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Abstract 

Background:  Seasonal patterns of malaria cases in many parts of Africa are generally associated with rainfall, yet in 
the dry seasons, malaria transmission declines but does not always cease. It is important to understand what condi-
tions support these periodic cases. Aerial moisture is thought to be important for mosquito survival and ability to 
forage, but its role during the dry seasons has not been well studied. During the dry season aerial moisture is minimal, 
but intermittent periods may arise from the transpiration of peri-domestic trees or from some other sources in the 
environment. These periods may provide conditions to sustain pockets of mosquitoes that become active and forage, 
thereby transmitting malaria. In this work, humidity along with other ecological variables that may impact malaria 
transmission have been examined.

Methods:  Negative binomial regression models were used to explore the association between peri-domestic tree 
humidity and local malaria incidence. This was done using sensitive temperature and humidity loggers in the rural 
Southern Province of Zambia over three consecutive years. Additional variables including rainfall, temperature and 
elevation were also explored.

Results:  A negative binomial model with no lag was found to best fit the malaria cases for the full year in the evalu-
ated sites of the Southern Province of Zambia. Local tree and granary night-time humidity and temperature were 
found to be associated with local health centre-reported incidence of malaria, while rainfall and elevation did not 
significantly contribute to this model. A no lag and one week lag model for the dry season alone also showed a sig-
nificant effect of humidity, but not temperature, elevation, or rainfall.

Conclusion:  The study has shown that throughout the dry season, periodic conditions of sustained humidity occur 
that may permit foraging by resting mosquitoes, and these periods are associated with increased incidence of malaria 
cases. These results shed a light on conditions that impact the survival of the common malaria vector species, Anoph-
eles arabiensis, in arid seasons and suggests how they emerge to forage when conditions permit.
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Background
In spite of years of research and control efforts, malaria 
continues to impact much of African society with over 
200 million cases per year [1]. The situation has improved 
in the past 20 years with the use of rapid diagnosis, com-
bination drug treatment, and the rapid implementa-
tion of insecticide-treated bed nets and seasonal indoor 
residual spraying [2]. However, more recently, progress 
has stalled [2]. In some countries where there are well 
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operated malaria control operations and support from 
donors such as the Global Fund, prevalence of infection 
has declined considerably; but there remain some break-
through cases as well as asymptomatic cases which help 
perpetuate transmission.

The driving force for malaria transmission is the mos-
quito vector, as it is the definitive host for Plasmodium 
falciparum and other Plasmodium species. In southern 
Zambia, the main vector species of malaria are mem-
bers of Anopheles gambiae complex, and the most com-
mon is Anopheles arabiensis, although other species may 
be involved. The endemicity of malaria is based on the 
extent and mass of the vector mosquito population [3]. 
In general, in Africa, when rain falls and there is standing 
water, mosquito breeding is extensive, and malaria infec-
tions become more prevalent. However, in the cooler 
winter and in the hot dry season surface water becomes 
sparse and is mostly confined to larger rivers or streams. 
This results in a reduced opportunity to lay eggs and 
adult mosquitoes become rare. However, microclimates 
with periodic increases in humidity during the dry sea-
son may present conditions that allow mosquito vectors 
to seek hosts.

Efforts to detect malaria hot spots have been described, 
but tended to focus on local breeding sites like streams or 
ponds [4]. More recently, the importance of surface water 
or aerial moisture has been studied. In Kenya, a digital 
elevation model has been used to measure Topographi-
cal Wetness Index (TWI), a measure of potential water 
accumulation due to differences in the terrain [5], and 
has shown TWI to impact local malaria cases [6]. Malaria 
hot spots have been described, and have been found to be 
associated with a range of household and environmental 
factors, including the prevalence of aquatic habitats [7]. 
Yet, this may not be the whole story. In the dry season, 
local streams, ponds and standing water breeding sites 
are very rare, yet transmission still occurs. There is likely 
another source or refuge for these mosquitoes.

