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Abstract 

Background:  Mathematical models provide an understanding of the dynamics of a Plasmodium falciparum blood-
stage infection (within-host models), and can predict the impact of control strategies that affect the blood-stage 
of malaria. However, the dynamics of P. falciparum blood-stage infections are highly variable between individuals. 
Within-host models use different techniques to capture this inter-individual variation. This struggle may be unneces-
sary because patients can be clustered according to similar key within-host dynamics. This study aimed to identify 
clusters of patients with similar parasitaemia profiles so that future mathematical models can include an improved 
understanding of within-host variation.

Methods:  Patients’ parasitaemia data were analyzed to identify (i) clusters of patients (from 35 patients) that have 
a similar overall parasitaemia profile and (ii) clusters of patients (from 100 patients) that have a similar first wave of 
parasitaemia. For each cluster analysis, patients were clustered based on key features which previous models used to 
summarize parasitaemia dynamics. The clustering analyses were performed using a finite mixture model. The centroid 
values of the clusters were used to parameterize two established within-host models to generate parasitaemia pro-
files. These profiles (that used the novel centroid parameterization) were compared with profiles that used individual-
specific parameterization (as in the original models), as well as profiles that ignored individual variation (using overall 
means for parameterization).

Results:  To capture the variation of within-host dynamics, when studying the overall parasitaemia profile, two clus-
ters efficiently grouped patients based on their infection length and the height of the first parasitaemia peak. When 
studying the first wave of parasitaemia, five clusters efficiently grouped patients based on the height of the peak and 
the speed of the clearance following the peak of parasitaemia. The clusters were based on features that summarize 
the strength of patient innate and adaptive immune responses. Parameterizing previous within host-models based on 
cluster centroid values accurately predict individual patient parasitaemia profiles.

Conclusion:  This study confirms that patients have personalized immune responses, which explains the variation 
of parasitaemia dynamics. Clustering can guide the optimal inclusion of within-host variation in future studies, and 
inform the design and parameterization of population-based models.
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Background
Malaria continues to be a global health priority. In 2020, 
the World Health Organization (WHO) estimated that 
malaria caused 241 million cases and 627,000 deaths 
worldwide [1]. Plasmodium falciparum was responsible 
for the majority of the morbidity and mortality associ-
ated with malaria [1]. Most cases and deaths occurred in 
the African region, and mainly affected children under 
5 years old who had not yet developed an efficient adap-
tive immune response [1].

The P. falciparum life cycle involves several stages 
in two different hosts: within the insect vector (female 
Anopheles mosquito) and within the human host, includ-
ing a liver-stage and blood-stage cycle [2, 3]. The dynam-
ics of the blood-stage have a great influence on the 
epidemiology of malaria. For the individual, the morbid-
ity and mortality of patients depend on the parasite den-
sity during the blood-stage [2–6]. For the population, the 
blood-stage dynamics influence the time that patients are 
infectious and their infectiousness to mosquitoes, which 
determine the transmission of malaria [2, 3, 7, 8].

The most detailed data of blood-stage dynamics of P. 
falciparum is from the malariatherapy studies [9]. The 
studies were conducted by the National Institutes of 
Health laboratories in the USA when malariatherapy was 
used to treat neurosyphilis (1931–1963) [9]. All patients 
were Afro-American adults suffering from neurosyphilis 
and had no previous exposure to malaria [9]. The dataset 
contains daily measurements of the P. falciparum den-
sity for 334 patients from the infection day until the day 
that they recovered, due to treatment or spontaneously 
[9]. This dataset highlighted the extreme inter-patient 
variability of parasitaemia density profiles during the 
blood-stage, for example, the natural infection lengths 
of patients varied between 37 and 405  days [9]. These 
variations are due to the complex interactions between 
the host and the parasite, variations among individual 
immune responses, and between parasite strains [10–20].

Many within-host mathematical models have investi-
gated blood-stage dynamics of P. falciparum, and repro-
duced the parasitaemia dynamics of malariatherapy 
patients by considering the variations of host immune 
responses and parasite strains [21–28]. However, because 
of the extreme variation between individuals, predicting a 
parasitaemia profile for a specific patient generally relied 
on model parameters that were case-specific or stochas-
tically chosen from assumed distributions. Furthermore, 
models were often calibrated to patient parasitaemia pro-
files using summary statistics which ignored individual 
variation across these statistics [21–28]. Consequently, 
some of these models cannot be used to predict patient 
a specific parasitaemia profile without knowing the para-
sitaemia profile of the patient beforehand. Moreover, a 

recent review and analysis highlighted that the outcomes 
of within-host models are likely not robust, as a slight 
variation of parameter value created totally different pre-
dictions [29]. This review suggested that the efficiency 
of within-host models to capture variation in infection 
dynamics depends more on the selection of the best-fit-
ting simulations than the value of the parameters [29].

Including patient variation of within-host dynamics in 
transmission models for malaria, at the population level, 
is also challenging. Compartmental models, such as [30, 
31], assume that all hosts have homogenous within-host 
dynamics. Therefore, their use is limited when estimat-
ing the effect of control strategies that directly impact 
the asexual stage. In contrast, individual-based mod-
els (IBMs) include individual variability of blood-stage 
dynamics [32]. This can make them computationally dif-
ficult to simulate [32], and they require many parameters, 
so fitting to data is complex [33, 34].

This paper aimed to find the balance between assum-
ing a homogeneous population and modelling each indi-
vidual specifically. Attributes that capture the essential 
information of the parasitaemia profile for an individual 
were selected. Clustering based on these attributes pro-
vided centroid values, so that most of the individual vari-
ation could be accounted with few additional parameters.

