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Abstract 

Background:  In 2012, seasonal malaria chemoprevention (SMC) was recommended as policy for malaria control by 
the World Health Organization (WHO) in areas of highly seasonal malaria transmission across the Sahel sub-region in 
Africa along with monitoring of drug resistance. We assessed the long-term impact of SMC on Plasmodium falciparum 
resistance to sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) over a 3-year period of SMC implementation in 
the health district of Ouelessebougou, Mali.

Methods:  In 8 randomly selected sub-districts of Ouelessebougou, Mali, children aged 0–5 years were randomly 
selected during cross-sectional surveys at baseline (August 2014) and 1, 2 and 3 years post-SMC, at the beginning and 
end of the malaria transmission season. Blood smears and blood spots on filter paper were obtained and frequencies 
of mutation in P. falciparum genes related to resistance to SP and AQ (Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt) were assessed 
by PCR amplification on individual samples and PCR amplification followed by deep sequencing on pooled (by site 
and year) samples.

Results:  At each survey, approximately 50–100 individual samples were analysed by PCR amplification and a total of 
1,164 samples were analysed by deep sequencing with an average read depth of 18,018–36,918 after pooling by site 
and year. Most molecular markers of resistance did not increase in frequency over the period of study (2014–2016). 
After 3 years of SMC, the frequencies of Pfdhps 540E, Pfdhps 437G and Pfcrt K76T remained similar compared to base-
line (4.0 vs 1.4%, p = 0.41; 74.5 vs 64.6%, p = 0.22; 71.3 vs 67.4%, p = 0.69). Nearly all samples tested carried Pfdhfr 59R, 
and this proportion remained similar 3 years after SMC implementation (98.8 vs 100%, p = 1). The frequency of Pfmdr1 
N86Y increased significantly over time from 5.6% at baseline to 18.6% after 3 years of SMC (p = 0.016). Results of 
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Background
In 2020, malaria caused an estimated 241 million cases 
and 627,000 deaths worldwide, with most cases occur-
ring in the WHO African Region (> 90%) [1]. Children 
under 5 years of age are most affected, representing 77% 
of all malaria deaths worldwide. In the Sahel sub-region 
of Africa, most childhood malaria mortality and morbid-
ity occur during the rainy season. Administering effective 
malaria treatment at monthly intervals during this period 
has been shown to prevent illness and death from malaria 
in children. Seasonal malaria chemoprevention (SMC), 
formerly known as intermittent preventive treatment of 
malaria in children, is the intermittent administration 
of full treatment courses of an anti-malarial medicine 
to children during the malaria season, in areas of highly 
seasonal transmission. An estimated 25 million children 
aged 3–59 months could benefit from SMC every year [2] 
and 62% of eligible children benefited in 2018 [3].

Although the safety and effectiveness of SMC are 
well-established [4, 5], there have been concerns that 
long-term use of SMC will increase the spread of 
sulfadoxine-pyrimethamine (SP)- and amodiaquine 
(AQ)-resistant parasites. SP-resistant parasites can com-
promise the drug’s effectiveness as a preventive strategy; 
mutations such as the Pfdhps 540E substitution can ren-
der SP ineffective in intermittent preventive treatment 
in infants [6], and the Pfdhps 581G substitution (in the 
presence of the quintuple Pfdhfr and Pfdhps SP-resistant 
mutations) undermines SP use as prevention in pregnant 
women [7]. WHO advises that the presence of mutations 
at codons 437 and 540 of Pfdhps, along with the triple 
mutation of Pfdhfr (quintuple mutation), significantly 
predicts SP treatment failure; the Pfdhps 540 mutant is a 
useful epidemiological marker of the quintuple mutation 
in Africa [6]. The mutations Pfcrt 76T and Pfmdr1 86Y 
are associated with AQ resistance [8].

The Pfdhps A581G mutation in the gene encoding 
P. falciparum dihydropteroate synthetase reduces the 
efficacy of SP preventive therapy in Malawian preg-
nant women [9] and no impact of SP in intermittent 
preventive treatment was found in an area of Tanzania 
where the frequency of this mutation was high [10]. An 

increased prevalence of the Pfdhps I431V mutation from 
0% in 2003 to 36% in 2015 was reported in Nigeria [11] 
suggesting that these mutations are emerging and need 
to be monitored in this context. Increases in prevalence 
of this mutation from 3 to 6% in children under 5 years 
of age and 2 to 8% were also reported in the ACCESS-
SMC study [12] between 2016 and 2018, which covered 7 
Sahelian countries, including Nigeria and Mali.

