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Abstract 

Background: Malaria continues to be a major public health problem in the Northeastern part of India despite the 
implementation of vector control measures and changes in drug policies. To develop successful vaccines against 
malaria, it is important to assess the diversity of vaccine candidate antigens in field isolates. This study was done 
to assess the diversity of Plasmodium falciparum AMA-1 vaccine candidate antigen in a malaria-endemic region of 
Tripura in Northeast India and compare it with previously reported global isolates with a view to assess the feasibility 
of developing a universal vaccine based on this antigen.

Methods: Patients with fever and malaria-like illness were screened for malaria and P. falciparum positive cases were 
recruited for the current study. The diversity of PfAMA-1 vaccine candidate antigen was evaluated by nested PCR and 
RFLP. A selected number of samples were sequenced using the Sanger technique.

Results: Among 56 P. falciparum positive isolates, Pfama-1 was successfully amplified in 75% (n = 42) isolates. Allele 
frequencies of PfAMA-1 antigen were 16.6% (n = 7) for 3D7 allele and 33.3% (n = 14) in both K1 and HB3 alleles. DNA 
sequencing revealed 13 haplotypes in the Pfama-1 gene including three unique haplotypes not reported earlier. No 
unique amino-acid substitutions were found. Global analysis with 2761 sequences revealed 435 haplotypes with a 
very complex network composition and few clusters. Nucleotide diversity for Tripura (0.02582 ± 0.00160) showed 
concordance with South-East Asian isolates while recombination parameter (Rm = 8) was lower than previous reports 
from India. Population genetic structure showed moderate differentiation.

Conclusions: Besides documenting all previously reported allelic forms of the vaccine candidate PfAMA-1 anti-
gen of P. falciparum, new haplotypes not reported earlier, were found in Tripura. Neutrality tests indicate that the 
Pfama-1 population in Tripura is under balancing selection. This is consistent with global patterns. However, the high 
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Background
The World Health Organization (WHO) estimates 
approximately 229 million new malaria cases and 409,000 
deaths due to malaria occurring globally in 2019 [1]. Out 
of this, South-East Asia contributes 3% of the total case-
load. In 2019, India’s contribution to total malaria cases 
and deaths in the South-East Asian region was around 
88% and 86% respectively. In South-East Asia, Plasmo-
dium vivax is now the major (51.7%) malaria parasite in 
circulation [1].

On an average, North East India contributes approxi-
mately 7% of the total malaria cases in India [2]. Among 
the eight states of North East India, Tripura is highly 
malaria endemic where transmission is persistent [3]. 
Many outbreaks of malaria have been reported in the 
past few decades from Tripura [4]. In 2014, a severe 
malaria outbreak occurred in the state with a high mor-
bidity and mortality rate reported mainly from the Dhalai 
district [5, 6].

Despite active vector control strategies and arte-
misinin-based combination therapy (ACT) being imple-
mented universally, drug resistant and genetically diverse 
Plasmodium falciparum is spreading continuously across 
different parts of the world including North East India 
[7–10]. An effective vaccine is needed, but despite many 
efforts initiated throughout the last six decades, still no 
licensed vaccine is available which shows 100% efficacy 
against the disease. Recently the RTS,S/AS01 vaccine 
has gone through phase-III efficacy trial which and has 
shown partial protection (30–50%) against P. falcipa-
rum malaria in young children [11–15]. RTS,S/AS01 is 
the only first-generation malaria vaccine and its large-
scale pilot implementation has started in April, 2019 
in Malawi, Ghana and Kenya [16, 17]. Based on these 
results, in October 6, 2021 the World Health Organiza-
tion recommended the widespread use of RTS,S/AS01 
malaria vaccine among children living in sub-Saharan 
Africa and other regions with moderate to high P. falcipa-
rum malaria transmission [18].

The main obstacle in producing an effective malaria 
vaccine is the highly polymorphic nature of the parasite 
and vaccine candidate genes, which allows the parasite to 
escape host immunity [19]. The erythrocytic stage of the 
malaria parasite is important in this respect because most 
vaccine candidate proteins such as the merozoite surface 
protein (MSP) are expressed while invading the RBCs 

coinciding with clinical disease [20]. However, these vac-
cine candidate proteins are highly polymorphic in nature, 
mandating a detailed understanding of their diversity 
patterns through field studies in different geographical 
locations [21, 22]. Among the established vaccine candi-
date antigens of P. falciparum, blood-stage antigens like 
MSPs have traditionally been given more importance; but 
other antigens like P. falciparum apical membrane anti-
gen (PfAMA-1) also hold promise [23].