In dry or cold conditions, various species of Anopheles 
mosquitoes, can adapt to this change in climate, often by 
entering diapause, a form of dormancy [8]. Work in Mali 
indicated that Anopheles coluzzii has shown evidence of 
dormancy, but this has not been studied extensively [8]. 
Another study from Mali also queries dormancy or dia-
pause and suggests mosquito reinvasion from elsewhere 
may occur [9]. A comprehensive review of diapause and 
dormancy in mosquitoes states that 11 species of Anoph-
eles exhibit dormancy [8]. In addition to diapause and 
other forms of dormancy, these mosquitoes may also 
take refuge in moist or covered habitats. In Africa, most 
trees are not deciduous and thus they hold leaves all year 
and continue to transpire using ground water. The pro-
cess of transpiration could produce local microclimates 

where it is periodically moist and cool, which can allow 
adult mosquitoes and other Diptera to survive [10]. For 
example, tsetse flies are known to seek tree buds in the 
arboreal ecotone when hunting [10]. If these occasional 
moist periods allow for the local survival or arousal from 
dormancy, this may result in occasional feeding and peri-
odic transmission of infection [11].

Whether or not there is individual dormancy, mosqui-
toes do depend on moisture in the air to survive and open 
water to oviposit. Overall, the literature is still quiescent 
on the ecological factors that permit mosquito species to 
forage and survive during the dry seasons and perhaps 
continue to perpetuate malaria transmission. While it 
is not clear where adult anophelines rest in the environ-
ment during hot and dry conditions, it seems likely that 
some can survive among the leaves of trees and shrubs 
[12]. Observations made in Sudan during the dry sea-
son, detected An. gambiae in wells, soil cracks and other 
refugia, that were blood fed and viable [13, 14]. Thus, it 
was hypothesized that under certain conditions of local 
humidity Anopheles mosquitoes might be able to fly, feed, 
and ultimately transmit malaria. In response, this manu-
script examines the potential association between the 
humidity of microclimates with the incidence of malaria 
cases.

Methods
Ethical approval for this study was included in the 
study entitled “Malaria transmission and impact of 
Control Efforts in Southern Africa” obtained from the 
Ethics Review Committee of the Tropical Diseases 
Research Centre (Ndola, Zambia) protocol no. TDRC/
ERC/2010/14/11. This permitted collections of mosqui-
toes in the research area. As the study did not involve 
data collection on study participants, individual consent 
was obtained but not required. However, the purpose 
of the study was explained, and verbal permission was 
obtained from the household owners to set the loggers in 
place and requested the house owners to ensure that no 
one removed or moved the instruments.

Study area and site selection
The work was done in the Southern Province of the 
Republic of Zambia under the auspices of the Macha 
Research Trust (MRT). The Macha Hospital, the MRT 
and the local rural population have established a posi-
tive interaction over the past 20 years particularly related 
to malaria. The countryside in the north is partial flood 
plain of the Kafue River (Green area in Fig. 1) bisected by 
several tributaries of the major river. The area is some-
what flat and undulating, with a high water table where 
there are swamp areas near the tributaries and the local 
area is approximately 1000 m above sea level. There is a 
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transition to higher ground in the areas marked yellow to 
orange (Fig. 1), with elevations between 1100 to 1300 m 
above sea level. The wooded areas are Brachystegia and 
Terminalia woodland which includes a variety of tree 
species.

Much of the area is cleared for agriculture with wooded 
areas mainly remaining in the drainage areas. Most peo-
ple live at locations close to their fields. The total area of 
the study is approximately 5400 km2. Nine rural health 

centres (RHCs) were selected from the 14 RHCs in the 
ICEMR project under the Macha Hospital catchment 
area, based on their level of malaria burden between 2013 
and 2016. Data on malaria prevalence was obtained from 
the routine weekly malaria cases by rapid diagnostic test 
(RDT) recorded in the RHCs. Malaria burden was meas-
ured as a rank derived from the total number of RDT 
positives and test positivity rate. Based on the rankings, 
five RHCs with the highest malaria burden, and five with 

Fig. 1  Map of location of clinics and logger location
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the lowest burden were selected for sampling. Macha 
Mission Hospital was excluded since it serves as a refer-
ral facility and thus cases would not be representative of 
its nearby villages. A list of households with the highest 
number of malaria cases and those without any cases was 
obtained from each RHC. This list was then randomized 
to select the site for data collection. The same was done 
for low malaria burden RHCs. The selected households 
were also representative of the population and farming 
habitat of the Southern Province and are spread out over 
some several thousand square kilometres. Each single-
family domicile was selected from within approximately 
5 km from a rural health centre (Fig. 1).