Several studies have previously evaluated the impact 
of SMC during one season on resistance to SP and AQ, 
showing no significant difference in the frequency of 
SP resistance markers [4, 5, 13]. Two recently published 
studies have shown that SMC was still effective in clear-
ing malaria parasitaemia and preventing clinical malaria 
after 3 years [12, 14]. However, one of these studies was 
conducted in the context of a large clinical trial assess-
ing the effect of the addition of azithromycin on hospi-
tal admissions and deaths [14], while the other study 
(ACCESS-SMC) was in conducted in the context of 
implementation through the health system [12].

It is unknown whether longer periods of SMC use will 
accelerate the accumulation of resistant parasites, nor the 
status of resistance to AQ. Most studies have assessed the 
effects of SMC with SP plus AQ after just one season, but 
continuous monitoring is required [15]. This study aimed 
to assess the impact of SMC on molecular markers of P. 
falciparum resistance to SP and AQ after implementation 
over three consecutive malaria transmission seasons in 
Ouelessebougou, Mali.

Methods
Study site and intervention
The study was conducted in children aged 3–59 months 
in the health district of Ouelessebougou (located 80 km 
south of Bamako, Mali), wherein SMC was implemented 
progressively across sub-districts. To assess the long-
term impact of SMC on resistance to SP and AQ, 8 sub-
districts were randomly selected in 2014 from the 13 
sub-districts of Ouelessebougou to receive SMC over a 
period of 3 years: 4 sub-districts in 2014 (year 1); 2 sub-
districts in 2015 (year 2); and 2 sub-districts in 2016 
(year 3). The larger number of sub-districts in year 1 was 

pooled analysis using deep sequencing were consistent with those by individual analysis with standard PCR, but also 
indicated for the first time the presence of mutations at the Pfdhps A581G allele at a frequency of 11.7% after 2 years 
of SMC, as well as the Pfdhps I431V allele at frequencies of 1.6–9.3% following 1 and 2 years of SMC, respectively.

Conclusion:  Two and 3 years of SMC implementation were associated with increased frequency of the Pfmdr1 N86Y 
mutation but not Pfdhps 540E, Pfdhps 437G and Pfcrt K76T. The first-time detection of the Pfdhps haplotype bearing 
the I431V and A581G mutations in Mali, even at low frequency, warrants further long-term surveillance.

Keywords:  Seasonal malaria chemoprevention, Plasmodium falciparum, Molecular markers of resistance, Sulfadoxine-
pyrimethamine, Amodiaquine
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justified by the need to cover a larger number of villages 
in year 1 to determine the optimal delivery method of the 
strategy [16]. SMC was implemented in the remaining 
sub-districts of Ouelessebougou in 2016.

Eligible children received three rounds of SMC in 2014 
and four rounds in 2015 and 2016. SMC was given at 
monthly intervals during the peak of the malaria trans-
mission season, starting in August. During each round, 
children aged 3–11 months received 75 mg of AQ given 
once daily for 3 days, plus a single dose of 250/12.5 mg 
of SP; children aged 12–59  months received 150  mg 
AQ base given once daily for 3 days and a single dose of 
500/25 mg of SP. The single dose of SP was given only on 
the first day, simultaneously with the first dose of AQ. 
Children were observed for 30  min after drug adminis-
tration, and the medicine was re-administered if vomit-
ing occurred during this period.

Cross‑sectional surveys and sample collection
From 2014 to 2016, at the beginning and the end of each 
malaria transmission season, a cross-sectional survey 
was conducted in a random sample of children to assess 
the prevalence of malaria infection and molecular mark-
ers of resistance to SP and AQ. In 2014, 571 and 581 sam-
ples were collected at baseline and at the end of malaria 
season, respectively; in 2015, 429 and 487 samples were 
collected at the beginning and the end of malaria trans-
mission season, respectively; and in 2016, 747 and 952 
samples, at the beginning and the end of malaria trans-
mission season, respectively. Children were selected 
using simple random sampling from a census list of eli-
gible children in the study areas, to receive SMC during 
that year except in December 2016 when only children 
aged 34–59  months were randomly selected to allow 
assessment of the impact of SMC on malaria immunity 
[17]. Selected children were examined, and a blood sam-
ple was obtained for analysis of molecular markers via 
blood smear microscopy and dried blood spots (DBS) on 
filter paper. DBS were sealed in individual plastic bags 
with desiccant. Baseline samples were collected at the 
beginning of the malaria transmission season prior the 
first round of SMC in 2014.

