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Abstract 

Background:  It is often assumed that the population dynamics of the malaria vector Anopheles funestus, its role 
in malaria transmission and the way it responds to interventions are similar to the more elaborately characterized 
Anopheles gambiae. However, An. funestus has several unique ecological features that could generate distinct trans-
mission dynamics and responsiveness to interventions. The objectives of this work were to develop a model which 
will: (1) reconstruct the population dynamics, survival, and fecundity of wild An. funestus populations in southern 
Tanzania, (2) quantify impacts of density dependence on the dynamics, and (3) assess seasonal fluctuations in An. 
funestus demography. Through quantifying the population dynamics of An. funestus, this model will enable analysis of 
how their stability and response to interventions may differ from that of An. gambiae sensu lato.

Methods:  A Bayesian State Space Model (SSM) based on mosquito life history was fit to time series data on the 
abundance of female An. funestus sensu stricto collected over 2 years in southern Tanzania. Prior values of fitness 
and demography were incorporated from empirical data on larval development, adult survival and fecundity from 
laboratory-reared first generation progeny of wild caught An. funestus. The model was structured to allow larval and 
adult fitness traits to vary seasonally in response to environmental covariates (i.e. temperature and rainfall), and for 
density dependency in larvae. The effects of density dependence and seasonality were measured through counter-
factual examination of model fit with or without these covariates.

Results:  The model accurately reconstructed the seasonal population dynamics of An. funestus and generated 
biologically-plausible values of their survival larval, development and fecundity in the wild. This model suggests that 
An. funestus survival and fecundity annual pattern was highly variable across the year, but did not show consistent 
seasonal trends either rainfall or temperature. While the model fit was somewhat improved by inclusion of density 
dependence, this was a relatively minor effect and suggests that this process is not as important for An. funestus as it is 
for An. gambiae populations.

Conclusion:  The model’s ability to accurately reconstruct the dynamics and demography of An. funestus could 
potentially be useful in simulating the response of these populations to vector control techniques deployed 
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Background
Anopheles funestus is one of the major malaria vectors in 
Africa and is widely distributed across the continent [1, 
2]. With the exception of Anopheles gambiae sensu stricto 
(s.s.), the species appears to have higher vectorial capac-
ity than many other members of the Anopheles gambiae 
complex [3–8]. Anopheles funestus makes a higher con-
tribution to transmission than An. gambiae sensu lato 
(s.l.) in numerous parts in sub-Saharan Africa [6, 9–12]; 
particularly in settings where An. gambiae abundance has 
plummeted due to either effective indoor-based vector 
control interventions [13, 14] or environmental change. 
It is hypothesized that An. funestus persistence despite 
the recent scale-up of insecticide–treated nets may have 
been facilitated by their earlier development of strong 
physiological resistance [15].

Anopheles funestus is typically grouped with An. gam-
biae s.l. when modelling transmission and formulating 
policies for malaria vector control [16–18]. The lack of 
explicit consideration of An. funestus ecology and trans-
mission potential may be partially due to this species hav-
ing been relatively neglected compared to An. gambiae. 
Comparatively the ecology of An. funestus s.l. is less well 
understood, and it is much more difficult to maintain 
under insectary or semi-field conditions [19]. However, 
this species has several unique ecological features, such 
as its different larval habitat and dry season persistence 
[20], that could give rise to distinct population dynamics 
and differentiate its response to core and supplementary 
interventions. For example, An. funestus prefers larger 
aquatic habitats that are semi-permanent or permanent 
throughout the year, and contain clear water with some 
emergent vegetation [20]. This differs from An. gambiae 
s.s. which generally prefer small temporary habitats, such 
as puddles, ditches or animal hoof prints [20, 21], or 
Anopheles arabiensis, which can breed extensively in rice 
fields and other sunlit open pools [1]. The use of more 
permanent larval habitats means that An. funestus has 
greater persistence through the driest periods of the year 
compared to An. gambiae [22], whose habitats evaporate 
quickly in the absence of rainfall [21, 23]. This ecological 
feature means that the seasonal phenology of An. funes-
tus and its response to aquatic microclimate differs from 
An. gambiae [21, 22, 24]; and could thus generate differ-
ential response to seasonally-targeted interventions, such 
as Indoor Residual Spraying (IRS) and larviciding.

Differential use of aquatic habitats may also impact the 
relative importance of key intrinsic drivers of mosquito 
population dynamics such as density dependence. Den-
sity dependence in malaria vectors occurs during larval 
development as a product of competition for space and 
nutritional resources [25, 26]. In space-limited habitats, 
high larval densities can influence larval development 
rates and survival, but also subsequent adult fitness traits 
such as body size, survival, fecundity and mating success 
[27–30]. While there is evidence that density depend-
ence is an important driver of An. gambiae population 
dynamics [25], the relative importance of this process 
for An. funestus is unknown. Given that larval crowding 
and competition are less likely within the larger habitats 
preferred by An. funestus, density dependence is hypoth-
esised to may be less pronounced for this vector species. 
Quantifying the strength of density dependence is impor-
tant to inform the ease with which vector populations 
can be suppressed and how quickly they can recover [26, 
27, 31].

Models of vector population dynamics and their 
response to interventions must be parameterised by reli-
able estimates of their demography and fitness. For vec-
tors in the An. gambiae complex, such estimates are often 
acquired from insectary and semi-field studies [32–37] 
as well as field studies. Similar data has been difficult to 
obtain for An. funestus because of its poorly understood 
ecology and the difficulties of creating laboratory colo-
nies; which so far has been achieved on only two occa-
sions [11, 19, 38]. State-space models (SSM) provide an 
alternative approach to indirectly estimate these param-
eters by fitting a population dynamics model to observed 
time series data [39, 40]. These models are widely used 
in other fields of ecology and conservation biology to 
investigate the population dynamics of other animals 
[39, 41] and guide management decisions [41]. However, 
these models have so far had limited update in medical 
entomology. Given data on population fluctuations are 
available, these models can infer and estimate plausi-
ble demographic rates that could generate the observed 
dynamics [42].