First, clusters of patients with similar full parasitaemia 
dynamics were identified. From the malariatherapy stud-
ies described above [9], only 35 patients had a complete 
parasitaemia profile. Thus a second cluster analysis was 
performed to identify patients with a similar first wave of 
parasitaemia. For this analysis, the sample size increased 
to 100 individuals and thus accounted for more individ-
ual variation. Then, the ability of the clusters to capture 
the variability of within-host dynamics was evaluated 
using within-host models [21, 22]. Two within-host mod-
els were used: one that predicted the parasitaemia density 
for a patient throughout an untreated infection (Molin-
eaux et al. [21]), and one that predicted the first wave in 
the parasitaemia density (Dietz et al. [22]). Parasitaemia 
profiles were predicted using case-specific parameters (as 
in the original papers), using cluster-specific parameters, 
and lastly, using parameters derived from the means of 
the whole dataset. These predictions were compared to 
assess the ability of the clusters to capture the variability 
of within-host dynamics.

Moreover, the distribution of non-parasitaemia attrib-
utes, such as the sex of the patient and the strains used 
for the infection, were compared across the clusters. 
Identifying clusters of patients with similar parasitae-
mia dynamics will improve the inclusion of patient 
within-host variation in future within-host and popu-
lation-based models whilst remaining computationally 
inexpensive.
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Methods
In this section, the methods for both datasets and 
clustering analysis are provided separately. The first 
section describes the data, the potential attributes 
which could be used to cluster the data, and the clus-
tering method. Then, the second section describes 
the method to evaluate the clusters ability to capture 
patients variability using within-host models [21, 22]. 
The last section describes the method used to investi-
gate how non-parasitaemia attributes, such as the sex 
of the patient and the strains used for the infection, 
correlate with the clusters.

Clustering the full parasitaemia profile
Data
Data from patients that had a complete natural parasi-
taemia dynamic profile, not affected by curative treat-
ment, were used to identify clusters of patients with 
a similar natural parasitaemia dynamic [21]. In the 
malariatherapy dataset, 35 patients fulfilled these cri-
teria. In this subset, 16 patients received a low-dose 
treatment (quinine, chloroguanide, or chloroquine). 
However, these patients were included in the analysis 
because the treatment had only a limited and short 
effect on the parasitaemia dynamic [21]. Patients were 
infected either by inoculation of infected blood (18 
cases) or by mosquito bites (17 cases). Patients were 
inoculated with different strains of P. falciparum: 17 
with El Limon, 17 with Sante Cooper, and 1 with the 
McLendon strain [21]. Parasitaemia levels were meas-
ured daily by microscopy [the detection limit was 
equal to ten parasitized red blood cells per microlitre 
(PRBC/µl)].

Clustering analysis
To identify clusters of patients with similar natural para-
sitaemia dynamics, the 35 patients were clustered based 
on nine key features used by several modelling papers 
to summarize a patient’s parasitaemia profile (Table  1) 
[21]. Using these features as attributes, the data was clus-
tered with all possible combinations of pairs of attributes. 
Clustering with three or more attributes was not feasible 
because the dataset was relatively small, so three or more 
attributes led to unreliable clusters.

Clustering assumed that the features were independ-
ent, which, strictly speaking, they were not in this case, 
as all nine features arose from the parasitaemia profile. 
Nonetheless, clustering remained a relevant analysis 
technique since the pairwise dependencies between the 
features were not straightforward. For all combinations 
of two standardized key features, clusters of individu-
als were identified using a finite mixture model fitted by 
expectation maximization [35]. This method was used 
because it allowed for more variance in the size and shape 
of the clusters and more variance in the range of the key 
features compared to classical clustering approaches, 
such as k-means clustering.

The optimal number of clusters was determined for 
each combination using the Bayesian Information Crite-
rion index (BIC) [35]. The optimal number of clusters is 
a balance between a good fit (how well the cluster repre-
sented each patient which belonged to that cluster) and 
the number of clustering parameters (number of clus-
ters). Later, when using the cluster centroids to predict 
the parasitaemia profiles, the effect of having more than 
the ‘optimal’ number of clusters was also explored.

Finally, the robustness of the clusters was assessed 
using leave-one-out analysis. The leave-one-out analysis 

Table 1  Key features of the full parasitaemia profile

A description of the features used by [21] to summarize patient’s parasitaemia profiles

Key feature Definition

(i) The initial slope The slope of a linear regression line through the log densities from the first positive slide to the 
first local maximum (per day)

(ii) Number of local maximums A measurement was a maximum if its density was higher than the densities at times t: (t−6), 
(t−4), (t−2), (t + 6), (t + 4), (t + 2) (no units)

(iii) Density at the first maximum Density at the first maximum (log Parasitized Red Blood Cells (PRBC) per microlitre)

(iv) The slope of local maximums The slope of a linear regression line through the log densities of the local maxima (per day)

(v) The geometric mean The geometric mean of the intervals between consecutive local maximums (days)

(vi) The standard deviation The standard deviation of the logs of the intervals between consecutive local maximums (no 
units)

(vii) The proportion of positive in the first interval The proportion of measurements higher than zero in the first half of the interval between the 
first and last positive day (no units)

(viii) The proportion of positive in the second interval The proportion of measurements higher than zero in the second half of the interval between 
the first and last positive day (no units)

(ix) The last positive day The last days that the patient had a parasitaemia higher than 0 (days)
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involved performing the clustering without one patient 
and then assigning this patient to a cluster based on 
the chosen attributes. This process was repeated for 
all patients. A successful cluster assigned the left-out 
patient to the cluster to which they were assigned when 
they were included. The proportion of patients correctly 
assigned to their cluster was referred as the robustness 
score, such that a score of unity was perfect.