One of the leading erythrocytic stage vaccine candi-
date genes of P. falciparum is apical membrane antigen-1 
(AMA-1). It is 83  kDa in size and expressed in the late 
schizont stage of the life cycle of malaria parasite [24]. 
As described previously, this gene can be classified into 
three major allelic families by PCR-RFLP technique 
based on the amino acid differences present outside the 
Hyper Variable Region (HVR) of the gene [25]. Although 
its function is not yet clear, many studies documented 
that antibodies against PfAMA-1 raised in rabbits can 
inhibit the invasion of red blood cells by both homolo-
gous and heterologous P. falciparum and vaccines based 
on PfAMA-1 can induce asymptomatic protection 
[26–29]. Despite its less polymorphic nature, antibodies 
to this antigen have shown to confer natural protection 
against the disease [30–32]. Phase-I vaccine trial has also 
been conducted on malaria-naive volunteers [33]. It was 
also reported by previous studies that immunization with 
PfAMA-1 provides protection against malaria in mice 
and monkeys [34, 35].

Malaria control requires a coordinated approach based 
on vector control strategies and basic research such 
as surveillance of parasite genetic diversity and evolu-
tion. Very few studies have reported the diversity of 
Pfama-1 gene in northeastern as well as in other parts 
of India [36–39]. The current study was thus conducted 
to address this void and to analyse the diversity patterns 
between Tripura and other parts of the world with a view 
to understand whether a universal vaccine based on this 
candidate would be feasible in the near future.

Methods
Study location
This study was carried out in the sub-divisional hospitals, 
primary health centers and villages of Dhalai (23.8467° N, 
91.9099° E) and North Tripura (24.0797 °N, 92.2630 °E) 
districts of Tripura state, India in 2015. These districts 

haplotype diversity observed in the global Pfama-1 network analysis indicates that designing a universal vaccine 
based on this antigen may be difficult. This information adds to the existing database of genetic diversity of field iso-
lates of P. falciparum and may be helpful in the development of more effective vaccines against the parasite.
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share borders with Bangladesh in the north and south 
and more than 70% of the land area is covered by hills 
and forests. The area experiences hot, humid summers 
and a prolonged rainy season.

Study population
Symptomatic patients with body temperature ≥ 37.5 ºC, 
age > 1 year, without history of anti-malarial drug con-
sumption and no recent history of fever were included 
in this study. Presence of P. falciparum parasite was 
screened by rapid diagnostic test (RDT) and confirmed 
by slide microscopy. The study was conducted with 
approval from the Institutional Human Ethics committee 
of ICMR-RMRC North East Region (No. RMRC/DIB./
IEC Human/ 2012/667) and all protocols were carried 
out as per the guidelines of the Indian Council of Medical 
Research (ICMR). Two ml of whole blood was collected 
from the P. falciparum positive patients after obtaining 
informed written consent.

Genomic DNA isolation and Plasmodium species 
identification
Genomic DNA extraction was done from whole blood 
samples using QIAamp DNA blood mini kit as per the 
manufacturer’s protocol (Qiagen, CA, USA). Plasmo-
dium species specific nested PCR was carried out for 
confirmation of P. falciparum as described previously 
[40]. Extracted DNA was stored in −20 °C for further 
molecular analysis.

Nested PCR for Pfama‑1 gene
All the PCR protocols and primers were used as previ-
ously described with minor modifications [41]. Primary 
PCR for Pfama-1 was performed using 1  µl of genomic 
DNA and 1 µM of forward and reverse primers in a 10 µl 
reaction volume containing 5  µl of 2X Promega master 
mix. Secondary PCR was performed using 2  µl of pri-
mary PCR product as template with 1 µM of each primer 
and 25  µl of 2X Promega master mix in 50  µl reaction 
volumes. The PCR amplification conditions were: initial 
denaturation at 95 °C for 5 min followed by (30 cycles for 
primary PCR and 35 cycles for secondary PCR) dena-
turation at 95  °C  for 2 min, annealing at 52  °C  for 30 s, 
extension at 68 °C for 45 s and a final extension of 5 min 
at 68  °C. The PCR product of Pfama-1 was analysed on 
2% agarose gel and expected positive amplicon size was 
500 bp.