SSMs are time-series models that distinguish between 
two stochastic components, namely, process (i.e. biologi-
cal), which captures sequential dependencies between 
population components (e.g. eggs, larvae, pupae) and an 
observation component, which captures and corrects for 

separately or in combination. The observed and simulated dynamics also suggests that An. funestus could be playing 
a role in year-round malaria transmission, with any apparent seasonality attributed to other vector species.

Keywords:  Anopheles funestus, State space model, Population dynamic, Seasonality, Abundance, Density 
dependence
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biases and imprecisions in the data-collection process. 
Prior knowledge of the model parameters is used to bol-
ster the information content of the time series data with 
existing expert or laboratory data and uncertainty in esti-
mates. Population projections are then quantified on the 
basis of posterior probability distributions for parameters 
and population states. SSMs have recently been used to 
elucidate the dynamics and impacts of interventions 
on malaria vectors in laboratory and semi field popula-
tions [32, 33], but have not yet been applied to estimate 
An. funestus vector demographics in the wild. Here, an 
innovative SSM application was developed to describe 
the dynamics of wild An. funestus populations in Tan-
zania, and use it to assess extrinsic (environmental) and 
intrinsic (density dependence) drivers of their fitness 
and demography for the first time. Empirical data from 
laboratory experiments on An. funestus colonization 
[19] were incorporated together with the wild popula-
tion data to develop an SSM. Time series field data col-
lected in 2015 [6] and 2018 south-eastern Tanzania, and 
corresponding environmental information were used to 

validate the model. Specific aims were: (1) to accurately 
reconstruct the population dynamics, survival and fecun-
dity of wild An. funestus populations in southern Tanza-
nia, (2) quantify the effects of density dependence on the 
dynamics, and (3) to identify and quantify seasonal varia-
tions in An. funestus demography.

Methods
Time series data on wild An. funestus populations
Indoor densities of female An. funestus s.l. adults were 
recorded over 12  months of entomological surveys 
conducted in three villages (Tulizamoyo, Ikwambi and 
Sululu) in Kilombero (8.1539ºS, 36.6870ºE) and Ulanga 
(8.3124ºS, 36.6879ºE) districts, south-eastern Tanzania 
from June 2018 to May 2019 (Fig. 1). The villages were 
selected because of the high abundance of An. funes-
tus s.l. within which An. funestus s.s. is the dominant 
sibling species (93%) [1]. Annual rainfall was 1200–
1800  mm, and temperature, 20–32  °C. CDC Light 
traps [43] were used to sample host-seeking mosqui-
toes from 6  pm to 6am for 5  days per week, 4  weeks 

Fig. 1  A map depicting the locations of various study villages where mosquito sampling was carried out in 2015–2016 and 2018–2019 (Kindly 
prepared by Najat Kahamba)
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a month for 12  months in 10–15 houses per village. 
The houses were randomly selected and consent 
obtained from household heads, mosquito sampling 
were done repeatedly in these houses. The mosqui-
toes were sorted by taxa and sex, and females further 
classified as unfed, blood-fed or gravid. Daily climatic 
data (rainfall and temperature) were obtained from a 
weather station, approximately ~ 20  km from the far-
thest village.

To complement this, additional data on An. funestus 
were extracted from a 2015 dataset from three other 
villages in Ulanga district (Mavimba, Minepa and 
Kivukoni) (Fig.  1) [6]. These data were collected five 
days per week for a period of 12  months. This data 
allowed us to fit the model simultaneously to multiple 
time series so that it could learn hierarchically from 
An. funestus trajectories enfolding in different years 
and locations. This additional data has previously been 
described elsewhere and used to demonstrate the epi-
demiological dominance of An. funestus, which now 
contributes > 85% of all malaria infections in the region 
[6].

Prior information on life‑history and gonotrophic cycle 
stages
Female An. funestus adults collected from the same three 
villages in 2018 were maintained in insectary conditions 
for one generation to estimate baseline fitness traits 
as already described in Ngowo et  al. [19] and in Fig.  2. 
Data collected from this 1st-generation laboratory prog-
eny included: (a) proportions of eggs that hatched into 
larvae, larvae that transitioned to pupae, and of pupae 
that emerged into adults, (b) the length of the transition 
periods (days) between life stages [(i) eggs to 1st instar 
larvae, (ii) 1st instar larvae to pupae, and (iii) pupae to 
unfed adult female (1 day post emergence)], (c) transition 
period of adult females between three different stages of 
their gonotrophic cycle, i.e. unfed, blood-fed and gravid.

The gonotrophic cycle starts with ‘unfed’ females who 
transition to ‘blood-fed’ after obtaining a blood meal. In 
the wild, the first gonotrophic cycle usually starts after 
unfed females have mated [44]; which is assumed to hap-
pen soon after emergence. In insectary experiments, 
females had access to males immediately on emergence. 
As the blood meal is digested, blood-fed females transi-
tion into the ‘gravid’ state during which eggs develop. 
Gravid females then oviposit their eggs into aquatic 
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Fig. 2  Schematic representation of the state-space population model showing different life stages compartment (circles) and flows (arrows) of 
Anopheles funestus. Abundance data were only available for unfed, blood-fed and gravid stages. The model assumes that once a gravid mosquito 
has laid eggs, they return to the unfed stage. The annotations are described in Table 1. The model incorporates six life stages (eggs, larvae, pupae, 
unfed, bloodfed and gravid) of An. funestus 
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habitats and return to the ‘unfed’ stage with the cycle 
begins again (Fig.  2). In the wild, the rate of transition 
between these gonotrophic stages is governed by both 
intrinsic and extrinsic environmental conditions includ-
ing the availability of blood-meals and oviposition sites 
[45]. In the insectary, the first blood-meal (arm-feeding) 
was offered 5 days post emergence to ensure individuals 
had sufficient time for mating.