Evaluating the clusters
Molineaux et al. [21] considered many biological aspects 
of the dynamics and their variability: intraconal anti-
genic variation (50 variants); variation of the variant 
baseline growth rate (variable among variant and host); 
innate immune response (variable among host); acquired 
variant-specific immune response corresponding to the 
variant-specific antibodies that target Plasmodium fal-
ciparum erythrocyte membrane protein 1 (PfEMP1) 
expressed on the red blood cell membrane; acquired vari-
ant transcending immune response (variable among host) 
representing the antibodies that target merozoite surface 
proteins; and the measurement error [21]. Molineaux 
et al. [21] predicted an individual parasitaemia density on 
a given day based on the parasitaemia density 48 h pre-
viously, the multiplication rate of the antigenic variants, 
and the immune responses. The strength of the immune 
responses was determined by two critical parasite densi-
ties that were specific to each patient:

•	 Pc was the host critical density that determined the 
innate immune system strength (named Pc* in Molin-
eaux et al. [21]). It was based on the first maximum 
of parasitaemia ((iii) from Table 1),

•	 Pm was the host critical density that deter-
mined the transcending adaptive immune system 
strength (named Pm* in Molineaux et al. [21]). It was 

based on the infection length of the patients ((ix) 
from Table 1).

For each patient, the multiplication rates for the 
variant’s baseline growth rates were sampled from a 
normal distribution centred around 16 [21]. The final 
simulated profile was determined by comparing (using 
chi-squared) the nine key features (Table  1) from 50 
simulated profiles with the key features from the actual 
patient profile. Note that Molineaux et  al. [21] used 
case-specific data when first defining Pc and Pm and 
again when choosing from the 50 simulated profiles.

The novelty of this approach is to predict the para-
sitaemia dynamic of patients based on their respective 
clusters by parameterizing the model of Molineaux 
et  al. [21] using cluster-specific parameter values for 
Pc and Pm instead of patient-specific parameter val-
ues. This means that all patients from the same cluster 
had the same parasitaemia profile based on the cen-
troid values of that cluster. Note that the strength of 
the acquired variant-specific immune response in the 
model of Molineaux et  al.  [21] was not patient-spe-
cific and was, therefore, not relevant for clustering. For 
comparison, the model was also parameterized to each 
patient, replicating Molineaux et  al. [21] (which cor-
responded to parameterizing the model to 35 clusters 
that each contain only one patient), and to all patients 
(which corresponded to parameterizing the model to 
one cluster that contains all patients). For each param-
eterization, the same methodology as Molineaux et al.  
[21] was followed except for the parameterization 
step and the selection of the best simulation (Table 2). 
Then, for each parameterization, the absolute error in 
the model’s prediction of the infection length, the first 
parasitaemia maximum of each patient, and a weighted 
error of these two errors was calculated. The weighted 
error was defined as the sum of the standardized error 

Table 2  The different parameterizations for the model of Molineaux et al. [21]

Methods used to parameterize the two critical parasitaemia densities, Pc and Pm used in Molineaux et al. [21] when the model was parameterized to each patient, or 
each cluster, or all patients

Model 
parameterized 
to:

Parameterization The key features used to select the best simulation

All patients The model was parameterized to all patients without using 
case- or cluster-specific parameters. The values of the two critical 
densities were the mean values of the 35 patients’ case-specific 
parameters

Compare the simulations with the mean values from the 35 
patients

Each cluster The model was parameterized to each cluster identified in the 
cluster analysis, using two cluster-specific parameters, calculated 
based on centroids values of the identified clusters

Compare the simulations with the centroids values of the clusters

Each patient The model was parameterized to each patient using the two 
case-specific parameters, as defined in Molineaux et al. [21]

Compare the simulations with the observed values of each 
patient
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of the infection length and the standardized error of 
the log of the first parasitaemia maximum.

Clustering analysis of first parasitaemia wave
Data
The same subset of patients used by Dietz et al. [22] was 
selected from the full malariatherapy dataset to identify 
clusters of patients that have a similar first wave of para-
sitaemia. This subset fulfilled the following criteria: The 
maximum of the first wave was the absolute maximum 
of the case, the patient had no curative or suppressive 
treatment, the patient had no missing parasitology data 
on even days, the days in which the patient had a fever 
were known, the patient had at least five parasitaemia 
measurements, the first observed density was less than 
320 PRBC/µl, the log(maximum /last density) was higher 
than 0.6, and the log(last/penultimate density) was lower 
than 0.3 [22]. These criteria were fulfilled by 100 patients. 
Patients were either infected by infected blood inocu-
lation (67 cases) or by mosquito bites (33 cases) [22]. 
Patients were infected with different strains of P. falci-
parum: 50 patients with McLendon, 25 with El Limone, 
21 with Sante Cooper, 3 with Colombia, and 1 with the 
Costa strain [22]. Parasitaemia levels were measured 
daily by microscopy (detection limit equal to 10 PRBC/
µl) [22].

Clustering analysis
To identify clusters of patients with a similar first wave 
of parasitaemia, the 100 patients were clustered using 
five key features that summarized the dynamics of the 
first wave of parasitaemia, and were used as case-specific 
parameters by Dietz et al. [22] (Table 3). As in the previ-
ous section, for all pairwise combinations of standardized 
key features, clusters of individuals were identified using 
a finite mixture model fitted by expectation maximiza-
tion [35]. As before, the optimal number of clusters was 
determined for each combination using the BIC, and the 
robustness of the clusters was assessed using leave-one-
out analysis [35].