Each site was located on Google Earth and images 
were obtained to assess the tree cover and location of 
the sample. Locations were examined for consistency of 
size and occupation. The homestead usually consisted 
of several single-room huts, circular or square mud or 
brick wall houses with thatch roof. There was also open 
air but roofed recreation/cooking areas and several trees 
in the location. These provided shade and were used 
day and evening for meals and convocation. Each loca-
tion had an outdoor granary to store maize and other 
crop harvests. Other structures were latrines and bath-
ing enclosures. In all locations, there was no evidence 
of anopheline oviposition sites particularly during the 
hot dry season. Domestic water was obtained from wells 
or natural streams usually several hundred metres from 
the homestead. Culicines could easily inhabit the wells, 
but these were not suitable habitat for larval anopheline 
mosquitoes.

Local weather data
Battery-operated loggers (LASCAR Electronics EasyLog 
EL-USB-2 (www.​lasca​relec​troni​cs.​com) were placed in a 
tree in the vicinity of the homestead, and on the outside 
of the granary at each of the localities. Tree loggers were 
placed under a cluster of leaves (Fig. 2), and the tree spe-
cies to which they were attached was identified, where 
possible (Table 1). There was no intrusion of the home-
stead or requirement of the homeowner except that they 
knew what was being measured and agreed to ensure 
the safety of the measuring apparatus. In the 3 years of 
recording only one logger was lost and was subsequently 
replaced.

The loggers recorded temperature, relative humid-
ity, and dew point every hour from September 2017 to 
December 2019. The devices were suspended among 
leaves with a small plastic disc to protect the logger from 
excessive rain and direct sunlight, as the objective was 
to measure aerial conditions, not extreme temperature 
(Fig. 2). The granary sites were open and unshaded. Dur-
ing the dry season, the loggers were examined, tested and 

data downloaded monthly. During the other seasons, log-
gers were visited bimonthly. Non-functioning loggers and 
batteries were replaced if necessary.

Rainfall was measured at a single location at the Macha 
Research Trust location using a HOBO Meteorologi-
cal Station and accessed weekly. Rainfall at Macha was 
assumed to be representative of the overall region, as the 
wet season is derived from the continental inter-tropical 
convergence zone which covers large areas in Southern 
Africa.

Mosquito sampling
Standard Centre for Disease Control (CDC) light traps 
were used for collecting mosquitoes at the nine house-
holds in the study. The CDC light traps were set over-
night from 6:00  p.m. to 6:00  a.m. The light traps were 
placed indoors next to a sleeping space and outdoors 
in either a cattle or goat pen, if available at the house-
hold. The mosquito traps were set overnight once every 
month from August to November, and at opportune 
times the rest of the months. Due to logistical chal-
lenges, mosquito collections for 2018 were only done 
in January, February, March, and December. These 

Fig. 2  Photo showing the positioning of the logger among the trees. 
Note the shield to protect the instrument from sun and rainfall

http://www.lascarelectronics.com
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collections were useful for assessing the various species 
of anophelines collected over the period of study.

Mosquitoes collected from the light traps were first 
morphologically identified by entomologists at MRT 
and then by polymerase chain reaction (PCR) for spe-
cific individual mosquito species identification, as pre-
viously described [15].

Malaria incidence
Malaria incidence data were collected from the Rural 
Health Centre closest to each of the nine villages 
(Fig.  1). Each health centre/clinic has been record-
ing weekly positive malaria rapid diagnostic test 
results since 2008. These clinics are staffed by govern-
ment nursing personnel and are the main source of 
health service for the rural population. These health 
centres participate in an ICEMR programme and 
are monitored regularly by research personnel from 
Macha Research Trust. The clinic personnel are alert 
to malaria and are required by the Zambian Ministry 
of Health to administer a rapid diagnostic test if they 
suspect malaria [16]. Every week, each clinic sends case 
data relating to malaria and other infectious diseases 
to the Macha Research Trust personnel, and these data 
were routinely checked and found to be reliable [17]. 
This includes the total number of RDT units used dur-
ing the week, and the number and age of all positive 
results.

The clinic staff also maintain medical case histories 
of all the people they serve and can thereby estimate 
the population attending the clinic. This yearly popu-
lation estimate was used to calculate the malaria inci-
dence rate since the populations are stable with very 
little emigration or immigration. Incidence per 100,000 
person-weeks was calculated based on these yearly 

population estimates. If a population estimate was not 
available for a particular year, the previous year’s popu-
lation was used.