Per capita fecundity was defined as the number of eggs 
laid per fully bloodfed adult female. The proportions sur-
viving between life-history stages or gonotrophic stages 
were calculated as the inverse of the number of days 
required to transit from one stage to the next:

Here, m is the life cycle stage, j is proportion survived as 
the percentage of the total from preceding life stage, r is 
the average number of days it took to transit from one 
life stage to another, and  s is the daily survival within the 
stage (Table 1).

Biological process components of the Bayesian SSMs
Daily survival
The daily survival of larval stages was assumed to be the 
same for all instar stages. Adult survival was assumed to 
be the same for unfed, blood-fed and gravid females. Sur-
vival probabilities ( sl , sa, sf , sv ) were linked to their covar-
iates through a logit transformation of linear predictors 
(here, subscripts l, a, f , v  refer to larvae, unfed, blood-fed 

(1)sm = (jm)
1/r

and gravid, respectively). Pupal ( Sp ) and egg ( Se ) sur-
vival probabilities were considered to be independent of 
any climatic and density-dependent covariates, and were 
treated as a binomial distribution, with baseline rates 
assigned priors as described in Eq. 16–17.

A range of covariates hypothesized to be associated 
with the demography of An. funestus were incorporated 
to allow baseline larval and adult survival to vary with 
environmental conditions. Rainfall (current and 1 week-
lagged) and temperature were incorporated into the lar-
val survival model. Rainfall regulates the availability and 
permanence of aquatic habitats, thus influencing both 
survival and carrying capacity of larval habitats [46]. 
Density dependence was incorporated into the model of 
larval survival [25] to assess whether this could improve 
the fit of the adult population dynamics model. Addition-
ally, the speed of larval development was modelled as a 
function of temperature based on its known importance 
[47, 48]. The daily survival of larvae was thus defined as a 
function of daily rainfall (current and lagged), daily tem-
perature and density dependence. The daily survival rates 
(lowercase sl(t) ) of larvae were estimated through a logit 
transformation of linear predictors (uppercase Sl(t)).

Specifically, Sl(t) is written as a function of both intrinsic 
and extrinsic drivers:

(2)sl(t) =
exp(Sl(t))

1+ exp(Sl(t))

Table 1  Priors as used in the state-space population models of Anopheles funestus and the estimated posteriors mean and 95% 
credible intervals

Refers to an interaction between 1-week cumulative rainfall and density dependency

Parameter Prior distribution Posterior distribution

Notation Description Type Source Mean 95-percentiles Mean 95-percentiles

se Eggs daily survival rate Beta This study 0.794 [0.619, 1] 0.789 [0.776, 0.804]

� Eggs development period Beta This study 0.5 [0.4, 0.6] 0.499 [0.485, 0.514]

β0 Baseline larval daily survival Beta This study 0.923 [0.801, 1] 0.950 [0.943, 0.956]

C0 Baseline larval development period Beta This study 0.063 [0.055, 0.071] 0.063 [0.062, 0.064]

sp Pupae daily survival rate Beta This study 0.941 [0.874, 1] 0.944 [0.930, 0.950]

pr Pupae development period Beta This study 0.522 [0.253, 0.792] 0.525 [0.506, 0.546]

ϕ0 Baseline unfed daily survival Beta This study 0.935 [0.877, 0.992] 0.937 [0.933, 0.941]

ar Unfed development period Beta This study 0.20 [0.19, 0.21] 0.200 [0.198, 0.201]

θ0 Baseline blood-fed daily survival Beta This study 0.807 [0.654, 0.961] 0.810 [0.799, 0.820]

fr Blood-fed daily transition rate Beta This study 0.25 [0.05, 045] 0.269 [0.256, 0.280]

α0 Baseline gravid daily survival Beta This study 0.904 [0.848, 0.961] 0.903 [0.899, 0.907]

vr Gravid daily transition rate Beta This study 0.333 [0.133, 0.533] 0.311 [0.297, 0.324]

b0 No. eggs/female (Per capita fecundity) Beta This study 80 [60, 100] 78 [74, 80]

ξ Coefficient of variability Beta Uninformative prior 0.5 [0.1, 0.9] 0.79 [0.810, 0.825]

ωη=f Coefficient of “Trap biasness” for the blood-fed Beta Msugupakyula et al. 
[58] and Kaindoa et al. 
[6]

0.1 [0.05, 0.15] 0.122 [0.117, 0.127]

ωη=v Coefficient of “Trap biasness” for the gravid 0.505*ωf [0.025,0.076] 0.062 [0.059, 0.064]
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Here, β0 is the baseline daily larval survival on the lin-
ear scale. A survival probability prior was assigned under 
zero rainfall and average temperature (i.e. 27 °C) and then 
calculated the intercept of β0 to reflect this prior informa-
tion. When there is no effect of any environmental covar-
iates (prior takes values between 0.80 and 1, Table 1). The 
coefficient β1 quantifies the effect of current rainfall (R)
; with the envisioned scenario being that higher R (i.e. 
flooding) tends to wash away larvae hence reducing the 
baseline survival [49]. This β1 was defined by an informa-
tive gamma prior with shape = 5.382 and rate of 46.4 
(Table 2) which permits anything from no rain effects to 
100% mortality. The coefficient β2 quantifies the effect of 
larval density at time t on larval survival. A monotonic 
negative relationship was assumed based on the biolog-
ically-plausible hypothesis that larval survival is reduced 
at high larval density because of resource competition 
and intraspecific cannibalism [29, 50]. This coefficient β2 

(3)

Sl(t) =β0 − β1R(t−1) − β2D(t−1)

(

1−
β3Q(t−1)

max(Q)

)

+ β4T(t−1) − β5T
2
(t−1) + εl,t

(4)εl ∼ Normal
(

0, σl,t
)

was defined by an uninformative gamma prior with shape 
of 0.5 and rate of 1 (Table 2), which allows the impact of 
density to range from no effect to complete annihilation.