Evaluating the clusters
The model from Dietz et al. [22] was used to assess how 
well each cluster predicted the first wave of parasitaemia 
for each individual. This model reproduced the first wave 
for the same 100 patients. Dietz et al. [22] simplified the 
model from Molineaux et  al. [21] to consider only one 
PfEMP1 variant, and thus, instead of modelling three 
immunity components, only two were required: innate 
immunity and acquired immunity. Dietz et al. used four 
case-specific parameters to reproduce the natural first 
wave of patients (Table 4) [22].

To predict the typical first parasitaemia wave of 
patients based on their respective cluster, the model was 

Table 3  Key features of the first parasitaemia wave

A description of the features used by [22] to summarize patients first parasitaemia waves

Key feature Definition

(i) Multiplication factor The 2-day multiplication factor by which the parasite density was multiplied in the absence of any 
immunity (no units)

(ii) Critical effective density The critical parasite density at which the current multiplication factor was reduced by 50% (PRBC/µl)

(iii) Cumulative effective density The cumulative parasite density at which the current multiplication factor was reduced by 50% (PRBC/
µl)

(iv) Delay of the onset of adaptive immunity The delay required by the adaptive immunity to become effective (days)

(v) Density at the first maximum Density at the first maximum (PRBC/µl)

Table 4  Case-specific parameters used by Dietz et al. [22]

Notation, definitions and calculations of the case-specific parameters used by Dietz et al. [22]

Notation Definition Calculation

m Multiplication factor of the parasite Maximum two-day multiplication factor by which the parasite density was multiplied by 
during the first wave (no units)

Pc Critical effective density that determines 
the strength of the innate immune 
response

Critical parasite density at which the current multiplication factor was reduced by 50% 
(PRBC/µl)

Pm Cumulative effective density that 
determines the strength of the adaptive 
immune response

Cumulative parasite density at which the current multiplication factor was reduced by 50% 
(PRBC/µl)

δ0 Delay of the onset of adaptive immunity Estimated time of the first inflection points of the parasitaemia density (days)
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parameterized to the clusters using the cluster-specific 
versions of these parameters (Tables 4 and 5). Dietz et al. 
[22] used the Powell Hill-climbing algorithm to calculate 
the case-specific parameters. Here, the parameters were 
directly calculated as defined in Table 4. To improve the 
accuracy of the prediction, the calculation of the cumula-
tive effective density (Pm) was modified: 4830 divided by 
the ratio between the maximum density and the last den-
sity of the first parasitaemia wave. The improvement in 
the accuracy of the model is detailed in Additional file 1.

As before, the model was parameterized to each patient 
(which corresponded to parameterizing the model to 
100 clusters that each contain only one patient) and to 
all patients (which corresponded to parameterizing the 
model to one cluster that contains all patients) (Table 5). 
The error of the predicted parasitaemia measurements 
was calculated for each patient.

External attributes
For both clustering analyses, the distributions of all avail-
able external attributes across the identified clusters 
were examined: the sex of patients, the use of a repres-
sive treatment, the strains used for the infection (Santee 
Cooper, Mc Lendon, El Limon, Colombia, Costa), and 
the method of infection (blood induction or sporozoite 
induction). For the full parasitaemia profile, the patient’s 
fever and gametocyte profiles were additionally com-
pared for each cluster. This comparison was not made for 
the first wave of parasitaemia, as many patients received 
treatment that biased their fever and gametocyte profile.

Results
Clustering analysis of parasitaemia profile
The strongest pairwise clustering was found to con-
tain the length of infection (ix) and the density of the 
first maximum of parasitaemia (iii) (Fig. 1). The optimal 
number of clusters defined by the BIC was two (robust-
ness score = 32/35 = 0.91). Patients were grouped in a big 
cluster of 30 patients (cluster A) and a small cluster of 
five patients (cluster B) (Fig. 1). Patients in cluster A had a 
long infection length and high density at the first parasi-
taemia maximum (centroids value of cluster A: 233 days, 
4.91 log(PRBC/µl). In contrast, patients in cluster B had 

a shorter infection length and a lower first maximum of 
parasitaemia (centroids value of cluster B: 97  days, 4.01 
log(PRBC/µl). This indicates that patients with a higher 
first peak of parasitaemia tended to be infected for a 
longer period.

The clustering results supported the modelling choice 
in Molineaux et  al. [21] to use parameters Pc and Pm, 
which are based on the first parasitaemia maximum and 
the last positive days, respectively [21]. Parameteriz-
ing the model from Molineaux et al. [21] to the clusters 
required simply using the centroid values of the clusters 
instead of case-specific values for Pc and Pm

Prediction of patient’s parasitaemia profiles
The typical parasitaemia profiles for patients within each 
cluster were for each cluster predicted (Fig. 2). To analyze 
the effect of the number of clusters on the error, the typi-
cal parasitaemia profiles from clustering the data to 3, 4, 
6 and 8 clusters were also predicted.