Data analysis
Analysis of weather trends
Humidity and temperature were analysed between the 
night-time hours of 6:00  p.m and 6:00  a.m., as this is 
when the temperature is lowest and mosquitoes, being 
nocturnal feeders, are most active. For the 2.5  years 
of the study, weekly and monthly nighttime counts 
of three-hour intervals above 50% relative humidity, 
were calculated. The choice of a three-hour interval 
of humidity was selected somewhat arbitrarily assum-
ing that such a period would likely be sufficient for 
the mosquito to attempt to forage. The 50% humidity 
threshold was selected based on reviewed literature [11, 
18, 19] and observations in the MRT semi-field system 
where mosquitoes were only caught in light traps when 
relative humidity was at least around 50%. The humid-
ity counts were then compared between the tree and 
granary sites of each village using a paired Wilcoxon 
Ranked Sum Test and between all the villages using 
Kruskal–Wallis Test. The humidity and temperature 
data recorded in trees were correlated to those found 
in the granaries by the Spearman rank correlation coef-
ficient. Analysis was run on R statistical software, ver-
sion 4.0.4 [20].

Monthly nighttime humidity counts, and tempera-
tures were averaged across the village sites, and malaria 
case incidence per 100,000 person months was pooled 
across all nine health centres. Rainfall, measured at 
Macha, was considered representative of the overall 
region. These monthly values were adjusted to account 
for missing data and differences in the number of days 
per month, and then plotted to explore seasonal trends.

Table 1  Sites of logger location [35]

* Located on or adjacent to the Kafue River flood plain

Logger site Tree scientific name Coordinates Elevation (m) Adjacent Rural 
Health Centre

Chikanta Brachystegia boehmii 448,355/8197121 1149 Habulile

Nehobwende Piliostigma thonningii 460,068/8187527 1192 Chilala

Simuwana Brachystegia spiciformis 464,128/8175165 1210 Siabankulu

Chiinda Faidherbia albida 487,251/8246618 1008* Kabulamwanda

Muyumba many trees and shrubs 490,950/8226205 1013* Chitonga

Hagoonta Brachystegia spiciformis 506,339/8191770 1069* Mangu’unza

Mapleiki Terminalia sericea 494,717/8188852 1121 Nalube

Siyandwa Strychnos spinosa 464,128/8175165 1268 Kamwanu

Sichita Pseudolachnostylis maprounefolia 490,858/8208122 1047* Mapanza
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Negative binomial regression analysis
A series of negative binomial regression models were 
employed to explore the association between environ-
mental factors and malaria incidence. A negative bino-
mial model was chosen because the malaria case data 
were over-dispersed. For each model, the response vari-
able was weekly malaria incidence, and the fixed effects 
were weekly nighttime counts of RH greater than 50%, 
average nighttime temperatures, rainfall, elevation, and 
year. Village was added as a random effect and a popu-
lation offset was used to account for changes in village 
population year-to-year. Separate models were built 
for the whole year and for the dry season (June through 
October). While May is also a dry month, June was used 
as a starting point to prevent carry over of cases from 
the rainy season. Next, to assess the temporal associa-
tion between malaria incidence and the fixed variables, 
given the malaria incubation period of approximately 
4–14 days, the models were built with zero, one-week or 
two-week lags in malaria cases (Table 2). Next, backward 
stepwise selection of the variables was done by removing 
variables one at a time, until the lowest Akaike Informa-
tion Criterion (AIC) was achieved. Finally, the AIC was 
also used to determine the best model for the lag between 
malaria incidence and the fixed variables. This process 
was repeated for the granary data as well. Missing data 
were excluded from the models with 400 data points 
missing in the whole year tree model, 592 in the granary 
whole year model, 144 in the tree dry season model, and 
240 in the granary dry season model. Analysis was run on 
R statistical software, version 4.0.4 [20].

Results
Evaluation of weather trends and malaria incidence
Using previous insectary observations that mosqui-
toes can become active and seek out bloodmeals after 
three consecutive hours with relative humidity above 
50%, household hourly logger data was used to establish 
weekly and monthly counts of nighttime 3-h intervals 

above 50% RH. The database derived from these 2.5-years 
of measurements amounted to 319,855 records. During 
this same period, reports of malaria cases were obtained 
weekly from nine nearby clinics, detecting a total of 554 
cases. These clinics combined served an estimated popu-
lation of 104,712 in 2017, 107,009 in 2018 and 112,138 in 
2019.