The term inside brackets in Eq.  (3) represents the fact 
that density dependence needs to be modulated by the 
availability of larval habitat. The availability of suitable 
aquatic habitats for oviposition will increase with rain-
fall; thus potentially reducing the crowding of larvae into 
the remaining habitats that persist during the dry sea-
son. This hypothesis has been supported for An. gambiae 
s.l., where their seasonal population dynamics can be 
explained by models incorporating a rainfall-dependent 
carrying capacity [25]. Here, the coefficient β3 was a pro-
portion that captures the potential interaction between 
larval habitat availability (defined as the cumulative 
rainfall (Q) over the past week) and larval density ( D ). 
When rain in the recent week has been the maximum 
observed (i.e.Q = max(Q)) , then ( 1− β3Q(t−1)

max(Q)
 ) would be 

the smallest amount of density dependency experienced 
by An. funestus. The prior distribution for β3 was defined 
by an upward-biased beta prior with mean 0.9 and vari-
ance of 0.01 allowing β3 to have positive impact on larvae 
survival.

Additional covariates were incorporated to assess the 
role of temperature on larval survival (via the coefficients 

Table 2  Priors for the intrinsic and extrinsic drivers of the population dynamic as used in the state-space model of Anopheles funestus 
and the estimated posteriors mean and 95% credible intervals

Parameter Prior distribution Posterior distribution

Notation Description Type Source Mean sd Mean 95-percentiles

β1 Linear coefficient for rainfall on larvae survival Gamma Uninformative prior 0.1 0.05 0.01681 [0.00604, 0.0308]

β2 Density dependent coefficient for larvae on 
larvae survival

Gamma Uninformative prior 0.5 0.7 1.0283e−4 [1.0e−4, 1.1205e−4]

β3 Coefficient of interaction between larvae and 
rainfall on larvae survival

Gamma Uninformative prior 0.9 0.1 0.9601 [0.80810, 0.99999]

β4 Linear coefficient for temperature on larvae 
survival

Gamma Uninformative prior 1 0.316 0.487 [0.203, 0.806]

β5 Quadratic coefficient for temperature on larvae 
survival

A function of β4 β5 =
β4
2∗ρ

− 0.00902 [− 0.01492, − 0.00376]

C1 Linear coefficient for temperature on larvae 
development period

Gamma Uninformative prior 0.001 0.001 5.362e−4 [2.51e−8, 2.311e−3]

ϕ1 Linear coefficient for temperature on unfed, 
survival

Gamma Uninformative prior 1 0.316 0.074 [0.068, 0.081]

ϕ2 Quadratic coefficient for temperature on unfed 
survival

Gamma A function of ϕ1 ϕ2 =
ϕ1
2∗ρ

− 1.378e−3 [− 1.50e−3, − 1.26e-3]

θ1 Linear coefficient for temperature on bloodfed 
survival

Gamma Uninformative prior 1 0.316 0.074 [0.068, 0.081]

θ2 Quadratic coefficient for temperature on blood-
fed survival

Gamma A function of θ1 θ2 =
θ1
2∗ρ

− 1.378e−3 [− 1.50e−3, − 1.26e-3]

α1 Linear coefficient for temperature on gravid 
survival

Gamma Uninformative prior 1 0.316 0.074 [0.068, 0.081]

α2 Quadratic coefficient for temperature on gravid 
survival

Gamma A function of α1 α2 =
α1
2∗ρ

− 1.378e−3 [− 1.50e−3, − 1.26e−3]
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β4,β5 ). The parameter β4 captures the potentially positive 
effects of temperature on daily larval survival, which were 
defined by an uninformative gamma prior with mean of 1 
and variance of 0.1 considering 27 °C as the optimal tem-
perature ( ρ) for maximum survival [51]. This prior allows 
temperature to vary from having no impact, to high posi-
tive impact on larval survival. Alternatively, the relationship 
between larval survival and temperature may be character-
ized by survival being reduced at low or very high tempera-
ture, and peaking in the middle [52]. The coefficient β5 was 
incorporated to capture this potential curvilinear relation-
ship but was dependent on β4 , to ensure that the optimum 
temperature was fixed at 27 °C, ( β5 = β4

2ρ
) . The prior of β4 

allowed extreme temperatures values away from the opti-
mum to range from having no effect to generating 100% 
mortality. The parameter εl is capturing the unexplained 
stochasticity associated with larval survival. This error 
term was defined by a normal prior with mean of 0 and a 
precision σl from a gamma distribution with both shape 
and rate of 10.

The linear predictors for survival of unfed, blood-fed, 
gravid (uppercase Sa(t), Sf (t), Sv(t) ) and daily probabilities 
of survival (lowercase sa(t), sf (t), sv(t) ) were structured 
similarly to Eq. 3. The daily survival probabilities of adult 
stages were thus defined as the functions of daily tempera-
ture; such that an increase in temperature would result in 
an increase in the survival of all three adults stages and 
reduction in survival when temperature become lethal [22, 
53]. The biological relationship between adult survival and 
temperature was assumed to be curvilinear [22, 53, 54].