Restriction fragment length polymorphism analysis 
of Pfama‑1
After successful amplification of the Pfama-1 gene, the 
amplified PCR products were subjected to digestion with 
three restriction enzymes, viz. Mse1, Ssp1 and Sau3A1 

(New England Biolabs) as previously described [42]. 
Three independent digestions were performed with the 
three restriction enzymes. The digestion mixture con-
tained 0.4  µl restriction enzyme, 2  µl 10X buffer, 10  µl 
PCR product and volume made up to 20  µl by adding 
nuclease free water. Digestion was done for 60  min at 
37 °C followed by 20 min enzyme inactivation at 65 °C as 
described by manufacturer’s protocol with minor modi-
fications. The digested products were analysed on 2.5% 
agarose gel. The respective band sizes for Mse1, Ssp1 
and Sau3A1 enzyme digestions were 285 bp (K1), 400 bp 
(3d7) and 335 bp (HB3), respectively.

Sequencing
A limited number of samples (17 out of 42 isolates with 
successful Pfama-1 amplification) were selected for 
sanger sequencing. Samples for sequencing were selected 
randomly since all the 42 samples which showed positive 
amplification for Pfama-1 also showed successful restric-
tion digestion with each of the three enzymes. Since the 
Indian and global database on Pfama-1 is quite extensive, 
sequencing was done for a small number of samples rep-
resentative of the geographical region under considera-
tion. Selected samples were gel purified using Wizard® 
SV Gel and PCR Cleanup System (Promega) following 
manufactures’s protocol. The purified products were 
outsourced to Eurofins Genomic India private limited, 
Banglore, for both forward and reverse direction Sanger 
sequencing.

Sequence polymorphism, phylogenetic and statistical 
analysis
The sequences were edited in the software Bioedit 
v7.0.5.3 and aligned in Clustal W [43, 44]. The BLAST 
similarity searches were done in GenBank database and 
representative sequences from other parts of the world 
were downloaded for comparison. The Plasmodium 
reichenowi strain (Accession No. AJ252087) was included 
as an outgroup for performing the neutrality tests i.e. Fu 
& Li’s F and D test. DnaSP version 6 was used to calculate 
various measures of genetic polymorphism such as hap-
lotype diversity (Hd), nucleotide diversity (π), recombi-
nation parameters (R) and different neutrality tests [45]. 
The π value was calculated to estimate step-wise diversity 
based on a sliding window of 100 bases with a step size 
of 25 bp. The genetic differentiation among the popula-
tions based on fixation index (Fst) was estimated by using 
Arlequin 3.5 software [46]. Taking P. reichenowi strain as 
an outgroup, dN/dS values were estimated using SNAP 
v2.1.1 [47]. Haplotype network of global Pfama-1 hap-
lotypes was constructed with 2761 sequences following 
the Minimum Spanning Network algorithm using the 
software PopART [48]. The list of sequences downloaded 
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from the NCBI database and used in the population 
genetics and Network analysis is provided as a separate 
file (Additional file 1: Table S1).

Results
A total of 56 P. falciparum PCR positive isolates were 
included in this study for genetic diversity analysis. 
Among these, Pfama-1 was amplified in 75.0% (n = 42) 
isolates.

Allele prevalence among the isolates
In positive samples, all the three previously reported 
alleles were observed with fragment sizes of 285 bp (K1), 
400 bp (3d7) and 335 bp (HB3) after restriction digestion. 

Among the 42 positive isolates, frequencies of K1 and 
HB3 allele types were 33.3% (n = 14) each and 3D7 allele 
type was 16.6% (n = 7), respectively (Table  1). Besides 
the three allele types, mixed alleles were also observed 
in three isolates. An additional allele fragment, not pre-
viously reported, bearing a size of approximately 355 bp 
was observed in 83.3% (n = 35) isolates.