The monthly malaria incidence, nighttime humidity 
counts, and nighttime temperature were averaged across 
the sampled sites to determine the temporal trends 
for the region as a whole (Fig.  3). Rain was measured 
at a single site but was considered representative of the 
region. Rain primarily fell in the months of November 
(M = 63.5 mm, SD = 28.5) and December (M = 144 mm, 
SD = 41.4) with some more sporadic rain through to 
April. From the months of May to October, there was vir-
tually no rain, with 3 mm in 2018 and 0.4 mm in 2019. 
Nighttime temperatures at the tree sites were highest 
during the rainy season of November to April with an 
average of 21.5 °C (SD 3.96). Temperatures began to drop 
in April and reach lows during June and July (M = 13.1 °C, 
SD = 4.94), before slowly rising again in August. The aver-
age nighttime temperature during the dry season of May 
to October was 18.9  °C (SD = 6.14). The average night-
time temperatures of the trees were strongly correlated 
with those of the granaries (R = 0.98, P < 0.001), but were 
overall significantly colder in the trees than the granaries 
(P < 0.001).

During the rainy season, nighttime relative humid-
ity of tree sites was consistently above 50%, with average 
monthly counts of relative humidity above 50% for 3  h 
of 101.1 (SD 16.4) which corresponds to 25 full nights a 
month with relative humidity above 50%  for 3  h. Nota-
bly, elevated humidity levels extended beyond the rainy 
season into June before rapidly dropping off. From May 
to June of the dry season, the average monthly counts of 
relative humidity above 50% for 3 h was 102.6 (SD = 15.0) 
while from July to October it was 46.5 (SD = 27.5). This 
prolonged increase of humidity into the dry months may 

Table 2  Selection of negative binomial models and variables

Negative binomial models with all variables included for full year and dry season, based on tree or granary data. Each model is shown with offsets of zero 1-, or 2-week 
lags. Lower akaike information criterion (AIC) indicates better fitting model. P-values are reported for each variable in the full model

Offset AIC P value

Humidity Temperature Year Rain Elevation

Full Whole Year Tree Models No lag 1411.45 1.06 E−17 1.72 E−03 1.61 E−04 0.931 0.530

1 week lag 1459.25 2.70 E−16 3.96 E−09 4.28 E−05 0.687 0.427

2 week lag 1498.52 1.70 E−14 3.22 E−12 2.68 E−04 0.308 0.275

Full Dry season Tree Models no lag 329.5862 1.29 E−04 0.231 0.473 0.304 0.324

1 week lag 294.8394 4.05 E−04 0.583 0.614 0.185 0.472

2 week lag 287.3746 0.697 0.848 0.795 0.842 0.172
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be the result of standing pools of water that remain from 
the previous rainfalls although this is unlikely due to 
overall aridity and/or from increased plant transpiration. 
Indeed, while the tree and granary humidity readings 

above 50% relative humidity for 3 consecutive hours 
were correlated (R = 0.84, P = 2.2 × 10–16), the tree sites 
were found to have significantly more humidity read-
ings above 50% RH for 3 consecutive hours compared to 

Fig. 3  Malaria incidence per 100,000 person-months (red) pooled across all 9 villages. a Monthly rainfall (dark blue) at Macha. b Monthly counts of 
night-time 3-h intervals above 50% relative humidity (light blue) averaged across all 9 villages. c Monthly nighttime temperatures (green) averaged 
across all 9 villages. All monthly values were adjusted for different number of days per month and for missing data
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granary(P < 0.001). There was no significant difference in 
humidity readings from village to village (H(8) = 8.802. 
P = 0.036.

Malaria incidence was also notably highest in the rainy 
season with an average monthly malaria incidence of 
28.88 cases per 100,000 person-months (SD 20.36), but 
was also high, at 23.64 cases per 100,000 person-months 
(SD = 10.87), during the early dry season of May and June 
when the rain had stopped but humidity was still ele-
vated. Once humidity declined in July through October, 
the incidence dropped to 3.46 cases per 100,000 person-
months (SD = 1.55) (Fig. 3).

