
Mwai et al. Malaria Journal          (2022) 21:326  
https://doi.org/10.1186/s12936-022-04346-9

RESEARCH

Malaria attributable fractions with changing 
transmission intensity: Bayesian latent class vs 
logistic models
Kennedy Mwai1,2*   , Irene Nkumama2,3, Amos Thairu2, James Mburu2, Dennis Odera2,3, Rinter Kimathi2, 
Lydia Nyamako2, James Tuju2,4, Samson Kinyanjui2,4,5, Eustasius Musenge1 and Faith Osier2,3,4,5 

Abstract 

Background:  Asymptomatic carriage of malaria parasites is common in high transmission intensity areas and con-
founds clinical case definitions for research studies. This is important for investigations that aim to identify immune 
correlates of protection from clinical malaria. The proportion of fevers attributable to malaria parasites is widely used 
to define different thresholds of parasite density associated with febrile episodes. The varying intensity of malaria 
transmission was investigated to check whether it had a significant impact on the parasite density thresholds. The 
same dataset was used to explore an alternative statistical approach, using the probability of developing fevers as a 
choice over threshold cut-offs. The former has been reported to increase predictive power.

Methods:  Data from children monitored longitudinally between 2005 and 2017 from Junju and Chonyi in Kilifi, 
Kenya were used. Performance comparison of Bayesian-latent class and logistic power models in estimating malaria 
attributable fractions and probabilities of having fever given a parasite density with changing malaria transmission 
intensity was done using Junju cohort. Zero-inflated beta regressions were used to assess the impact of using prob-
abilities to evaluate anti-merozoite antibodies as correlates of protection, compared with multilevel binary regression 
using data from Chonyi and Junju.

Results:  Malaria transmission intensity declined from over 49% to 5% between 2006 and 2017, respectively. Dur-
ing this period, malaria attributable fraction varied between 27–59% using logistic regression compared to 10–36% 
with the Bayesian latent class approach. Both models estimated similar patterns of fevers attributable to malaria with 
changing transmission intensities. The Bayesian latent class model performed well in estimating the probabilities of 
having fever, while the latter was efficient in determining the parasite density threshold. However, compared to the 
logistic power model, the Bayesian algorithm yielded lower estimates for both attributable fractions and probabilities 
of fever. In modelling the association of merozoite antibodies and clinical malaria, both approaches resulted in com-
parable estimates, but the utilization of probabilities had a better statistical fit.

Conclusions:  Malaria attributable fractions, varied with an overall decline in the malaria transmission intensity in this 
setting but did not significantly impact the outcomes of analyses aimed at identifying immune correlates of protec-
tion. These data confirm the statistical advantage of using probabilities over binary data.
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Background
Asymptomatic carriage of malaria parasites is highly 
prevalent in areas with high malaria transmission as a 
result of naturally acquired immunity [1]. It is, therefore, 
likely that, in such areas, an individual with a non-malar-
ial fever has coincidental parasitaemia. Since the likeli-
hood of having fever generally increases with parasite 
density, [1–3] the assumption is that fever in the presence 
of parasitaemia necessarily constitutes clinical malaria. 
However, in high transmission settings [4], parasitaemia 
accompanied by fever may not be adequate to define 
an episode of clinical malaria and may lead to differen-
tial misclassification. Besides causing an overestimation 
of malaria burden in an area [1, 5], the misclassification 
complicates immunological and clinical trials where 
clinical malaria cases are an endpoint or one of the out-
come variables. As an outcome variable, it is particularly 
important for identifying correlates of protection from 
clinical episodes to inform vaccine development.

To overcome this problem of misdiagnosis, different 
studies have based the case definition of febrile malaria 
with parasite density above a locally defined threshold. 
The computation of malaria attributable fractions (MAF) 
or the proportion of fevers due to malaria parasites has 
been used to define different thresholds for parasitaemia 
[2, 3].

The classical method for deriving the attributable 
fraction is a simple numerator denominator approach 
[6] which is prone to bias when applied in high malaria 
transmission areas [5]. In high transmission settings, 
individuals may have parasites and not show clinical signs 
of malaria. Logistic regression models are typically used 
to handle this bias. The model determine the risk of the 
outcome as a continuous function of parasite density [1, 
2] and have been widely used to obtain attributable frac-
tions against a range of outcomes with parasitaemia as 
the exposure variable [1, 2, 7–9]. Additionally, a Bayesian 
latent class model of two-component mixture distribu-
tions was proposed to improve the estimation of attribut-
able fractions [3]. The latent class model was developed 
to handle the limitation of imprecise or negative attribut-
able fractions occasionally observed in standard logistic 
regression models [5].