DNA sequencing and sequence polymorphisms
Pfama-1 gene was successfully sequenced for a total of 17 
P. falciparum isolates. The sequences were submitted to 
the NCBI database with Accession numbers: MT483644 
to MT483628. In this study, a total number of 13 differ-
ent haplotypes were observed in Pfama-1 antigenic gene 
of Tripura P. falciparum isolates (Table 2). Out of these, 
three unique haplotypes were observed: H-3/MT483630, 
H6-/MT483634, MT483637 and H-9/MT483638 when 
compared with 2744 global Pfama-1 sequences. Further, 
it was observed that the H-5/MT483633 haplotype was 
reported only from India, the H-8/MT483636 haplo-
type was reported earlier from India and Myanmar and 
the H-7/MT483635 haplotype was reported only from 
Uganda. Other eight haplotypes were earlier reported 
from various parts of the world (Table  2). On multi-
ple sequence alignment of the 17 Pfama-1 nucleotide 
sequences with the reference strain (XM-001347979), 
21 amino acid substitutions were found in domain 1 of 

Table 1 Allele frequency of Pfama-1 gene in Tripura

Total sample [56] Allele Frequency

K1 33.30% (n = 14)

3D7 16.60% (n = 7)

Pfama-1 (n = 42) HB3 33.30% (n = 14)

K1+3D7+HB3 2.40% (n = 1)

K1+3D7 2.40% (n = 1)

3D7+HB3 4.70% (n = 2)

HB3+K1 4.70% (n = 2)

Table 2 Pfama-1 haplotypes observed in the study and their geographical distribution

Gene No. of seq. 
analysed

No. of 
haplotype

Haplotype
(H)

Accession No.
(Sample ID)

Reported from

H-1 MT483628
&
MT483631

India, Benin: Cotonou, Ghana, Tanzania, Philippines, Gambia, Mali, Uganda, Kenya, 
Nigeria, Saudi Arabia

Pfama-1 17 13 H-2 MT483629 Uganda, Ghana, Gambia, Mali, Kenya, Nigeria, Saudi Arabia

H-3 MT483630 This study

H-4 MT483632 India, Iran, Thailand, Myanmar, Tanzania, Kenya

H-5 MT483633 India

H-6 MT483634
&
MT383637

This study

H-7 MT483635 Uganda

H-8 MT483636 India, Myanmar

H-9 MT483638 This study

H-10 MT483639
&
MT483641

India, Kenya, Nigeria, Mali, Gambia, Cameroon

H-11 MT383640 Thailand, Malaysia, Philippines, Solomon Island, Papua New Guinea

H-12 MT483642 India, Myanmar, Thailand, Solomon Island, Philippines, Kenya, Mali, Tanzania,, 
Gambia, Papua New Guinea, Saudi Arabia, Uganda

H-13 MT483643
&
MT483644

India, Myanmar, Thailand, China, Mali, Vanuatu, Papua New Guinea
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Pfama-1 gene (Fig.  1). Eighteen dimorphic (N162K, 
T167K, G172E, N173K, Y175D, L189P, M190I, D196N, 
F201L, D204N, K206E, Y207D, I225N, N228K, K230E, 
D242Y, K245N, E267Q), two trimorphic (H200D/L, 
K243N/E) and two tetramorphic (E187N/D/K, E197G/
D/Q) substitutions were found.

Haplotype network analysis
Global analysis with 2761 sequences (including 17 
sequences from current study and one reference 3d7 
strain) from NCBI database revealed 435 haplotypes out 
of which 261 (60%) were singletons. Three haplotypes 
detected in the current study were unique (Hap_299/
MT483630, Hap_301_/MT483634, MT483637 and 
Hap_302/MT483638) and not found amongst the ana-
lysed global sequences (Fig.  2). The analysis included 
sequences from Tripura and 23 malaria endemic coun-
tries, including India. From the haplotype network, it 
was observed that although there was clustering of hap-
lotypes from different countries, the overall picture was 
complex. Indian isolates in particular appeared to be 
clustered with a number of global isolates; however, it 
was observed that there were many unique haplotypes 
from India not reported earlier from other parts of the 
world. As many as 169 haplotypes were obtained from 
the 266 Indian sequences (excluding those from Tripura 
in the present study) included in the analysis. This was 
followed by Mali, Kenya and Gambia with 109, 59 and 

48 haplotypes each. Three major haplotypes were seen 
in the Minimum Spanning Network analysis: Hap_1 
(176 isolates including the 3d7 reference strain), Hap_3 
(161 isolates) and Hap_188 (135 isolates). Hap_1 con-
tained isolates from 15 countries spread across Africa, 
South America, Oceania and South-East Asia including 
India; the maximum number of isolates were from Mali 
(30.68%). Hap_3 included isolates from the Middle East, 
South and South-East Asia (including Tripura), Africa 
and Oceania; highest frequency of isolates belonged to 
Myanmar (49.07%). Hap_188 isolates predominantly 
belonged to Middle East, South and South-East Asia and 
Oceania, with no African isolates.