Modelling the role of weather variables on malaria 
incidence
To investigate further the potential role of humidity on 
malaria incidence, a series of negative binomial regres-
sion models were developed using whole year local 
weather readings from tree loggers. All models used 
weekly malaria incidence as the response variable, and 
evaluated the role of sustained humidity, temperature, 
elevation, and year as fixed variables in the model. From 
the full model containing all these variables, backward 
selection, based on AIC, identified weekly nighttime 
counts of sustained relative humidity, average night-
time temperature, year and rainfall as important vari-
ables in the model. Elevation was not included in the 
final model due to worsening the strength of the model, 
based on AIC, and a non-significant (P > 0.05) effect in 
the model. Notably, rainfall did not have a significant 
effect in the model (P > 0.05), but its removal resulted 
in a weaker model, based on AIC, so it was kept in the 
final model. Humidity, temperature and year were all 
found to contribute significantly (P < 0.01) to the whole 
year model (Table  3). In addition, the strongest model, 
based on AIC, was the final whole year with no temporal 
lag between the environmental variables and the malaria 

case data (Table  3). In this model, if all other variables 
are held constant, for every additional count of a three-
hour interval with RH above 50% in trees, the weekly 
incidence of malaria increases by 11.1% (IRR = 1.111, 
95%CI = 1.084–1.138), and for every degree increase in 
temperature in trees, the weekly incidence increased by 
7.4% (IRR = 1.074, 95% Cl = 1.026–1.145). This relation-
ship is shown graphically in Fig. 4. To evaluate, the more 
widespread effects of humidity, a similar model was cre-
ated using the same parameters as the final whole year 
tree model, but with the humidity and temperature data 
recorded in granary sites. In the granaries, for every unit 
increase in counts of 3-h intervals with humidity above 
50%, the weekly incidence of malaria increased by 5.3% 
(IRR = 1.053, 95%CI = 1.023–1.077), and for every degree 
increase in temperature, malaria incidence increased by 
9.8% (IRR = 1.098, 95% CI = 1.041–1.159). These findings 
overall align with what is seen in the tree models, yet gra-
nary humidity seems to play less of a role in malaria inci-
dence compared to trees given that its effect size, based 
on IRR, is nearly half that of the tree humidity.

Next, given the interest in better understanding 
malaria incidence during the dry season (June to Octo-
ber), a series of models were created for this subset of 
the year. This was done to investigate whether humidity 
continues to play a role, even in the absence of rainfall. 
Based on AIC, the final model corresponded to a two-
week lag, but in this model no variables were considered 
significant (Table  3). The next best fitting model used a 
one-week lag. Backward selection identified only humid-
ity, rainfall and year as important variables to include in 
this final model. A zero-week lag model that more closely 
matched the whole year model, also identified humidity 
and rainfall as important variables to include. For both 
these models, while rainfall was considered important to 
the strength of the model by AIC, it was not statistically 
significant by P-value (P > 0.05). Rainfall during the dry 

Table 3  Final negative binomial models derived from backward selection of full model variables

This table includes the final models for whole year or dry season, based on tree or granary data, and zero-, 1- and 2-week lags. Lower akaike information criterion (AIC) 
indicates better fitting model. P-values for each variable included in the model are shown, and in bold are significant values. If a variable was not included in the final 
model it is listed as NA. The Incidence Rate Ratio (IRR), indicates the ratio by which malaria incidence increases for every unit increase of humidity or temperature, as 
other variables are held constant

Model AIC P value IRR

Humidity Temperature Year Elevation Rain Humidity Temperature Rain

Final Whole Year Tree Models No lag 1409.8 1.22 E−17 2.03 E−03 1.62 E−04 NA 0.891 1.111 1.074 1.000

1 week lag 1457.9 3.23 E−16 5.20 E−09 4.35 E−05 NA 0.664 1.097 1.143 1.000

2 week lag 1498.5 1.70 E−14 3.22 E−12 2.68 E−04 0.2750 0.308 1.083 1.180 0.995

Final Dry Season Tree Models No lag 324.59 4.35 E−05 NA NA NA 0.349 1.102 NA 0.499