Here, ϕ0, θ0, and α0 refer to the baseline survival of unfed, 
blood-fed and gravid females respectively on a linear 
scale, under fixed temperature conditions of 27 ± 2  °C 
(insectary standard under which An. funestus have maxi-
mum survival [52, 54]), and assumes no blood meal limi-
tation. The positive impact of temperature on all three life 
stages was represented by the coefficients ϕ1, θ1 and α1 
with an uninformative gamma prior with mean 12.5 and 
variance of 6.25. The coefficients ϕ2, θ2 and α2 correspond 
to the curvilinear effect of temperature on the survival of 
all three adult stages with their priors derived from the 
ratio between the linear coefficient and twice optimum 
temperature. This formulation ensured that the optimum 

(5)Sa(t) = ϕ0 + ϕ1T(t−1) − ϕ2T
2
(t−1) + εa,t

(6)Sf (t) = θ0 + θ1T(t−1) − θ2T
2
(t−1) + εf ,t

(7)Sv(t) = α0 + α1T(t−1) − α2T
2
(t−1) + εv,t

(8)ε∗t ∼ Normal
(

0, σ ∗
t

)

temperature is fixed at (27  °C). The parameters εa, εf , εv 
capture unexplained variation associated with survival 
during the distinct gonotrophic stages. These error terms 
( ε∗) were defined by normal priors with mean of 0 and a 
precision σ ∗ from a gamma distribution with both shape 
and rate of 10 for unfed, blood-fed and gravid females.

Development between stages
The daily development probability from one life stage to 
the next was defined as the reciprocal of the develop-
ment time (days) between the stages (assuming that all 
development times take longer than a day). An increase 
in temperature was assumed to reduce the development 
period of larvae [47, 53, 55, 56].

Specifically, L(t) is written as the function of temperature 
covariates:

Here C0 corresponds to the baseline daily development 
period on a linear scale defined by an informative beta 
prior with range defined in Eq. 16–17 (Table 1). The coef-
ficient C1 explains the positive effect of temperature on 
larval development period, with its prior values derived 
from an uninformative gamma prior with mean 0.001 
and standard deviation 0.001.

The development time for other life history stages (eggs 
and pupae) and the time between gonotrophic stages 
were assumed to be independent of temperature and 
other environmental covariates. The numbers of individ-
uals ( Km ) graduating from one stage to the next each day 
were modelled as a binomial process Eq. 11.

Here the rate rm is a development probability as defined 
in Eq.  11 for m stage, with assigned informative prior 
values as described through a generic prior in Eq. 16–17 
(Table 1). Parameter Wm−1(t) refers to the number sur-
viving the preceding life stage.

Fecundity
The number of eggs laid at each time step was drawn 
from a Poisson distribution whose rate was the product 
of per-capita fecundity (number of eggs laid by blood-fed 
An. funestus under insectary conditions ( b0 ), a penalized 
rate for the egg survival ( se) , the number of gravid mos-
quitoes ( V(t−1)) and ratio of females-males (assumed to 
be 0.5) as assessed at the pupae stage [19].

(9)l(t) =
exp(L(t))

1+ exp(L(t))

(10)L(t) = C0 + C1T(t−1)

(11)Km(t) ∼ Binomial(rm,Wm−1(t)

(12)bt = exp(b0 + εb,t)
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The error term εb was defined by normal prior with mean 
of 0 and a precision from a gamma distribution with both 
shape and rate of 10.

Observation‑derived components of the Bayesian SSMs
Observations of the abundance of adults (unfed, bloodfed, 
gravid) A at time t were modelled as a normal distribution 
with varying daily means a determined by the biological 
model and a precision τ representing observation error. A 
fixed coefficient of variation ( ξ) for the daily observation 
process was assumed and assigned an uninformative prior 
with values between 0.1 and 0.9 (Table 1). The CDC light 
trap typically samples mosquitoes from populations of 
unknown size, for which the daily catch rates are difficult to 
quantify independently. A parameter ϑ was therefore incor-
porated both into the precision τ and daily varying means 
to account for an observed weekly periodicity in adult 
abundance, which was otherwise hard to interpret. This 
parameter was allowed to vary both by day of the week j 
and between the two populations k (2015 and 2018–19 
datasets). The ϑ values were derived from a logit function 
exp(ρ)/(1+ exp(ρ)) , with ρ defined from the uninforma-
tive normal prior with mean and standard deviation of 0 
and 10 respectively. Therefore precision τ can be written as 

1

(ξt atϑjk )
2 for all the adult stages. Thereafter, the observation 

abundance was estimated as follows:

Trap bias
The trapping method (CDC Light traps) primarily tar-
gets unfed host-seeking mosquitoes [57]. Blood fed and 
gravid mosquitoes are assumed to no longer host-seek, 
and represent a small proportion 0.5–3% of total col-
lections of females caught [6, 22]). To account for these 
biases in sampling, a new parameter of “trap-biasness”ω 
was added in the observation model for both precision τ 
and varying daily means aη . The prior values for ω  were 
estimated from independent studies from the same loca-
tions [6, 58], and ranged from 0.05–0.15 (Table 1), with 
variations between the two life stages η . Therefore, the 
observation model for blood-fed and gravid ( Aη) was 
rewritten by modifying Eq. 14 as follows

(13)B(t) ∼ Poisson
(

0.5btseV(t−1)

)

(14)A(t) ∼ Normal

(

atϑjk ,
1

(ξtatϑjk)
2

)