Malaria transmission intensity has been found to 
strongly influence the attributable fractions. In a study 
conducted in two areas with different transmission inten-
sities in Kilifi at the coast of Kenya, a MAF of 50.2% was 
estimated for Ngerenya, the low transmission site and 
47.9% for Chonyi, the high transmission site. In the study, 
the logistic regression method was applied and derived a 
parasite density threshold of 2500 parasites/µ L of blood 
as the most appropriate to distinguish malaria-attrib-
utable fevers from fevers due to other causes in both 

settings. Following Ngerenya and Chonyi study, 2500 
parasites/µ L threshold has been widely applied in the 
definition of malaria cases in various studies conducted 
along the Kenyan coast [7, 10–13].

Significant reductions in malaria transmission and 
admissions have been reported over the last decade in 
endemic countries in Africa [14] and in particular on the 
Kenyan coast [11, 15, 16]. Based on this observed reduc-
tion in transmission and the influence of transmission 
intensity on the MAF’s, the present study was conducted 
to determine the variation of malaria attributable frac-
tions over time.

The probability of fever as a function of parasite density 
and the optimal parasite thresholds was estimated using 
logistic regression [3, 17]. The estimated probabilities of 
fever have been used in determining risk of developing 
clinical episodes in malaria vaccine trials. In these trials, 
the probabilities estimated from a Bayesian latent class 
model were proposed as a better approach to compare 
the placebo and control groups [18, 19].

Several articles [20–24] have pointed out problems 
associated with the categorization of data. These include 
not only the loss of information on variation and statisti-
cal power, but also an increased risk of type I errors and 
poor predictive performance [21, 22, 24]. This study also 
explores the utilization of probability estimates from 
Bayesian latent class models as an alternative to dichot-
omizing individuals using a selected parasite density 
threshold.

Methods
Study area and population
This research utilized cohort data from Junju and Chonyi 
sub-counties in Kilifi County, which is part of the Kilifi 
Health and Demographic Surveillance System (KHDSS) 
on the coastal region of Kenya Fig. 1 [33]. The area has 
two malaria transmission seasons May–July and Novem-
ber–December. For Junju the data were prospectively col-
lected from participants aged 1 to 15 years old between 
2005 and 2017 (inclusive) who were initially recruited 
into a malaria vaccine trial [34]. The Chonyi dataset 
had 286 children aged between 0–10  years collected in 
October 2000 and was only used for correlates of disease 
selection model comparison [26].

Malaria parasite prevalence cross‑sectional survey
A cross-sectional bleed survey was done every year at 
the beginning of the malaria season (March–May) for 
the Junju cohort as shown in Table 1 except for 2005 and 
2006 when the surveys were done during the malaria sea-
son for a vaccine trial. For the Chonyi cohort, the cross-
sectional malaria survey was conducted in October 2000. 
Parasitaemia was determined by thin smear microscopy. 
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Fig. 1  Junju and Chonyi study sites in the Kilifi Health and Demographic Surveillance System (KHDSS)
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In both studies, the participants were followed up both 
actively with weekly home visits by trained field workers 
and passively at health facilities to identify clinical epi-
sodes of malaria. Blood smears were prepared to deter-
mine parasite densities for any child who had a fever 
(axillary temp ≥ 37.5  °C) for the cross-section surveys 
and follow-up surveillance, respectively. The Govern-
ment of Kenya-recommended first-line treatment was 
used for treatment of malaria episodes.

For the parasitaemia determination by microscopy, the 
number of asexual-stage parasites/200 leukocytes was 
counted, and parasitaemia was estimated based on actual 
or assumed (8,000 leukocytes/µL) leukocyte count meas-
ured for each blood smear.

Statistical analysis
A comparison of logistic regression and Bayesian latent 
class models as estimators of malaria positivity was done. 
For both approaches, the relationship between the risk 
of fever and parasite density was carried out separately 
for each year and age group. A parasite density cut-off 
was estimated from the logistic approach and prob-
abilities of children with different levels of parasitaemia 
were estimated from the Bayesian approach using R [35] 
and OpenBugs [36] respectively. The malaria positiv-
ity estimates from the two approaches were investigated 
by comparing their statistical performance in select-
ing parameters of malaria protection. Specific to logistic 

models, the selected parasite density cut-off was used to 
define cases and controls.

Logistic regression
A logistic regression model was fit to the data, modelling 
the risk of fever as a continuous function of the parasite 
density. The model was of the form logit(πi) = α + f (xi) 
where πi is the probability that observation i with para-
site density xi is a (fever) case. Along with f (xi) = βxτi  , a 
smooth monotonic function of xτ where τ is the power 
transformation of the parasite density. This power func-
tion τ was tested at different values between 0.10 and 0.90 
with a precision of 0.01 and the value that maximized the 
log-likelihood best was chosen. The malaria attributable 
fraction (MAF),� , was estimated using the slope coeffi-

cient of the logistic regression; � =
(

1
/

N
)

i
∑

1

(Ri − 1)

/

Ri 

where Ri = exp [f (xi)] and the standard error was esti-
mated using the bootstrap approach with 1000 bootstrap 
samples [1].