Nucleotide diversity and natural selection of Pfama‑1 
isolates from Tripura compared to global isolates
For analysis of nucleotide diversity and natural selection 
of Pfama-1 isolates, the sequences from Tripura were 
compared with other Indian isolates (n = 266) as well as 
isolates (n = 2485) from twenty other malaria endemic 
countries spread out across Asia, Middle-East, South 
America, Africa and Oceania. For the 17 Tripura P. fal-
ciparum sequences included in this analysis, the calcu-
lated nucleotide diversity (π) was 0.02582 and average 
number of pairwise nucleotide differences (k) was 10.610. 
When these values were compared with other global 
P. falciparum isolates, it was observed that π value was 
similar to South-East Asian isolates (Thailand = 0.02565, 

Fig. 1 Amino-acid sequence polymorphism observed in Tripura Pfama-1 isolates. Trimorphic and tetramorphic amino acid are highlighted in blue 
and orange respectively. New haplotype (H-3, H-6 and H-9) are highlighted in yellow
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Philippines = 0.02512). Highest nuclotide diversity 
was observed in Uganda (π = 0.03187) and lowest was 
observed among South American (Venezuela= 0.01469) 
and South-East Asian (Pakistan = 0.01348) isolates. 
The average number of pairwise nucleotide differences 
(k) in the isolates included in the analysis ranged from 
5.464 in Venezuela to 11.124 in Kenya (Table  3). The 
Tripura isolates (k = 10.610) had values similar to other 
Indian isolates (k = 10.847 ) and isolates from Middle 
East (Saudi Arabia = 10.570) and Africa (Papua New 
Guinea = 10.158, Ghana = 10.991, Mali = 10.409, Nige-
ria = 10.475, Benin:Cotonou = 10.773, Gambia = 10.455, 
Tanzania = 10.731). The neutrality tests in Pfama-1 gene 
i.e. Fu and Li’s D & F test were performed considering P. 
reichenowi as an outgroup species. For the Tripura iso-
lates, the observed values for Fu and Li’s D & F test were 

1.36492 and 1.58826, respectively, which were not sta-
tistically significant (Table  3). Positive Tajima’s D value 
(1.14014, P > 0.10), though statistically not significant 
and a positive dN/dS ratio (2.2237), indicated that the 
Pfama-1 gene of Tripura P. falciparum isolates was under 
positive selection indicating that there was no evidence of 
population bottle-necking. However, inclusion of greater 
number of sequences from Tripura would have increased 
the accuaracy of these neutrality tests. When possible, 
Tajima’s D value was calculated for the other global P. 
falciparum isolates and it was found that it was positive 
for all countries except India (−1.64633, 0.10 > P > 0.05) 
and China (−0.01883, P > 0.10) (Table  3). This signifies 
that these isolates may be under negative selection which 
differs from other isolates of the world that show balanc-
ing or positive selection. The negative values as extracted 
by Fu and Li’s D and F test also supported the negative 

Fig. 2 Haplotype network of global Pfama-1 isolates created using PopArt (Minimum Spanning Network algorithm). Isolates are colour-coded 
according to the country of origin and the size of the vertex represents the frequency of the haplotype. Hap_1, Hap_3 and Hap_188 are marked 
separately. Haplotypes from Tripura observed in this study are shown in red
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selection pattern for Indian isolates and the values were 
statistically significant.

Recombination parameter
The minimum number of recombination events (Rm) 
was calculated along with R values of adjacent sites 
(Ra) and per gene (Rb). The estimated Rm and R values 
observed in this study were 8 (Rm), 0.0954 (Ra) and 39.1 
(Rb), respectively. When compared with other global 
Rm and R values, it was observed that the Rm value of 
the present study was similar to South-East Asia (Thai-
land = 8, Myanmar = 8) and African countries (Benin: 
Cotonou = 8). However, previously reported Pfama-
1 isolates from India showed the highest Rm values 
(Rm = 24), which is in contrast to this study. Similarly, Ra 
values observed in this study were similar to those from 
Saudi Arabia, Papua New Guinea, Ghana and Tanzania. 
Highest Ra values were observed in India, Nigeria and 
Uganda. Rb values from Tripura showed similarity with 
isolates from Iran and the Philippines. Highest Rb values 
amongst the analysed samples were seen from African 
countries (Ghana, Mali, Gambia, Tanzania, Kenya, Nige-
ria and Benin: Cotonou) (Table 4).