1 week lag 290.8 7.77 E−04 NA 0.690 NA 0.127 1.093 NA 1.278

2 week lag 281.45 0.522 NA NA NA 0.875 1.016 NA 1.031
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season was only detected in three weeks over the three 
years of the study and totaled only 8.6 mm. Conversely, 
local tree humidity was strongly significant in the zero 
and 1-week lag models (Table 3). The 2-week lag model, 
which had the best AIC, did not show significance for 
any of the variables evaluated. This may be due either 
to a true lack of effect or the fact that there are so few 
malaria cases in the dry season, especially when shifting 
2 weeks further into the dry season, that the distribution 
of the negative binomial becomes so narrow that it is dif-
ficult to fit the model. In the 1-week lag model, which 
was the next best fitting model, for every additional 
count of a three-hour interval with RH above 50% in 
trees, the weekly incidence of malaria increases by 9.3% 
(IRR = 1.093, 95%CI = 1.040–1.153). This weakly posi-
tive association between night-time tree humidity counts 
and malaria incidence is shown graphically in Fig. 5. Very 
similar results are found when the same model was cre-
ated using granary data, where for every additional count 
of a three-hour interval with RH above 50% in grana-
ries, the weekly incidence of malaria increases by 10.2% 
(IRR = 1.102, 95%CI = 1.031–1.180). These findings sug-
gests that, although malaria cases are low during the dry 
season, there appears to be an association with humidity. 
Thus, sustained humidity may play a role in the periodic 

Fig. 4  a Weekly malaria incidence per 100,000 person-weeks for the full year by the weekly count of night-time 3-h intervals with greater than 
50% relative humidity in the trees, and b Weekly malaria incidence per 100,000 person-weeks for the full year by the average weekly nighttime 
temperature in the trees. Each point represents a single week for a given village and corresponding health centre. The blue line represents the full 
year tree model predictors

Fig. 5  Weekly malaria incidence per 100,000 person-weeks for the 
dry season (June to October) by the weekly count of night-time 3-h 
intervals with greater than 50% relative humidity in the trees. Each 
point represents a single week for a given village and corresponding 
health centre. The blue line represents the full year tree model 
predictors
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transmission of malaria during the dry season of south-
ern Zambia.

Mosquito collections
To determine the species of anopheline mosquitos in the 
villages being studied, CDC light traps that were intermit-
tently placed across the nine sites throughout the study 
period. In the 294 traps that were placed, a total of 2605 
mosquitos were caught. Of those, 557 were morphologi-
cally determined to be female anopheline mosquitos. 
PCR was able to be performed on 266 of these, and 200 
were identified. Of those identified by PCR, 62 (31.0%) 
were An. arabiensis, 89 (44.5%) Anopheles squamosus, 30 
(15.0%) Anopheles quadriannulatus, 18 (9.0%) Anopheles 
rufipes, and 1 (0.5%) Anopheles pretoriensis.

Of all the traps placed, 101 were placed in the dry sea-
son of June–October catching a total of 126 mosquitos. 
24 of these were determined to be female anopheline 
mosquitos, of which 8 were speciated by PCR. These 
were identified as 3 An. rufipes, 2 An. arabiensis, 2 An. 
quadriannulatus, and 1 An. squamosus. Although, the 
collections were sporadic due to study limitations, these 
findings still provide valuable information regarding the 
species of mosquitoes in the region.

Discussion
In several recent publications on malaria epidemiology 
relative humidity is mentioned, but often the measure-
ments have been underestimated and often quoted from 
average numbers or based on meteorological data from 
a collecting station [11, 21]. Even recently previous work 
in Zambia attempted to measure local relative humidity 
around villages near the Zambezi River using satellite 
information; it was difficult to transfer dew point meas-
urements by the Landsat satellite to local relative humid-
ity in a meaningful manner [22]. Obviously more precise 
meteorological measurements are needed. The small 
LASCAR temperature and humidity loggers used in this 
study have enabled collection of data from microhabitats 
and hourly measurements throughout the 24-h cycle for 
three consecutive years. In 2018, a group from Chennai 
in India used similar loggers to assess microclimate vari-
ables of the ambient environment to study the extrinsic 
incubation period of Plasmodium vivax and P. falcipa-
rum in an urban setting [23].

The study reported here, has taken a broad climatic 
view covering large tracts of land and attempted to con-
solidate ecological parameters into a large territorial 
ecosystem. This study measured a series of ecological 
features that impact the transmission of malaria through 
their effects on the natural ecology of the vector mos-
quito. For temperature, this study shows that it has an 
important role on the incidence of malaria when looking 

at the full year. The models in this study show that, when 
holding all variables constant, malaria incidence 
increases as temperature increases. When all variables 
are included, the model predictors show that beyond 
a certain temperature, malaria incidence again begins 
to fall. This may be due to the fact that as temperature 
increases, humidity falls. Recent literature is attempting 
to ascertain temperature limits. Shapiro et  al. [24] used 
Anopheles stephensi and P. falciparum with selected 
variations of temperature from 21-34C and measured 
half-life periods, however they did not consider daily 
fluctuations as would happen in nature [24]. Lunde et al. 
[25] examined six different survival models, but again did 
not address the issue of variability [26]. Other field-based 
modelling studies, that do account for daily variability, 
have shown similar effects of temperature on malaria 
incidence [27–30]. Interestingly, for the dry season 
model, the data indicate that temperature does not have 
a significant effect.