Laboratory analyses
Light microscopy
Thick blood smears were stained with 10% Giemsa for 
15 min and read by certified microscopists. Asexual par-
asites were counted until 200 white blood cells (WBCs) 
were seen, and blood parasite densities were calculated 
assuming 8000 WBC/μL. A blood smear was considered 
to be negative if no parasites were identified in 100 high-
power fields. Slides were read by an experienced micros-
copist blinded to the treatment allocation. Ten per cent 

of slides were re-read by a blinded expert reader for qual-
ity control.

Assessment of molecular markers of Plasmodium falciparum 
resistance to SP and AQ
Parasites detected by light microscopy in samples col-
lected through the cross-sectional surveys were geno-
typed as markers of P. falciparum resistance to SP and 
AQ using two parallel approaches. The first approach 
used PCR-restriction fragment length polymorphism 
(RFLP) of specific loci in Pfdhfr 59R, Pfdhps 437G, Pfdhps 
540E, Pfmdr1 86Y, and Pfcrt 76T in individual parasites, 
hereafter ‘individual sample analysis’, according to pub-
lished methods [18, 19]. The second approach used PCR 
amplification and deep sequencing of gene fragments 
including multiple loci in the same genes plus Pfdhfr 51I, 
Pfdhfr 164L, Pfdhps 431  V, and Pfdhps 581G in pooled 
parasites, hereafter ‘pooled sample analysis’. Samples 
were coded and individuals involved in analysis were 
blinded to groups/time points of the surveys. Samples 
were analysed on an Ion Torrent platform as previously 
described [20].

Individual sample analysis
DNA was extracted from selected DBS on filter paper 
(3  M Whatman) as previously described [14, 18]. Assay 
of drug resistance markers was performed by nested PCR 
and/or PCR–RFLP [18, 19]. Drug resistance markers 
tested for this study were Pfdhfr 59R for pyrimethamine, 
Pfdhps 437G and Pfdhps 540E for sulfadoxine; Pfcrt 76T 
and Pfmdr1 86Y for amodiaquine. Results were classified 
as wild type, mutant or mixed (when both alleles were 
present).

Pooled sample analysis
gDNA extracts from microscopy-positive samples were 
pooled by year and by site (sub-district) with equal vol-
umes. From these pooled gDNA extracts, relevant drug-
resistance loci were amplified in Pfcrt, Pfmdr1, Pfdhfr 
and Pfdhps using separate reactions of a single-round 
of PCR (Table  1 for primers), and cleaned, pooled and 
sequenced libraries on an IonTorrent platform as previ-
ously described [20]. Fastq files were processed, quality-
filtered, aligned to reference sequences of parasite strain 
3D7 using Bowtie2, and assessed at variant loci of interest 
in Galaxy [21]. The output was the proportion of reads 
covering each locus of interest that harboured a nucleo-
tide substitution encoding a drug-resistance mutation. 
The same amplification and read-processing methods 
were applied to the sub-set of samples that were individ-
ually deep-sequenced at Pfdhps. Two separate fragments 
were amplified and sequenced for both Pfdhfr and Pfdhps 
owing to length constraints for sequencing reads.



Page 4 of 8Mahamar et al. Malaria Journal           (2022) 21:39 

Data management and statistical analysis
Individual data were entered and verified using DataFax 
and exported to Stata (version 14, Houston, TX, USA) for 
analysis. Samples that were individually genotyped using 
PCR–RFLP with evidence of mixed infection (wild type 
and mutant) were categorized as mutant. At the begin-
ning and end of the transmission season, proportions of 
Pfdhfr 59R, Pfdhps 437G, Pfdhps 540E, Pfmdr1 86Y, and 
Pfcrt K76T genotypes were determined and compared 
using Chi square or Fisher exact tests as appropriate.

Results
Study population
Demographic characteristics of the study population and 
malaria prevalence are summarized in Table  2. There 
was no difference in gender (p = 0.20) or age distribution 
(p = 0.48) of children surveyed at different time points, 
except at the 2016 end-of-transmission survey when 
older children were selected (p < 0.001). Prevalence of 

malaria infection was significantly higher in children sur-
veyed at 2014 baseline and the 2016 end-of-transmission 
(p < 0.001).