Table 5  The tested parameterizations for the model of Dietz et al. [22]

Methods used to parameterize the model from Dietz et al. [22] to all patients, each cluster, or each patient

Model parameterized to Parameterization

All patients The model was parameterized to all patients without using any case or cluster-specific parameters. The values of 
the four constants were the means of the case-specific parameters over all patients

Each cluster The model was parameterized to each cluster identified in the cluster analysis, using four cluster-specific param-
eters based on centroids values of the clusters

Each patient The model was parameterized to each patient by using the four case-specific parameters defined by Dietz et al. [22]

Fig. 1  Clusters of the full parasitaemia profile. Clusters of the full 
parasitaemia profile of 35 patients based on the strongest clustering 
identified by trying all pairwise combinations of attributes listed in 
Table 1
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Generally, the combined mean error decreased when 
the number of clusters increased, as did its standard devi-
ation (Fig. 3A). With only one cluster, the mean weighted 
error was 3.17. By parameterizing the model to the two 
identified clusters, the mean weighted error was reduced 
to 2.34 (reduction of 26.2% compared to one cluster). 
This decrease was the biggest drop in the weighted error, 
which arose from adding only one additional cluster. For 
example, a third cluster only slightly reduced the mean 
weighted error further to 2.15 (reduction of 32.2% com-
pared to one cluster). Nevertheless, as expected, the 
model parameterized to the 35 clusters had the minimum 
error, with a mean weighted error of 0.97 (reduction of 
69.4% compared to one cluster).

The errors for the two parasitaemia values, the error in 
the infection length and the first maximum of parasitae-
mia, were reduced by parameterizing the model to the 
two identified clusters (Fig. 3B and C), compared to using 
one cluster only. The error for the infection length pre-
dictions was reduced slightly more (reduction of 29.1% 
compared to one cluster) than the error for predictions of 
the maximum of parasitaemia (reduction of 23.6% com-
pared to one cluster). Note that the variation in the infec-
tion length over all patients was higher than the variation 
in the first peak of parasitaemia, suggesting that the vari-
ation of the adaptive immune response is stronger than 
the variation of the innate immune response. In contrast, 
when comparing the model parameterized to one cluster 

Fig. 2  Predicted parasitaemia profile. Prediction of the typical parasitaemia profile for patients from A cluster A and B cluster B using the model of 
Molineaux et al. [21] parameterized to the centroid values of the clusters

Fig. 3  The number of clusters and the prediction errors for the patient’s full parasitaemia profile. The relationship between the number of clusters 
(to which the model was parameterized) and the A mean weighted error, which is the sum of the standardized error of the infection length and 
standardized error of the log of the first parasitaemia maximum B mean error of the infection length, and C the mean error of the parasitaemia 
maximum of the 35 patients. The vertical lines represent the standard deviation of these errors
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over the model parameterized to 35 clusters, the error 
for the first parasitaemia maximum was reduced more 
(error reduction of 88.6% compared to one cluster) than 
the error for the infection length of patients (error reduc-
tion of 51.0% compared to one cluster). This highlights 
that Molineaux et al. [21] captured the first parasitaemia 
maximum better than the infection length of patients.

The weighted error was examined separately for clus-
ters A and B under the three different parameterizations. 
When the model was parameterized to 1 cluster, the 
weighted error was higher in cluster B (mean error 5.83) 
than in cluster A (mean error 2.48), meaning that patients 
in cluster B (the smaller cluster) were considerably differ-
ent to the overall average (Fig. 4A). This hypothesis was 
also supported by the drop in the weighted error (from 
5.83 to 1.81) for cluster B once the parameterization con-
sidered these patients separately (Fig. 4B). The weighted 
error of cluster A dropped when the number of clusters 
increased from one to two, but this drop was less dra-
matic (from 2.48 to 2.26). As expected, parameterizing 
to 35 clusters reduced the error further (mean error for 
cluster A: 0.94, cluster B: 0.32) (Fig. 4C). In this case, the 
reason that cluster A had a higher weighted error may be 
due to more inter-patient variation [36].

Comparing non‑parasitaemia attributes and clusters
When comparing non-parasitaemia attributes amongst 
the two clusters, patients from cluster B (the cluster 
with low parasitaemia density) did not receive treat-
ment (Additional file  1: Figure S3), which was expected 
because treatment was only given to patients with a high 
parasitaemia load. Moreover, there was no relationship 
between clusters and the parasite strain, nor the method 
of infection, meaning that these factors did not have a 
strong influence on the within-host dynamic (Additional 

file  1: Figure S3). However, the ten female patients (out 
of 35) all belonged to cluster A, meaning that from this 
dataset, all female patients experienced a high parasitae-
mia load and long infection length (Additional file 1: Fig-
ure S3).

In addition, the gametocyte profile of patients also var-
ied by clusters. Patients from cluster A had a higher max-
imum peak of gametocyte density and number of days 
with detected gametocytes (Additional file 1: Figure S4). 
This observation was probably because parasitaemia den-
sity and gametocyte density are related, and the fact that 
patients from cluster A had a longer infection length and 
higher parasitaemia than patients from cluster B. In addi-
tion, these results could also be because some patients in 
cluster A received a low-dose treatment that could have 
triggered the generation of gametocytes. This result high-
lighted that patients from cluster A were probably more 
infectious than patients from cluster B.

There was also a straightforward relationship between 
the clusters and the fever of the patients. Patients from 
cluster A generally experienced fever for a longer period, 
and they had a higher maximum fever temperature than 
patients in cluster B (Additional file  1: Figure S5). This 
was because patients from cluster A had a longer infec-
tion length and a higher parasitaemia first peak (the fever 
often peaks at the beginning of the infection). These 
results indicate that patients from cluster A were more 
likely to suffer from severe symptoms than patients from 
cluster B.

Clustering analysis of the first parasitaemia wave
The pair of attributes that gave the strongest cluster-
ing was the cumulative effective density (iii) and the 
maximum density of parasitaemia (v) (see Table  3 for 
definitions). In Dietz et al. the cumulative effective den-
sity (iii) captured the strength of the adaptive immune 

Fig. 4  Distribution of the weighted error among clusters for each parameterization. Distribution of the weighted error of patients in clusters A or B 
when the model was parameterized to A 1 cluster, B 2 clusters, and C 35 clusters
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response, and thus determined the decreasing slope of 
the first parasitaemia wave [22]. The parasitaemia maxi-
mum (v) depended on both the multiplication factor of 
the parasite, and the host innate immune response [22]. 
Therefore, the clustering analysis confirmed that all the 
different shapes of the first parasitaemia waves were cap-
tured using these key features.