The only variable that was found to be significant in 
both the full year and the dry season was sustained rela-
tive humidity, the main objective of this study. These 
models indicate that, as the intervals of sustained relative 
humidity above 50% increased, there was an increase in 
malaria incidence. Interestingly, this effect was not sig-
nificant when looking at the dry season of June–Octo-
ber with a two-week lag. While it may be possible that 
humidity truly does not have an effect for this period, this 
lack of significance may also be due to the fact that the 
case load is so low in the area during this period that it 
becomes statistically challenging to detect any effect due 
to the limited range of incidence.

Determining where this humidity comes from was not 
the objective of this study, but it is an important question 
to consider. In the hot dry season in South Central Africa, 
there is little moisture in the environment. There is no 
rainfall, no standing pools of water and no isolated mists 
observed by local people. Large rivers do remain, but 
these are located far from the villages used in this study. 
It is possible that the humidity produced by these rivers 
may be brought to the villages by local wind movement. 
Alternatively, this humidity may be derived from tree 
transpiration. This study showed that trees have more 
sustained humidity readings above 50% than the grana-
ries in the same village. These humidity readings are still 
correlated, thus is it possible that trees produce enough 
humidity to diffuse throughout the local compound. 
Overall, further studies are needed to better establish the 
source of the humidity.

Anopheles mosquitoes have clearly adapted to the vari-
ations in climate throughout Africa. As has been shown 
here, and as others have shown elsewhere [13, 31], these 
mosquitoes can survive and forage all year long [18]. The 
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study results here suggests that this survival and/or abil-
ity to forage is dependent on humidity and temperature. 
During the dry seasons this association was weaker but 
further studies in areas with greater malaria caseloads 
may be able to better establish this association. Local 
persistent aerial moisture will also depend on movement 
of air, storms, and stillness, which were not measured in 
this study. This will be an important variable to evaluate 
in further studies.

Research carried out in the Sahel and other countries 
on members of the An. gambiae complex have been 
studied throughout dry seasons to investigate diapause, 
dormancy, migration and effects on the mosquito popu-
lations [21, 32–34]. Population studies involving genetic 
markers in An. arabiensis in Senegal showed little change 
in the genetic profile across the area from dry to rain sea-
son and back [19]. The authors’ consensus was that local 
survivors were derived from a permanent population 
deme spread over large areas that fluctuates seasonally. 
The results of this study tends to support these results. 
Humidity can assist in the survival of pockets of females 
which are present in the area and when the rains occur 
in November this enables the mosquito population to 
expand rapidly. This is likely to occur over much of the 
African continent and needs to be considered wherever 
malaria control is practiced.

Limitations
The work reported here covers data collected from nine 
operational loggers set in growing trees, near houses 
where people sleep, which more closely represents the 
ecological features of the resting mosquito. However, 
as with most field-based studies there are limitations to 
this study. These include missing data due to broken or 
displaced loggers, and logistical circumstances limiting 
mosquito collection and the period of data collection to 
2.5 years. In addition, while many climatic variables were 
able to be included in these models, some, such as wind, 
could not be measured. Furthermore, some of the infec-
tions may have been missed since the diagnoses were 
made using malaria rapid diagnostic tests, which are less 
sensitive than blood smear examination, and because 
many individuals are likely never tested because they do 
not seek care for asymptomatic or mild cases. These chal-
lenges particularly affected the ability to fit a model to the 
dry season, but important trends were still found.

Conclusions
This study aims to show the importance of local humid-
ity in supporting mosquito foraging and malaria 
transmission in agricultural areas in central southern 
Africa. These conditions appear to help maintain local 

transmission of malaria and to also provide conditions 
that enable local foci of vector species to survive and 
expand when rains occur. These factors will be essential 
to consider when establishing proper malaria control 
efforts in these areas.
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