(15)Aη(t) ∼ Normal

(

aηtϑjkωη,
1

(ξtaηtϑjkωη)
2

)

Prior distributions
Since this model contains a large number of parameters, 
use of un-scaled informative priors restricted model con-
vergence and mixing. A rescaled beta distributions of 
the informative priors [59] was opted and calibrated as 
follows:

where Y  is a dummy variable that takes values in the 
interval [0, 1] with mean of 0.5 and standard deviation 
of 0.15, selected to provide low likelihood at the values 
0 and 1. The values of Xmin and Xmax define the range of 
the parameter of interest as dictated by the prior infor-
mation. Since the information on priors was provided in 
form of mean ( µ ) and standard deviation ( σ ), the values 
were defined as Xmin,Xmax = µ± 2σ . Survival, develop-
ment period, trap-biasness, variability in daily catches 
and fecundity parameters were all assigned priors accord-
ing to Eq. 17.

Model selection, model fitting and outputs
Model fitting was done using the R statistical software 
version 4.0.5 [60]. Population models were fitted using 
a Markov Chain and Monte Carlo sampling (MCMC) 
algorithm via the JAGS software [61] interfaced to R via 
the runjags package [62] (code provided in the Addi-
tional file 1: Fig. S1). To achieve convergence, the model 
with 6 chains was run in parallel for 105 samples with a 
burn-in of 105 , keeping every 10th iteration for mem-
ory-saving reasons. Convergence was assessed by visual 
investigation of the trace plots, prior-posterior distribu-
tion using the coda package [63], effective sample sizes 
and the Gelman Rubin diagnostic [64]. Model compari-
sons were done using the deviance information criterion 
(DIC) [65], and the ones with the lowest DIC selected as 
the most preferred. The predicted and observed densi-
ties of An. funestus adult females were plotted to evalu-
ate consistent prediction biases visually (Additional file 1: 
Fig. S2). Posterior means and 95% credible intervals for 
the key survival parameters, development period, density 
dependence, environmental covariates (temperature and 
rainfall) and fecundity were also reported to reveal differ-
ent dynamical aspects of the system.

Results
Population trajectories and seasonal trends
Bayesian state-space model was used to describe the 
dynamics of wild populations of An. funestus. The full 
results, including summaries of posterior means for all 
the fitness and demographic parameters are reported in 
Table 1. The most parsimonious model (model-7, Table 3) 

(16)Y = Beta(5, 5)

(17)X = Xmin + Y (Xmax − Xmin)
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included density dependence, and temperature and rain-
fall (current and lagged) impacts on larval survival, and 
the effect of temperature on larval development period. 
The only covariate that was not retained in the “model-
7” was temperature impacts on adult survival. This model 
satisfactorily reconstructed the population dynamics of 
An. funestus in the study villages, with all environmental 
covariate relaxation applied based on DIC selection. Pop-
ulation trajectories were estimated for all six An. funestus 
life history and gonotrophic stages after accounting for 
potential impacts of environmental covariates and den-
sity dependence (Fig. 3).

These trajectories reflect the annual trend in abun-
dance spanning in periods from low or no rainfall to high 
rainfall. All trajectories show a relatively high abundance 
of An. funestus right after the rainy season, followed by 
reduced but sustained abundance during the dry period 
for all the life stages. After accounting for observa-
tion biases during sampling, the observed abundance of 
unfed, gravid and blood-fed groups largely falls within 
the credible intervals of the predicted values (Fig. 4).

Survival and fecundity
Estimated An. funestus larval survival trajectories dem-
onstrate substantial mean variability during the two sea-
sons, with no clear pattern of seasonality (Fig. 5a and b), 
Table  1). Similarly, the survival trajectories of the adult 
stages (all gonotrophic states) were variable through-
out the year, with daily survival rate ranging from 0.2 to 
1.0 and not consistently differing between wet and dry 
seasons (Fig.  5c to h, Table  1). Per capita fecundity was 
estimated to be between 75 and 81 eggs per female An. 

funestus (Table  1). While the abundance of this species 
fluctuated seasonally, per capita fecundity remained con-
sistent throughout the year (Fig. 5k and l).

Temperature was an important predictor of larval 
survival with a curvilinear relationship (ΔDIC = 138, 
Table  3, Fig.  6b), and that temperature has a positive 
monotonic relationship with larval development period 
(ΔDIC = 336, Table  3, Fig.  6a); with the larval develop-
ment period estimated to last about 16 days on average. 
Additionally, daily rainfall was an important driver for 
the dynamics of An. funestus by reducing larval survival 
(ΔDIC = 5605, Table  3, Fig.  6c) with a negative mono-
tonic relationship.

Effects of density dependence
Density dependence was the only intrinsic feature incor-
porated in this dynamic model of An. funestus. The 
model was able to converge efficiently without crashing 
when density dependency was removed, suggesting this 
process plays a detectable but relatively minor role popu-
lation regulation when compared with extrinsic factors 
(ΔDIC = 222, Table  3, Fig.  6e). To verify this, a simula-
tion was run and discovered that the estimated density 
dependence was actually quite low, even when simulat-
ing with a single dataset. The model fitting process also 
suggested the interaction parameter ( β3) between larvae 
density (D) and one week cumulative rainfall (Q) contrib-
utes to An. funestus dynamics by positively increasing 
larval survival (ΔDIC = 38, Table 3, Fig. 6d).