Due to the high variability of the data, the data were 
preliminary divided based on the result of the first clus-
ter analysis. Recall that the first cluster analysis high-
lighted that patients either have a large first peak of 
parasitaemia (higher than 4.3(log(PRBC/µl)) or a small 

first peak (lower than 4.3 log(PRBC/µl)). After this pre-
liminary division, two independent cluster analyses were 
performed on the two subsets. Two clusters, clusters 2 
and 4, were identified in the subset of patients that had 
a low first peak of parasitaemia (centroids cluster 2: 4.04 
log(PRBC/µl), cluster 4: 4.02 log(PRBC/µl) (Fig. 5). Three 
clusters, clusters 1, 3 and 5, were identified in the sub-
set of patients that had a high first peak of parasitaemia 
(centroids cluster 1: 4.71 log(PRBC/µl), cluster 3: 4.78 
log(PRBC/µl), cluster 5: 4.90 log(PRBC/µl)) (Fig. 5). Clus-
ters 1, 2, 3, 4, and 5 grouped 45, 21, 16, 6, and 12 indi-
viduals, respectively. Moreover, in both subsets, some 
clusters had a low centroid value of the cumulative effec-
tive density (cluster 1: 0.63 log(PRBC/µl), cluster 2: 1.00 
log(PRBC/µl)), and some clusters had a high centroid 
value of cumulative effective density (cluster 4: 5.02 
log(PRBC/µl), cluster 5: 5.90 log(PRBC/µl)). In the subset 
of high first peaks of parasitaemia (clusters 1, 3 and 5), 
one cluster had a medium centroid value for the cumula-
tive effective density (cluster 3: 3.12 log(PRBC/µl)).

Predictions of patients’ first parasitaemia wave
The model from Dietz et al. [22] was parameterized to the 
five identified clusters. For each cluster, the cumulative 
effective density was equal to the cluster centroid value. 
The three other parameters (Table  4) were estimated as 
the median parameter values of patients belonging to 
the cluster. Note that the onset of the adaptive immu-
nity did not vary across the clusters (Fig. 6A). However, 
as expected, clusters of patients with a lower maximum 
density of parasitaemia had a lower multiplication rate 
and critical effective density (which captured the strength 
of the innate immunity) (Fig. 6B and C).

As expected, the predicted maximums of the first par-
asitaemia wave of patients from clusters 2 and 4 were 
smaller (4.51, 4.48 log(PRBC/µl) respectively) than the 

Fig. 5  Clusters of the first parasitaemia wave. Clusters of the first 
parasitaemia wave of 100 patients based on the strongest clustering 
identified by trying all pairwise combinations of attributes listed in 
Table 3, where a preliminary division by the first peak of parasitaemia 
(higher than 4.3 log(PRBC/µl)) or a small first peak of parasitaemia 
(lower than 4.3 log(PRBC/µl) was performed

Fig. 6  Distribution of key characteristics among clusters. Distribution of A the delay of the adaptive immune response (days), B critical effective 
density (log(PRBC/ul)), and C parasite multiplication factor (no units) across the identified clusters
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maximum parasitaemia of patients from clusters 1, 3, and 
5 (4.77, 4.74, 4.8 log(PRBC/µl) respectively) (Fig.  7). In 
addition, the typical first parasitaemia wave for patients 
in clusters 1 and 2 were long (39 and 35 days respectively) 
(Fig. 7A and B). Their first parasitaemia wave was char-
acterized by a strong innate immune response, active for 
a long period, and a progressive increase of the adaptive 
immune response, which caused a progressive decrease 
in the parasitaemia density. In contrast, the typical first 
parasitaemia wave for patients in clusters 4 and 5 were 
short (23 and 21  days, respectively) (Fig.  7D and E). 
Their adaptive immune response became highly efficient 
quickly, which caused a rapid reduction of the parasitae-
mia density. Consequently, the innate immune response 
was not activated for a long time. Finally, patients in clus-
ter 3 were between these two behaviours with a typical 
first wave lasting 27 days (Fig. 7C).

Prediction errors
The error in the predictions of the model from Dietz 
et  al. [22] for each patient was examined. The model 
was parameterized to each patient (100 clusters), to the 
cluster centroids (5 clusters), and to all patients (1 clus-
ter). As expected, the error of patient’s parasitaemia 

measurement decreased as the number of clusters 
increased (Fig.  8). When the model was parameterized 
to all patients, the mean error was 1.93 (log(PRBC/µl)). 

Fig. 7  Predicted dynamic of the first wave of parasitaemia. The predicted first wave of parasitaemia and immune response (IR) dynamics for 
patients of each cluster: A 1, B 2, C 3, D 4, and E 5. The subplots are arranged corresponding to the clustering results in Fig. 5

Fig. 8  Relationship between the number of clusters and the 
prediction errors of the patient’s parasitaemia first wave. The 
relationship between the number of clusters to which the model 
was parameterized, and the mean error of the prediction of patient’s 
parasitaemia measurement (log(PRBC/ul)). The vertical lines represent 
the standard deviation of these errors
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When the model was parameterized to the five clus-
ters, the mean error was greatly reduced (mean error 
0.90 (log(PRBC/µl)), and had a similar value to when the 
model was parameterized to each patient (mean error 
0.66 (log(PRBC/µl))). These results mean that the five 
clusters could effectively capture the variation of the first 
wave.