Molecular markers of resistance to SP and AQ using 
individual sample analysis
The frequencies of molecular markers associated with 
resistance to SP and AQ at baseline and post-SMC are 
summarized in Table 3. The frequency of Pfdhps K540E 
mutation was low at baseline (4.0%) and did not vary 
over time with SMC implementation (p = 0.63). The 
frequency of Pfdhps 437G was significantly lower after 
2 years of SMC at the beginning of the season compared 
to baseline (74.5 to 31.6%, p < 0.001), and increased to 
a level similar to baseline by the end-of-season survey 
after 3 years of SMC (74.5 vs 64.6%, p = 0.22). Nearly all 
samples tested carried Pfdhfr C59R (98.8%) and this pro-
portion remained similar 2 and 3 years after SMC imple-
mentation. The frequency of Pfmdr1 N86Y increased 

Table 1  Primers used for deep sequencing of Pfdhfr, Pfdhps and Pfmdr1 

Oligos include template-specific sequence as well as overhang adaptors to allow library preparation of amplicons followed by sequencing on an Ion Torrent platform

Substitutions with frequencies below 1% were considered 0

Locus, primer name Sequence

Pfdhfr

 PfdhfrF1 CGA​TCC​GAG​CGG​TGA​CAC​ATT​TAG​AGG​TCT​AGG​AAA​TAA​AGG​

 PfdhfrR1 CCT​CTC​TAT​GGG​CAG​TCG​GTG​ATT​TCT​TCC​CAT​AAC​TAC​AAC​ATT​TTG​T

 PfdhfrF2 CGA​TCC​GAG​CGG​TGA​ACA​AAA​TGT​TGT​AGT​TAT​GGG​AAGAA​

 PfdhfrR2 CCT​CTC​TAT​GGG​CAG​TCG​GTG​ATT​TGA​TAA​ACA​ACG​GAA​CCT​CCT​

Pfdhps

 PfdhpsF1 CGA​TCC​GAG​CGG​TGA​GAT​GGA​GGT​ATT​TTT​GTT​GAA​CC

 PfdhpsR1 CCT​CTC​TAT​GGG​CAG​TCG​GTG​ATA​TTG​GTT​TCG​CAT​CAC​ATT​T

 PfdhpsF2 CGA​TCC​GAG​CGG​TGA​TGC​ATA​AAA​GAG​GAA​ATC​CAC​A

 PfdhpsR2 CCT​CTC​TAT​GGG​CAG​TCG​GTG​ATA​CAA​CAT​TTT​GAT​CAT​TCA​TGC​

Pfmdr1

 MDR1F CGA​TCC​GAG​CGG​TGA​TCA​GGA​GGA​ACA​TTA​CCT​TTT​T

 MDR1R CCT​CTC​TAT​GGG​CAG​TCG​GTG​ATA​CAT​AAA​GTC​AAA​CGT​GCA​TT

Table 2  Baseline characteristics of participants at each survey

n, number of subjects
a Baseline (no SMC)

2014 (Year 1) 2015 (Year 2) 2016 (Year 3) 

Beginninga

(n = 571)
End
(n = 581)

Beginning
(n = 429)

End
(n = 487)

Beginning
(n = 747)

End
(n = 952)

Age (months)

 Mean (SD) 31.7 (16.4) 33.3 (16.6) 31.0 (15.9) 35.2 (15.2) 32.6 (15.7) 47.5 (8.1)

 Median (min–max) 32 (3–59) 32 (4–64) 31 (3–59) 35 (6–62) 33 (3–59) 47 (34–61)

Gender

 Male (%) 49.9 48.3 52.6 53.4 49.0 53.4

P. falciparum prevalence 51.9 23.1 37.3 26.1 26.6 49.3
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significantly over time from 5.6% at baseline to 18.6% 
after 3 years of SMC (p = 0.016), while the frequency of 
AQ resistance marker Pfcrt K76T did not vary signifi-
cantly (p = 0.27) over time after SMC implementation.

Resistance markers by deep sequencing
A total of 1,164 DBS samples from all time points were 
analysed by deep sequencing; after pooling by site and 
year; for each pool an average read depth of 18,018 at 
Pfdhfr, 29,789 at Pfdhps, and 36,918 at Pfmdr1 loci was 
obtained.

At baseline, frequencies of Pfdhfr 51I and Pfdhfr 59R 
were vhigh 89.1% and 99.9% respectively and remained 
high in sites after 1, 2 and 3  years of SMC (Fig.  1). No 
Pfdhfr 164L frequencies exceeding of 1% in any year or 
site were observed.