Inter‑population differentiation
Fst values were evaluated to estimate the genetic differ-
entiation among global Pfama-1 populations (Additional 
file 2:  Table S2). Among all the global isolates, lowest Fst 
value was observed between Kenya and Uganda (0.00479, 
p < 0.05) and highest Fst value was observed between 
China and Venezuela (0.44783, p = 0). When Fst values 
were compared for Tripura isolates, lowest difference was 
with Tanzania (0.01168, p > 0.05) and highest difference 
was with Venezuela (0.24724, p = 0). Low genetic differ-
ence of Tripura isolates was also observed with the ear-
lier reported Indian isolates as well as other South-East 
Asian countries like Thailand, Malaysia, Philippines; Afri-
can countries like Ghana, Uganda, Benin, Gambia, Kenya 
and other countries like Saudi Arabia, Mali and PNG, etc. 
Moderate genetic difference was seen with the isolates of 
Iran, China and Myanmar. Highest genetic difference was 
seen with the isolates of Pakistan and Venezuela. How-
ever, there was one negative Fst value which was seen 
between the isolates of Kenya and Tanzania (−0.00052, 
p > 0.05); this may be due to geographical proximity or 
inclusion of short sequences in the analysis.

Discussion
The WHO South-East Asia region comprises of eleven 
countries and is home to more than a quarter of the 
world’s population. Nine of these eleven countries are 
endemic for malaria with three countries, including 
India, contributing to over 99.5% of the total caseload 

in the region [1]. In India, there are several hotspots of 
malaria across the country with diverse epidemiologi-
cal, ecological and geographical settings. Vector and 
parasite species also vary depending on the region. 
Northeast India is a very peculiar setting wherein for-
est malaria predominates; the region also shares a 
huge international border and has traditionally acted 
as a gateway for the spread of drug resistant Plasmo-
dium strains from surrounding countries to the Indian 
mainland [4, 49, 50]. Although malaria has reduced 
drastically in this region over the years, further reduc-
tion and control has been difficult. Anti-malarial drug 
resistance monitoring and surveillance of parasite 
genetic diversity and evolution are important molecu-
lar tools to understand and minimize the spread of 
malaria in this region. Currently, Tripura and Mizoram 
are the two states from this region reporting a substan-
tial number of malaria cases [2]. Many areas in Tripura 
are endemic for malaria and not much data on diversity 
of P. falciparum vaccine candidate genes like Pfama-1 
is available on field isolates. The current study was done 
to assess the diversity of Pfama-1 population circulat-
ing in the region through RFLP and Sanger sequencing 

Table 4 Recombination events of Pfama-1 gene among global 
P. falciparum isolates

Rm, Minimum number of recombination events between adjacent sites; 
Ra, Recombination parameter between adjacent sites; Rb, Recombination 
parameter per gene

Country Rm Ra Rb

This study 8 0.0954 39.1 

India 24 0.1864 79.8

Thailand 8 0.0445 57.9

Myanmar 8 0.0074 10

The Philippines 6 0.0218 40.8

Sabah, Malaysia 5 0.0001 0.2

Pakistan 0 0 0.001

Iran 12 0.074 39

Saudi Arabia 13 0.0857 54

Solomon Island 5 0.012 22.5

Papua New Guinea 9 0.1094 63

Vanuatu 5 0.001 1.8

Venezuela 1 0 0.001

Ghana 10 0.0958 179

Mali 12 0.1131 137

The Gambia 12 0.082 146

Tanzania 9 0.0915 171

Kenya 13 0.1171 153

Nigeria 10 0.158 207

Benin: Cotonou 8 0.0755 119

China 0 0.0581 29.3

Uganda 12 0.1822 67.6
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with a view to compare it with other Indian and global 
isolates.