When the model was parameterized using the overall 
means (one cluster), the error was higher for clusters 4 
and 5 than for other clusters (Fig. 9A). When the model 
was parameterized to the five clusters, the error was 
reduced in every cluster (Fig.  9B). However, the distri-
bution of the error was higher for clusters 4 and 5 than 
for the other clusters. This was also the case when the 
model was parameterized to each patient (Fig. 9C). This 
suggests that although clusters 1 and 2 were considerably 
larger than cluster 4, cluster 5 had more variation.

Comparing non‑parasitaemia attributes and clusters
When comparing non-parasitaemia attributes amongst 
the five clusters, the results agreed with the analysis on 
the smaller dataset (Additional file  1: Figure S6). That 
is, the strains used to infect patients and the method of 
infection did not vary between the clusters of the first 
wave of parasitaemia. In addition, as with cluster B from 
the previous analysis, all female patients belonged to 
clusters characterized by a high maximum of parasitae-
mia (clusters 1, 3, and 5).

Discussion
This study performed cluster analyses on two datasets 
of patients’ parasitaemia profiles based on key features 
which summarized the strengths of the innate and adap-
tive immune responses. The first dataset was the full, 
untreated, parasitaemia profile, and the second was the 

first wave of parasitaemia. The analysis provides insights 
in itself. For example, the clustering analysis of the full 
parasitaemia profile identified a smaller group of patients 
whose peak parasitaemia density and infection length 
were not well represented by the overall means. With 
regards to quantifying recovery and transmission rates in 
a population, the analysis provided reasonable estimates 
that largely account for heterogeneity without over-
loading population models with a set of parameters for 
each individual. Below the implications of the study are 
detailed.

Two clusters were identified when analysing the para-
sitaemia dynamics over a full infection: a large cluster 
of 85% of patients that had a long infection length and a 
high parasitaemia maximum (cluster A), and a small clus-
ter of 15% of patients that had a short infection length 
and a low maximum of parasitaemia (cluster B). These 
results suggest that patients with a small first wave tend 
to have shorter infections. According to previous studies 
and models, the height of the first peak of parasitaemia, 
and the length of infection, are attributes that capture the 
strength of the patients innate and adaptative immunity 
[17, 21, 29, 37]. Consequently, these results highlighted 
that patients have variable immune response strengths, 
as reported in previous studies [10–12, 17–20], and sug-
gest that patients with a strong innate immune response 
tend to have a strong adaptive immune response too.

Only two clusters were sufficient to capture the extreme 
variability of the full, untreated, parasitaemia profiles, 
and thus patients’ parasitaemia profiles were predicted 
without using case-specific data. Comparing the parame-
terization of one cluster to two clusters showed that only 
one extra cluster reduced the weighted error by 26.29%. 
The weighted error was especially reduced for patients 
with a short infection length and a low maximum of 

Fig. 9  Distribution of the error in the predicted parasitaemia first wave among clusters for each parameterization. Distribution of the error of the 
predicted parasitaemia measurements (log(PRBC/ul)) across the five identified clusters when the model was parameterized to A 1, B 5 clusters, and 
C 100 clusters
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parasitaemia (cluster B). Therefore, patients in this clus-
ter were not well represented by overall mean values. 
Exploring the effect of dividing the dataset into more 
clusters shows that it would be necessary to include many 
more clusters (6–8 clusters in total) to reduce the error 
further. However, additional parameters would increase 
the complexity of a model. Therefore, it is most efficient 
to consider only two clusters to capture within-host vari-
ation in a simple mechanistic within-host model, and to 
inform different recovery rates in a population-based 
model.

When the model from Molineaux et  al. [21] was 
parameterized to each patient, the error of the infection 
length was high compared to the error of the first peak of 
parasitaemia. Therefore, the model from Molineaux et al. 
[21] is better at capturing the variation in the first peak 
of parasitaemia than the variation in infection length. 
This accuracy difference is probably because of the model 
stochasticity for the multiplication rate. Consider that 
for each patient, 50 simulations were run with different 
values for the multiplication factor. The resulting pro-
files had similar values for the parasitaemia maximum. 
However, the range for the predicted infection length was 
highly variable. Therefore, predicting the patient infec-
tion length was more sensitive to the parasite multiplica-
tion rate. This suggests that the accuracy of the predicted 
infection length in Molineaux et  al. [21] is driven more 
by selecting the best simulation, as opposed to parame-
terizing the model to the data. The same conclusion was 
reached by a recent review of current within-host mod-
els [29] and a recent modelling study [25], which showed 
that a slight variation in a parameter caused a significant 
variability of infection length. Note that when the Molin-
eaux et al. [21] model was used, a similar prediction error 
of the first parasitaemia maximum (0.037 log(PRBC/
µl)) was obtained, but the predicted infection length of 
patients was on average 25 days closer to the actual infec-
tion length. This difference may have arisen from the use 
of different parasite multiplication factors, or they may 
have selected from the 50 simulations with more weight-
ing on matching the infection length.

The resolution of the analysis was increased by clus-
tering patients only on the first wave of parasitaemia. As 
in the first analysis, a minority of patients had a low first 
wave, and a majority of patients had a high first wave. 
Patients with a small first wave were clustered in a man-
ner that separated those with a quick (cluster 2) or a slow 
(cluster 4) decrease of the first wave. In contrast, patients 
with a high first wave were clustered in a manner that 
separated those with a quick (cluster 1), medium (clus-
ter 3) or slow (cluster 5) decrease of the first wave. In the 
model from Dietz et al. [22], the first peak of parasitaemia 
captured the strength of the innate immune response, 

and the decrease of the first wave captured the strength 
of the adaptive immune response. In consequence, these 
results also confirm that the strength of the immune 
responses among patients varies greatly. The results fur-
ther highlighted that patients have even more immune 
response variability during the first wave than the com-
plete parasitaemia profile. This variability is particularly 
relevant for patients with an initial high parasitaemia 
density.