The baseline frequency of Pfdhps 437G (66.7%) was 
similar to those after 1, 2 or 3  years of SMC, which 
ranged from 30.1 to 86.4% without clear evidence of 
increases over time. Pfdhps K540E frequency was low 
at baseline (1.3%) and remained low following SMC, 
reaching a highest community frequency of 17.8% 1 year 
post-SMC introduction. The Pfdhps A581G mutation 
was observed in only two communities at frequencies of 
9.6 and 11.7% both after 2  years of SMC. Similarly, the 
Pfdhps I431V allele was observed in only three communi-
ties at frequencies of 9.3, 7.5 and 1.6%, after 2 or 1 year of 
SMC.

In contrast, the low baseline frequency of Pfmdr1-86Y 
allele (6.1%) was exceeded by all sites in most years fol-
lowing SMC, with frequencies ranging from 3.8 to 54.9%. 
Because measurable frequencies were observed of Pfdhps 
mutations I431V and A581G in separate pools of 2015 
and 2016, the 78 individual parasites in these two pools 
were deep sequenced. Genotyping at each locus was suc-
cessful in 74 parasites, for which a median depth was 

observed of 34,796 (Pfdhps I431V) and 20,032 (Pfdhps 
A581G) reads. Nine of these (12%) harboured the Pfdhps 
I431V mutation, and 7 of these 9 (78%) also harboured 
the Pfdhps A581G mutation. The frequencies of each 
mutation were highly correlated within each infection 
(correlation coefficient = 0.99). Two parasites with the 
Pfdhps I431V mutation lacked the Pfdhps A581G allele, 
and there were no parasites with the Pfdhps A581G 
mutation that lacked the Pfdhps I431V mutation.

Discussion
An updated systematic review to map SP-resistant P. fal-
ciparum in 294 surveys of infected humans across Africa 
from 2004 to 2016 has implicated ongoing SP drug pres-
sure, which may in part arise from intermittent preven-
tive treatment of malaria in pregnancy (IPTp) and SMC 
programmes [22]. Whether implementing SMC over 
a long period of time increases the frequency of drug 
resistance markers, thereby decreasing the effectiveness 
of this strategy, has always been a concern. Several stud-
ies have shown a limited impact of SMC on the preva-
lence of molecular markers of resistance to SP-AQ in 
children before and after receiving SMC drugs during 
one season [4, 5, 13]. The current study evaluated the 
effect of three consecutive seasons of SMC implementa-
tion on molecular markers in children using PCR ampli-
fication on individual samples, as well as on pools of all 
samples by year with deep sequencing.

In the individual sample analysis, SMC over three 
consecutive malaria transmission seasons was not asso-
ciated with an increase in frequency of Pfdhps 540E 
and Pfdhps 437G mutations, which are most com-
monly used for monitoring resistance of P. falciparum 
to sulfadoxine. The frequency of Pfdhps 540E muta-
tion remained far below the 50% threshold recom-
mended for SP in intermittent preventive treatment 

Table 3  Frequencies of molecular markers of resistance SP and AQ by individual PCR analysis at baseline and 2 and 3 years post-SMC

N, number of samples analyzed; n, number of mutations detected

p# = baseline versus 2 years of SMC

p## = baseline versus 3 years of SMC

p### = comparison of baseline, 2 years of SMC and 3 years of SMC

Baseline (pre-SMC): children who never received SMC

August 2014 Baseline July 2016 Received 
2 years of SMC

Dec 2016 Received 3 years 
post-SMC

n/N % n/N % n/N % p# p## p###

Pfdhfr C59R 81/82 98.8 46/49 93.9 52/52 100.0 0.147 1 0.089

Pfdhps A437G 73/98 74.5 18/57 31.6 42/65 64.6  < 0.001 0.219 0.000

Pfdhps K540E 4/99 4.0 2/57 3.5 1/70 1.4 1.000 0.405 0.626

Pfmdr1 N86Y 5/89 5.6 5/51 9.8 11/59 18.6 0.497 0.016 0.050

Pfcrt K76T 62/87 71.3 46/57 80.7 31/46 67.4 0.240 0.693 0.272
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in children [6]. Nearly all samples (98.8%) carried the 
Pfdhfr C59R mutation at baseline, making this muta-
tion no longer relevant in monitoring resistance to 
pyrimethamine. These results are consistent with those 
obtained at other sites in Mali and other countries in 
the Sahel [12, 14]. In both those studies, as in this study, 
the frequency of Pfdhps 540E mutation remained low 
in children under 5 years of age who received SMC for 
3  years, as well as those in older age groups who did 
not receive SMC. Both studies showed that SP + AQ 
was highly effective against clinical malaria or asympto-
matic malaria parasitaemia.