Restriction fragment length polymorphism (RFLP) 
analysis of Pfama-1 gene showed the presence of all 
the three reported allelic variants; i.e. K1, 3D7 and HB3 
type in the study population with a frequency of 33.30%, 
16.60% and 33.30% respectively. In addition to this, 2.4% 
mixed allele type was observed among the P. falciparum 
isolates and 83.3% (355 bp) isolates did not fit into any of 
these previously reported groups. Earlier studies among 
Indian P. falciparum isolates have reported mostly point 
mutations; suggesting that PCR-RFLP based genotyp-
ing for Pfama-1 allele needs further validation since it is 
inherently incapable of detecting SNPs [37]. The current 
study has shown a lower frequency of the 3D7 allele as 
compared to K1 and HB3 allelic variants, which is simi-
lar to previous studies from South-East Iran, East Africa, 
Western and Central Africa [30, 41, 51]. However, many 
other studies based on SNPs have reported varying fre-
quencies of Pfama-1 haplotype in different geographical 
regions [22, 52–54]. Kang et al. also reported close simi-
larities between the Pfama-1 gene in Thailand and Myan-
mar [53]. Polymorphism in Pfama-1 gene is not evenly 
distributed; antigenic diversity of Pfama-1 between and 
among global isolates are limited and also it is relatively 
less polymorphic in nature than the laboratory isolates, 
possibly due to the positive natural selection and genetic 
recombination [30, 37, 53, 54]. In high disease transmis-
sion areas, allelic diversity of Pfama-1 is usually very 
high compared to low transmission areas and in major 
endemic areas, Pfama-1 alleles have been found to 
exhibit similar diversity patterns regardless of geographi-
cal region [39, 52, 55].

Sanger sequencing of a few Pfama-1 isolates revealed 
thirteen haplotypes in total out of which three haplotypes 
were unique as depicted in the haplotype network con-
structed using 2761 global Pfama-1 sequences (Fig.  2). 
The haplotype network was dense with many complex 
connections and no clear clustering was apparent. As 
many as 435 haplotypes were identified out of which 60% 
were singletons; India being a major contributor to these 
low frequency haplotypes. There was no haplotype that 
was present universally in all the malaria endemic coun-
tries included in the analysis. Three haplotypes with size-
able number of isolates from different countries were 
obtained out of which Hap_1, which included the P. fal-
ciparum 3D7 strain, formed the biggest cluster with 176 
isolates (6.37% of analysed strains). Most of the PfAMA-1 
antigen-based vaccines that are currently being evalu-
ated for field use have been designed on the basis of P. 
falciparum 3D7 strain. The current analysis revealed that 
only a minority of the global isolates belonged to this 
haplotype (Hap_1); additionally, only one isolate from 

India and none from Tripura were identical to this hap-
lotype. Studies conducted in Myanmar and Bioko islands 
have also observed similar haplotype networks with no 
consistent clustering; although, the number of isolates 
included in the network analysis was much smaller [53, 
56]. In Myanmar, haplotype network constructed using 
517 global Pfama-1 isolates revealed 174 haplotypes and 
in a separate study conducted in Bioko islands, 296 hap-
lotypes were obtained from the analysis of 790 sequences 
[53, 56].

Nucleotide diversity figures observed in this study 
(π = 0.02582 ± 0.00160) were found to be similar to 
South-East Asian and African isolates and slightly lower 
than those reported earlier from India (Table  3). How-
ever, studies conducted in nearby Indian states like 
Assam and Orissa have reported similar values [36]. Even 
Andaman & Nicobar Islands, an Indian union territory 
and archipelago in the Bay of Bengal, has reported val-
ues for nucleotide diversity (0.0226 ± 0.0008) similar to 
the Tripura isolates [36]. Another study from India has 
also reported similar nucleotide diversity patterns from 
Assam, Orissa and North India [39]. Haplotype diver-
sity and average number of pairwise nucleotide differ-
ences (k) were also found to be similar in Tripura, Assam, 
Orissa and Andaman & Nicobar Islands [36]. Haplotype 
diversity of domain-I of Tripura Pfama-1 strains was 
found to be higher than that reported earlier from South-
East Asian countries such as Myanmar and Thailand and 
comparable to those observed in African countries like 
Ghana and Tanzania [53, 56]. A positive Tajima’s D value 
for majority of global isolates (except India and China, 
Table  3) also indicates that the domain-1 of Pfama-1 is 
under positive natural selection; this has been reported 
earlier in several studies [36, 53, 56]. Negative values for 
Tajima’s D, which signify negative selection, have been 
reported earlier from India in Kolkata [39]. A possible 
explanation for this may be the high number of low fre-
quency haplotypes (as many as 60% of the Indian hap-
lotypes were singletons) observed in the 266 Pfama-1 
sequences included in the analysis. Nucleotide diversity, 
haplotype diversity and recombination events (Rm) were 
also highest among the Indian isolates (π = 0.02916 ± 
0.00076, Hd = 0.9934 ± 0.0012, Rm = 24), which signi-
fies that the parasite population must have undergone 
recent expansion with recombination events generating 
newer alleles.