Table 3  Model selection: Description of all models fitted with and without environmental covariates and their corresponding delta-
Deviance Information Criterion ΔDIC

Model 8–12 consists of model-7 minus one more environmental covariate. Model 4 involved the removal of the interaction term
a The best model (lowest DIC/Penalized Deviance) value-model-7 followed by model-10, * Interaction between 1 week cumulative rainfall and density dependency

Model Removed covariate(s) Fitness measure Penalized deviance 
(pD)/DIC

ΔpD/DIC

Model 1-Full None 35,500 25,339

Model 2 Temperature Larval survival 10,555 394

Model 3 Rainfall Larval survival 10,277 116

Model 4 1 week cumulative rainfall*density dependency Larval survival 11,886 1725

Model 5 Density dependency Larval survival 11,011 850

Model 6 Temperature Larval development period 10,873 712

Model 7a Temperature Adult survival 10,161 0

Model 8 Model 7—temperature Larval survival 10,299 138

Model 9 Model 7—rainfall Larval survival 15,766 5605

Model 10 Model 7—1 week rainfall:density dependency Larval survival 10,199 38

Model 11 Model 7—density dependency Larval survival 10,383 222

Model 12 Model 7—Temperature Larval development 10,497 336
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Discussion
Advanced methods used in mainstream ecological stud-
ies was adapted and fitted a state-space model (SSM) to 

field and laboratory data to accurately reconstruct popu-
lation dynamics of wild population of An. funestus. The 
SSM inferred the trajectories of multiple life-cycle and 
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gonotrophic stages of wild An. funestus females. This 
allows the reconstruction of the observed trajectories of 
larvae and adult females for the wild An. funestus in Tan-
zania for the first time. This analysis indicated that the 
dynamics of An. funestus were best explained in a model 
that included density dependency, temperature (cur-
vilinear relationship) and rainfall (negative monotonic 
relationship) on larval survival, and temperature on the 
larval development period (positive monotonic relation-
ship). In contrast, model fit was not improved by incor-
porating temperature dependency into adult survival (all 
gonotrophic stages). Anopheles funestus abundance vary 

seasonally between wet and dry but demographics rates 
(i.e. survivals, fecundity and development period) did 
not vary after accounting for the impact of environmen-
tal covariates and density dependence. These results are 
very useful for generating hypotheses about the nature 
and relative magnitude of drivers of An. funestus popula-
tion dynamics in the wild. This model can be extended 
to include a component on malaria dynamics in humans; 
or to compare the efficacy and effectiveness of differ-
ent interventions in combination or singly. This would 
allow more sophisticated evaluation of suitability of An. 
funestus-specific interventions; including prediction of 
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the potential combined effect of strategies that acting at 
different life-cycle stages and/or target different demo-
graphic processes (e.g. survival versus fecundity).

Extrinsic covariates such as rainfall and temperature 
were all hypothesised to be the main drivers for the 
dynamics of this vector species. This study supports 
the hypothesis that rainfall is a significant driver of 
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the population dynamics of wild An. funestus. Overall, 
the abundance of all life stages were relatively higher 
in rainy compared to dry periods of the year as previ-
ously documented [22, 66–68]. Rainfall covariates were 
directly included in the larval survival model since it 
is the only stage on which rainfall was hypothesized to 
have a significant impact. Daily larval survival as esti-
mated by the SSM showed high variability both within 
seasons and across the year. There was support for a 
monotonic association between rainfall and larval sur-
vival; characterized as reduction in larval survival dur-
ing periods of heavy rainfall [69]. Time lags have been 

used to assess rainfall impacts on the dynamics of these 
vectors [22]. Anopheles funestus abundance have been 
shown to be positively associated with the cumula-
tive lag rainfall [22]. Here one week cumulative rainfall 
was included in the model to account for its effect on 
survival. Similar to other vectors of malaria transmis-
sion such as An. gambiae, rainfall have always been 
considered as the main factor regulating the dynamics, 
despite ecological differences between the two vector 
species [22, 46, 70, 71].

The SSM also provided support for the hypothesis 
that temperature is an important driver of An. funestus 
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dynamics; although the nature of temperature effects 
was complex and variable between life history stages. For 
example, temperature was associated with both larval 
survival and development, but not adult survival or fit-
ness. Furthermore the estimated impacts of temperature 
on larval ecology were complex; with the SSM suggest-
ing a curvilinear relationship with survival but a positive 
monotonic impact with the larval development period. 
These findings validate the prior studies that demon-
strated that temperature had a curvilinear influence 
on Anopheles larval survival, with a rise in temperature 
above/below the optimum lowering survival [47, 48, 72]. 
The larval period of An. gambiae is temperature depend-
ent [55, 72]; thus this model incorporated a positive 
monotonic effect such that development is fastest when 
temperature is high and just below maximum thresh-
old for larval development [72, 73]. In the final model 
the effect of temperature on gonotrophic stages was not 
found to be an important driver for the dynamic of this 
species thus left out during model selection process.

Little is known about the effect of density dependence 
on An. funestus due to its ecology and reliance on the 
large semi-permanent and permanent breeding habitats 
[20, 21]. However, density dependence is already well-
known to be an important driver for dynamic of other 
malaria vectors like An. gambiae [25, 27–29, 31, 67, 74] 
and other non-malaria vectors like Aedes aegypti [75, 76]. 
Variations in densities during the aquatic stages of An. 
gambiae s.l. have been found to affect adult fitness [28, 
77]. The SSM fit better when density dependence of lar-
val survival was included, though the relative magnitude 
of this process was quite small and likely to have minor 
impact on the overall dynamics of An. funestus popula-
tions (Fig.  6e). These findings suggest that An. funestus 
populations are likely to be regulated more by extrinsic 
than intrinsic processes. These findings corroborate the 
original hypotheses about density dependence having 
a weaker regulatory role in this species on the basis of 
the types of larval habitats (i.e. larger and more perma-
nent habitat [20, 78]), which can likely sustain higher 
resources and thus reduce competition than in An. gam-
biae. This is the first report documenting the role of 
density dependence on the dynamics of the wild popu-
lations of An. funestus. Now that colonies are becoming 
more feasible, more thorough investigation on the role 
of density dependence in the dynamic of An. funestus is 
prerequisite.