These data are consistent with those reported in previ-
ous trials in Mali and in Burkina Faso in 2008, with no 
significant increase in frequency of these markers versus 
the control group after 1 year of SMC implementation [4, 
5, 13]. The data support a systematic analysis of national 
trends in P. falciparum resistance to SP in Africa, where 
the frequency of Pfdhps 540E mutation was 3.5% in 2015 
in Mali [23]. In Senegal, a study indicated that the over-
all proportion of children carrying parasites with these 
mutations was lower in SMC areas than in areas where 
SMC had not been implemented [24].

The frequency of the Pfmdr1 86Y mutation, associ-
ated with AQ resistance in children carrying P. falcipa-
rum parasites, was low (5.6%) at baseline but increased 
significantly after 3 seasons of SMC implementation (to 
18.6%). In a trial of SMC with azithromycin [14], the fre-
quency of Pfmdr1 86Y increased in Bougouni, Mali from 
5 to 11% between 2014 and 2016, while decreasing from 
20 to 10% in Hounde, Burkina Faso. In the ACCESS-
SMC study [12], the prevalence of this mutation did not 
increase after 3 years of SMC.

By deep sequencing, Pfdhfr mutations at codons N51I 
and C59R at baseline were close to 100% and remained at 
similarly high levels after 2 and 3 years of SMC, indicat-
ing that these mutations are no longer useful for moni-
toring SP resistance in the area. Similar frequencies of 
these mutations were also reported in the ACCESS-SMC 
study [12] in 7 Sahelian countries where SMC is largely 
deployed but also in Kenya [25] where resistance to SP 
was high.

As seen in the ACCESS-SMC study [12], Pfdhps I431V 
and A581G mutations were detected in the current study 
population that received SMC with SP plus AQ over 3 
malaria seasons. The frequencies of mutations in codons 
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Fig. 1  Change in frequency of drug resistance alleles from baseline following 1, 2 or 3 years of SMC administration in pooled parasites by study site. 
Allele frequencies from the same study site in successive years are presented, with frequencies indicating the proportion of sequencing reads in the 
year and site that harboured the indicated allele at dhfr (A), dhps (B), and pfcrt and pfmdr-1 (C). Allele frequencies at baseline were estimated from 
parasites collected prior to SMC implementation in 4 sites and aggregated
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A581G and I431V were low (0.0–4.2 for A581G and 0.2–
3.2 for I431V) and consistent with reports in Niger [26] 
and the ACCESS-SMC study [12]. The clinical or parasi-
tological significance of the I431V mutation is unknown, 
but the A581G mutation, when present along with quin-
tuple SP-resistance mutations on the Pfdhfr and Pfdhps 
genes, has been associated with reduced effectiveness 
of SP for chemoprevention in pregnant women in East 
Africa, where an increase of Pfdhps S436H was reported 
recently [25]. Its effect in West Africa may be different, 
given that these data suggest it occurs on a distinct hap-
lotype that harbours the I431V mutation but lacks the 
K540E mutation. The appearance of this I/K/G Pfdhps 
haplotype across codons I431V, K540E and A581G fol-
lowing SMC implementation suggests selection by SP, 
although the failure to detect this in any pools the follow-
ing year may indicate weak selection, as has been the case 
for other Pfdhps resistance haplotypes. Nevertheless, the 
findings highlight that codons I431V and A581G should 
be incorporated into routine molecular surveillance of 
Pfdhps loci in West Africa, through which the clinical 
significance of these mutations can be understood. Fur-
ther long-term surveillance of molecular markers should 
become a routine practice in Mali and other countries 
implementing SMC.

Limitations of this study include the relatively small 
number of samples analysed individually by PCR. The 
strengths include deep sequencing genotyping on a large 
number of samples, 3-year capture of children receiving 
SMC, and blinded analysis of the samples.

Conclusion
Two and 3 years of SMC implementation were not asso-
ciated with increased frequencies of molecular mark-
ers of SP and AQ resistance. The detection of the Pfdhps 
haplotype bearing I431V and A581G mutations for the 
first time in Mali, even at a low frequency, warrants fur-
ther long-term surveillance.
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