In the current study, no unique amino-acid substi-
tutions were observed; all amino-acid substitutions 
reported here have been observed previously in Tanza-
nia, Ghana, Thailand, Bioko island, Pakistan and some 
other parts of the world [53, 56, 57]. Of these, the N228K 
mutation encountered in the current study has been 
found to be more common in African countries unlike 
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Myanmar and Thailand [53]. Although there are differ-
ences in the frequency of these amino-acid substitutions 
across different geographical regions, the overall distri-
bution is largely the same; however, inclusion of larger 
number of samples from diverse geographical regions of 
North East India would have provided a more compre-
hensive picture.

Genetic differentiation among global Pfama-1 popula-
tions was evaluated by estimating the pairwise Fst values 
and classified as previously described [53]. Tripura iso-
lates exhibited low levels of genetic differentiation when 
compared to African (Uganda, Tanzania, Nigeria, Mali, 
Kenya, Ghana, Gambia and Benin: Cotonou) countries. 
Moderate levels of differentiation were observed with 
previously reported Indian isolates (0.05351) and isolates 
from South-East Asia (Myanmar, Malaysia), Iran, China 
and Vanuatu. High-level differentiation was observed 
when the Tripura isolates were compared with those of 
Venezuela (0.24724) and Pakistan (0.22606). This trend is 
more or less similar to that shown by other Indian iso-
lates when compared globally: high differentiation with 
Venezuela (0.16519) and Iran (0.15053); moderate differ-
entiation with Vanuatu, Tanzania, Solomon Islands, Paki-
stan, Myanmar, Malaysia, China and Benin: Cotonou; 
and low differentiation with all other countries (predomi-
nantly African) included in the analysis. Interestingly, 
it was observed that isolates from Venezuela, the only 
South American country included in the analysis, showed 
a high level of genetic differentiation with all other coun-
tries. This might be due to the geographical barriers to 
gene flow among the parasite populations of Venezuela 
and the other countries (which belong to different con-
tinents) analysed. A similar finding is also observed in 
a study conducted in Bioko Islands where the Venezue-
lan strains showed high genetic differentiation with nine 
countries from Africa, South-East Asia and Oceania 
[56]. Other studies have found moderate levels of differ-
entiation (0.05−0.15) among global Pfama-1 sequences 
[53]. Differences in the number of sequences and the 
country of origin analysed may sometimes lead to varia-
tions in the absolute Fst values; however, the overall pic-
ture for Pfama-1 appears to be one of low to moderate 
genetic differentiation with a few exceptions, which can 
be explained based on the isolation by distance model. 
Overall, nucleotide and haplotype diversity figures, hap-
lotype network and inter-population Fst values indicate 
that a common vaccine design may be complicated.

Limitations of the current study include sequencing of 
a limited number of samples for the target gene. Addi-
tionally, the samples were subjected to both way Sanger 
sequencing without cloning. While most traditional stud-
ies on Pfama-1 have used PCR-RFLP, we have also used 
Sanger sequencing, which is one of the strengths of this 

study. Moreover, no previous study has compared the 
global Pfama-1 scenario on such a huge scale.

Conclusions
The study aimed to evaluate the diversity of PfAMA-
1, a less commonly studied vaccine candidate antigen 
of P. falciparum from Tripura, a malaria endemic state 
in Northeast India. All the three allelic families were 
observed and neutrality tests indicate that the Pfama-1 
population in Tripura is under balancing selection. This 
is consistent with global patterns. However, the high 
haplotype diversity observed in the global Pfama-1 net-
work analysis indicates that designing a universal vac-
cine based on this antigen may be difficult. A moderate 
degree of clustering of isolates from different geographi-
cal regions indicate that region specific vaccines based on 
the PfAMA-1 antigen may have some hope for malaria 
control.
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