For each cluster of the first wave of parasitaemia, the 
typical dynamics of the first wave of patients were pre-
dicted using the model from Dietz et  al., and similar 
predictions were obtained [22]. Moreover, parameter-
izing the model using five clusters instead of one cluster 
reduced the error by 53.4%. In comparison, parameteriz-
ing the model using 100 clusters (each patient) instead of 
one cluster reduced the error by 65.8%. This suggests that 
the clusters are extremely efficient at capturing the vari-
ability in the first parasitaemia waves. Consequently, it is 
most efficient to consider five clusters to capture within-
host variation in a simple mechanistic within-host model, 
and to inform different recovery rates in a population-
based model that investigates the impact of interventions 
that effect the first parasitaemia wave, such as blood-
stage vaccine and drugs.

Investigating the distribution of non-parasitaemia 
attributes across clusters highlighted which non-para-
sitaemia attributes can potentially impact within-host 
dynamics. Interestingly, Female patients did not experi-
ence malaria infections with low parasitaemia density 
and short infection length. Variation in the infection 
length of malaria between genders supports recent stud-
ies [38]. The method of inducing infection and the strain 
used to infect patients did not vary between clusters. 
Consequently, the results suggest that these factors do 
not strongly influence the within-host dynamics in naive 
individuals. Other external attributes, such as age, could 
not be compared with the clusters due to the lack of data. 
Nevertheless, age plays an important role in determin-
ing parasitaemia dynamics in the field, as when individu-
als get older, they gradually develop immunity to malaria 
due to repeated exposure to the parasites. However, in 
this study, all patients were naïve to malaria. Thus, age 
would probably be less critical than observed in the field.

The clustering analyses were performed on subsets 
of patients from the malariatherapy dataset, thus the 
conclusions are limited to this dataset, noting there is 
no other fully detailed set for a complementary analy-
sis. There are limitations of the dataset that may affect 
the conclusions. First, the detection limit of the micro-
scope was high (10 PRBC/µl). As a consequence, infec-
tion lengths may be underestimated in this study [9]. 
Second, in the malariatherapy dataset, all patients were 
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Afro-American adults suffering from neurosyphilis and 
naïve to malaria [9]. These patients do not represent all 
populations at risk for P. falciparum (for example, chil-
dren under 5 years old) [1, 5]. Lastly, in the malariather-
apy study, patients received suppressive treatment when 
they exhibited clinical symptoms due to high parasitae-
mia density [9]. The clustering analysis of the first para-
sitaemia wave included 100 patients who did not receive 
suppressive treatment during the first parasitaemia wave. 
Therefore, this dataset did not include patients experi-
encing very high parasitaemia density. This means that 
although severe malaria is infrequent in the general pop-
ulation [1, 5], these patients are not represented in this 
dataset.

Conclusions
Clusters of patients that have similar parasitaemia 
dynamics were identified using key features that cap-
tured the strength of the innate and adaptative immune 
response. Non-parasitaemia attributes, other than the 
biological sex of the patient, were not associated with 
variations in the within-host dynamic. Thus, these results 
confirm that individuals have personalized and variable 
strengths of both immune responses, which causes inter-
patient variation in the within-host dynamics in naïve 
individuals. The results suggest that by capturing the 
variability of patients’ immune response, the variability of 
within-host dynamics could be efficiently captured. That 
is, the parasitaemia profiles of patients were reasonably 
predicted by parameterizing previous within-host mod-
els to the identified clusters. The identified clusters can 
be used to include within-host variation in simplified 
mechanistic within-host models, and to inform catego-
ries of patients in population-based models.
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Additional file 1: Figure S1. Predicted dynamic of the first parasitaemia 
wave using parameters as in Dietz et al. (2006). Observed and predicted 
parasitaemia dynamics and the predicted immune responses of patients 
(A) 46, (B) 224, and (C) 26 when the constants were calculated as defined 
by Dietz et al. (2006). Figure S2. Predicted dynamic of the first wave of 
parasitaemia using parameters as defined here. Observed and predicted 
parasitaemia dynamics and the predicted immune responses of patients 
(A) 46, (B) 224, and (C) 26, when Pm was calculated as defined here. 
Figure S3. Variation of non-parasitaemia attributes across clusters of the 
full parasitaemia profiles. Visualization of the distribution of (A) the sex of 
the patients, (B) repressive treatment usage, (C) the way patients were 
infected, and (D) the strain used to infect patients among the two clusters 

of the full parasitaemia profile. Figure S4. Variation of patient gametocyte 
profiles across clusters of the full parasitaemia profiles. Boxplot of the 
distribution of (A) the number of days with detected gametocytes and 
(B) the maximum density of gametocytes of the patients belonging to 
the two clusters of the full parasitaemia profile. Figure S5. Variation of 
the patient fever profiles across clusters of the full parasitaemia profiles. 
Boxplot of the distribution of (A) the maximum value of fever and (B) the 
number of days with fever of the patients belonging to the two clusters 
of the full parasitaemia profile. Figure S6. Variation of non-parasitaemia 
attributes across clusters of the first wave of parasitaemia. Visualization of 
the distribution of (A) the sex of the patients, (B) the way patients were 
infected, and (C) the strain used to infect patients among the fives clusters 
of the first wave of parasitaemia.
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