In addition to highlighting potential drivers of An. 
funestus populations, the SSM here generated plausible 
estimates of key demographic and life-history process in 
the wild. This model estimated that An. funestus larvae 

takes an average of 15.6–16.1  days to grow from first 
instar larvae to pupae; which is relatively long compared 
to the other major vectors in the An. gambiae complex 
(9–11 days [48, 55]). This apparently longer development 
period of An. funestus may be a product of their adapta-
tion to more permanent, year-round breeding habitats 
that are unlikely to dry up; thus reducing selection for 
rapid development. The SSM estimated that the daily 
survival of wild An. funestus larvae could be as high as 
0.95, compared to the 0.83 [0.80, 0.86] mean daily sur-
vival rate of the known vector of malaria transmission 
An. gambiae [48, 79]. This matches observations from 
insectary experiments in which An. funestus larvae have 
higher survival than An. gambiae [19, 38, 80]. Given the 
apparently higher rates of survival in An. funestus than 
in An. gambiae, these findings suggest that more lethal 
intervention may be required to control An. funestus 
both at larvae and adults stages.

The impact of any vector control largely depends on the 
ecology of the specific vector species. Differences in ecol-
ogy between An. gambiae and An. funestus are likely to 
affect the relative impact of interventions. For instance, 
An. gambiae prefer breeding in small and temporary hab-
itats which dry up quickly when there is no rainfall which 
is opposite to An. funestus habitats. Despite the fact 
that An. funestus habitats are "few, fixed, and findable" 
and might be easily targeted for larviciding [20] during 
the dry season, treating habitats such as rivers or bigger 
ponds could pose logistical challenges. The persistence of 
An. funestus throughout the year even during the driest 
periods suggest this vector is less seasonal compared to 
An. gambiae s.l., which experience much more dramatic 
“boom and bust” dynamics in relation to seasonal rains 
[6, 22, 68]. If interpreted together with the observation 
that survival estimates were not seasonal, the model sug-
gests that this species is likely responsible for year-round 
malaria transmission throughout the year, while other 
species, which mostly occupy temporary habitats may be 
responsible for any apparent seasonality in transmission.

Models of vector population dynamics can provide a 
useful guide for the selection of optimal vector control 
strategies; particular through enabling more focal investi-
gation of the benefits of seasonal or spatial targeting and 
use of combined versus single interventions. Despite its 
complexity, this population dynamics model provides a 
useful framework for investigation of the stability of An. 
funestus populations. With additional data, this model 
can be further refined to include additional modifica-
tions related to vector ecology and behaviour that may 
impact intervention (e.g. host choice and its impacts on 
fitness, predation during larval or adult phase and spatial 
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components). Such further elucidation may increase the 
predictive accuracy of this SSM in specific contexts, but 
even the more general framework developed here have 
flexibility to introduce stage-specific mortality effects 
expected from different types of vector control [16, 32, 
33]. For example, this framework could be used to model 
the impact of combined interventions including those 
that target adult females (insecticide-treated nets (ITNs), 
IRS) and larviciding; and assessment of how mortality 
varies with different coverage [16, 32]. It can also be used 
to investigate the possible response of vector popula-
tion to climate change anticipated in Tanzania and other 
African countries. An important limitation of this study 
is lack of knowledge on what percentage of An. funestus 
mosquito population is sampled by the trap, which is 
important for understanding the relative magnitude of 
demographic stochasticity in modelled dynamics. This 
highlights the need to explicitly incorporate this source 
of uncertainty into vector and transmission dynamics; 
including the need for further calibration and standard-
ization of the efficiency and biases associated with par-
ticular mosquito trapping methods.

Conclusions
This study used Bayesian State Space Models (SSM) param-
eterized with empirical data to quantify key demographic 
and fitness processes underpinning the population dynam-
ics of An. funestus in Tanzania. This is the first use of SSM 
to understand the population dynamic of the wild vector 
of residual malaria transmission, An. funestus in Tanzania. 
The model structure allowed investigation of the relative 
importance of seasonally-varying environmental covariates 
(i.e. rainfall and temperature) and density dependence; pro-
viding some support for both processes although the mag-
nitude of the former was much greater than the latter. The 
ability of this model to accurately reconstruct the seasonal 
dynamics and demography of An. funestus indicate its value 
for simulating the response of these populations to vectors 
control measures applied either individually or in combina-
tion. Additionally, the relatively limited evidence of seasonal-
ity in key fitness and demographic rates further corroborate 
evidence that this vector species can facilitate efficient year-
round transmission of malaria. Finally, this model also high-
lights the clear importance of accounting for regional and 
daily observation biases when modelling mosquito popula-
tion dynamics.
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Additional file 1: Figure S1. SSMs model development R codes. Figure 
S2. Goodness-of-fit: Observed versus predicted unfed, bloodfed and 

gravid densities across all populations. Adjusted R-squared, intercept and 
slope values are from a linear model of the predicted against observed 
values. Dotted lines correspond to 1:1 line. Left column (a,c,d) is data 
collected from June 2018 to May 2019 and right column (b,d,e) is data 
from Jan-Dec 2015. Grey area is the period with rainfall. Figure S3.1. Prior 
(orange histogram) and posterior (blue histogram) distribution of the 
main baseline and observational parameters in the state-space model. 
Figure S3.2. Prior (orange histogram) and posterior (blue histogram) 
distribution of the main environmental covariates parameters in the state-
space model.
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