Histopathological changes of apoptosis were sig-
nificantly associated with the expression of caspase-3, 
which is the final apoptotic pathway. However, the inter-
stitium of the CP, which is normally accessible to cells of 
the peripheral immune system including macrophages, 
showed minimal inflammatory cells in both malaria 
groups. A significant finding was the accumulation of 
caspase-3 within the nuclei, which is suggestive of CM 
induced pro-caspase-3 cleavage resulting in activated 
caspase-3 transfer to the nuclei to cleave nuclear sub-
strates. As previously reported, characteristic apoptotic 
nuclear changes, such as DNA fragmentation, chromatin 
condensation, and nuclear disruption, have been visual-
ized [15]. These apoptotic changes could be identified 
under a light microscope as condensation or shrinkage 
of the cytoplasm, nucleus, or the whole cell. Further to 
CPEC contraction, weakening of cell adhesion to the 
basement membrane can lead to CPEC detachment, a 
feature seen significantly in the CM group. In addition, 
PRBCs and malaria pigments/haemozoin associated with 
the CM group were seen scattered within the capillaries 
of the CP. Regarding morphology, it would be informa-
tive to measure the surface area of CPECs to establish 

the alteration in CPEC size across the three experimental 
groups.

The cytoadhesion and sequestration processes in 
severe malaria can affect CP circulation and eventually 
lead to CSF obstruction and cerebral oedema. In addi-
tion, PRBCs and malaria pigments/haemozoin within the 
capillaries have been documented to activate nuclear fac-
tor kappa B (NF-κB) [16]. Punsawad et al. reported that 
soluble mediators in sera of malaria patients can acti-
vate NF-κB in cerebral blood vessels, which resulted in 
apoptotic changes in ECs [2]. It can be hypothesized that 
PRBCs and malaria pigments/haemozoin within the cap-
illaries of the CP can trigger apoptotic changes in CPECs. 
A previous study also showed that malaria pigments/
haemozoin can trigger the release of matrix metallopro-
teinases (MMPs) from monocytes/macrophages, which 
could damage the BBB [17]. MMPs have been reported 
to not only cause the destruction of junctional proteins 
of ECs, such as zonula occludens-1, occludin, and claudin 
proteins [18], but also destroy the extracellular matrix, 
which could damage CPEC cell junctions and cause 
CPEC detachment from the basement membrane. These 
apoptotic changes resemble the histopathological altera-
tions observed in the CP of the CM group. The resulting 
EC junctional changes and apoptosis of CPECs caused by 
cytoadhesion and circulating cytokines in CM could con-
tribute to an increase in EC permeability, hence altering 
the BBB.

Changes in CPECs have been reported in ischae-
mia [19], aging [20, 21], Alzheimer’s disease [22], and 
in various infections [23–27]. Examples of CPEC dam-
age in brain infections include disruption of CPECs by 
the Zika virus [23], SARS-CoV-2 [24], Streptococcus suis 
[25], Trypanosoma evansi [26], and Leishmania cha-
gasi [27]. These infections resulted in the breakdown 
of BBB integrity [23, 24, 26], infiltration of inflamma-
tory cells [26], and CPEC apoptosis [27]. In an animal 
model, an electron microscopy study of ischaemia in the 
CP showed acute injury and necrotic changes of CPECs. 
These changes include a decrease in nuclear sizes, swell-
ing of intracellular organelles, loss of microvilli, damage 
of cell membranes, disruption of cell junctions, cellular 
necrosis, and accumulation of fibroblasts [19]. In malaria, 
a previous electron microscopic study of ECs in the CP 
showed capillary EC swelling and bulging of EC nuclei 
into the vascular lumen in addition to cytoadhesion of 
PRBCs to ECs [28]. Clinically, fatal CM is associated with 
profound cerebral hypoxic injury in adults, as measured 
by low apparent diffusion coefficient, which is likely due 
to sequestered PRBCs [29, 30].

TNF released during an acute malaria infection can 
cause damage to the CPEC barrier. Previous reports on 
porcine CPECs have documented that TNF induces 

Fig. 5  Correlations between caspase-3 and AQP-1 expressions in 
choroid plexus epithelial cells



Page 8 of 10Srisook et al. Malaria Journal           (2022) 21:43 

CPEC barrier alterations as evidenced by an increase in 
cell permeability, DNA fragmentation, chromatin con-
densation, and activation of caspase-3 [31]. In addition, 
cytoadhesion can trigger TNF signal transduction via 
TNF receptors to induce death receptor-mediated apop-
totic pathways and alter tight junction functions in part 
via MMP [32]. A significant increase in caspase-3 and -9 
expressions could ultimately lead to cell death, increased 
cell permeability, and trigger CSF barrier dysfunction 
[33].

The study further investigated the expression of AQP-1 
in CPECs in malaria, which demonstrated the dimin-
ished expression of AQP-1 in the CM group. AQP-1 was 
more enhanced at the apical membrane as compared to 
the basolateral membrane of CPECs, similar to a previ-
ous report [11]. In an animal model, AQP-1 expression 
deficiency in CPECs caused inadequate CSF production 
[12], which can result in abnormal fluid homeostasis in 
the central nervous system. Reduced AQP-1 expres-
sion can reduce CSF production, which is protective 
for hydrocephalus [34]. Decreased AQP-1 expression in 
the CP is known to be associated with cerebral ischemic 
oedema. A previous study on rat CP showed that within 
1–24  h of an ischemic event, diminished blood flow to 
the CP caused necrosis of CPECs and was related to a 
decrease in CSF production [35]. A study on mice with 
lungs infected with adenovirus demonstrated that AQP-1 
and -5 expressions could decrease the occurrence of 
pulmonary oedema by reducing vascular permeability 
to the lung interstitium [36]. However, a study on the 
lungs of patients with malaria showed that AQP-1 and -5 
have no roles in decreasing cellular permeability [37]. In 
severe P. falciparum malaria, particularly CM, sequestra-
tion can lead to capillary obstruction, transient cerebral 
ischaemia, and a reduction in AQP-1 expression. The 
association between AQP-1 and caspase-3, leading to 
the process of apoptosis has been linked to the mitogen-
activated protein kinase (MAPK) signaling pathway [38]. 
AQP-1 has been reported to decrease caspase-3 expres-
sion, subsequently reversing apoptotic activity via p38 
and ERK1/2 in lipopolysaccharide-induced human proxi-
mal tubule cell line (HK-2 cells) [38]. In addition, a previ-
ous study on lung ischaemia reperfusion injury showed 
upregulation of caspase-3 and a decrease in AQP-1 
expression through the p38 MAPK pathway [39].

From the present study, apoptotic changes in CPECs 
(histopathological changes and expression of caspase-3) 
were correlated with a decrease in AQP-1 expression in 
the CM group. Inadequate AQP-1 can lead to a reduc-
tion in CSF production, deficiency in essential CSF 
proteins, and accumulation of toxic substances. Conse-
quently, CPEC damage is enhanced. In addition, CPEC 

changes in CM could lead to an increase in cellular 
permeability and possibly accumulation of fluid in the 
ventricles. On the contrary, the occurrence of cerebral 
oedema from a damaged BBB may be compensated by 
a reduction in AQP-1. Whether cerebral oedema in 
CM is prevented by a decline in AQP-1 needs further 
investigation.

Conclusions
CM causes apoptotic changes to CPECs as evidenced 
by the morphological changes and enhanced expression 
of caspase-3. This study also demonstrates the func-
tional relevance of AQP-1 expression in CPECs and 
may hint to a decrease in incidence of brain oedema 
associated with AQP-1 reduction in CM.
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