Bayesian latent class
For the Bayesian latent class model, the parasite density 
was resolved to a mixture of two multinomial distribu-
tions. One component g1(.) corresponds to non-malaria 
fever episodes and the other component, g2(.) to chil-
dren with clinical malaria episodes (fever and para-
sites). Parasite levels during the cross-sectional bleed 

Table 1  Prevalence of Plasmodium falciparum positivity, fever, and presumptive malaria (fever + parasitaemia) in the pre-transmission 
season cross-sectional survey and the number of active follow-up events in the Chonyi 2000 and Junju 2005–2007 Cohorts

Participants were recruited for the original vaccine study in 2005 and 2006 and sampling of participants extended into the high transmission season each year
* Excluded in the main analysis due to health workers’ strike
a Chonyi was used in the correlates of protection models only

Year Samples (n) Mean age in years 
(min–max)

P. falciparum
(%)

Fever
(%)

Presumptive malaria 
(%)

Active 
follow-up 
events (n)

2000a 286 5.62 (< 1–10) 42.31% – – 626

2005 372 3.9 (1–9.0) 49.05% 0.81% 0.54% 1029

2006 300 4.5 (1.5–9.5) 31.21% 0.67% 0.33% 615

2007 339 4.8 (< 1–11.0) 15.93% 3.24% 1.18% 1816

2008 341 5.4 (< 1–12.0) 29.62% 3.52% 3.52% 884

2009 352 5.8 (< 1–13.0) 20.17% 2.56% 1.14% 958

2010 377 6.5 (< 1–14.0) 27.59% 3.98% 2.65% 957

2011 377 7.1 (< 1–12.7) 23.08% 1.86% 1.33% 891

2012* 399 7.1 (< 1–13.7) 16.79% 1.75% 0.50% 696

2013 410 7.5 (< 1–14.7) 8.78% 1.46% 0.24% 1483

2014 404 8.2 (< 1–15.7) 14.25% 1.49% 0.50% 1619

2015 400 8.3 (< 1–16.5) 17.36% 1.25% 0.25% 1319

2016 316 7.8 (< 1–15.0) 11.61% 1.27% - 1087

2017 335 7.1 (< 1–15.0) 4.32% 1.19% - 1050



Page 5 of 10Mwai et al. Malaria Journal          (2022) 21:326 	

were available and were used as the training sample, i.e., 
a sample that comes from the component of the mix-
ture corresponding to children without fever but who 
may have parasites. The data was then divided into K  
ordered categories over the range of the parasite den-
sity x . This was followed by counting the of test samples 
n =

(

n0, n1, ..., nk−1

)

 and control samples (non-fever 
cases) m =

(

m0,m1, ...,mk−1

)

 . Then the MAF,� , was then 
estimated from the two multinomial distributions,

The parameters P1 and P2 are the distributions func-
tions of the components g1(.) and g2(.) respectively. The 
category-specific attributable fractions were obtained 
using,

To estimate the probability, �ind , of each individual case 
of fever being attributable to malaria local and piece-wise 
cubic polynomial models were used. The models were 
fitted using category-specific MAF, �c , together with the 
category-specific midpoint of parasite density. This was 
followed by predicting the individual �ind using their par-
asite density measurements from the results of various 
model fitting functions.

Sensitivity and specificity of various cut-off values for 
parasite density were estimated by nc�c

/

N� and 
1− nc(1− �c)

/

N (1− �) respectively where nc =
∑K

i=c ni

,�c =
(

∑K
i=c �ini

)

/

nc , ni the number of fever cases in the 
category i and c represents the parasite density category 
of which it is the selected cut-off in logistic regression or 
the lower bound for the category in latent class models. 
Specific to logistic estimation, cases were febrile children 
exceeding the selected cutoff and controls otherwise.

Association with protection
Multi-level logistic and zero-inflated models were used 
to investigate the association between high versus low 
merozoite antibodies and clinical malaria. Various anti-
body concentrations were applied as cutoffs to define the 
high and low responders [26]. The results were used to 
compare the performance of probability and binary out-
comes. Since there was a probability mass at zero due 
to non-febrile participants, the zero inflated modelling 
approach was utilized. Specifically, for the probability 

(1.1)
θi = P

(

x ∈ category i | P1
)

,

φi = P
(

x ∈ category i | P2
)

,

� = P(x ∈ P2)

(1.2)

�i = P
(

x ∈ P2|x ∈ category i
)

=
�φi

(1− �)θi + �φi
.

outcome, results from the Maximum Likelihood (MLE) 
and Bayesian inference estimations were compared [26, 
37, 38].

Results
Study population
A total of 268 participants from Chonyi and 4722 par-
ticipants from Junju, Kilifi County were recruited in 
2000 and from 2005 to 2017 respectively. Approxi-
mately 300 or more participants were followed up each 
year with average recruitment age of 6.5 years (ranging 
between 1 month old to 16 years) as shown in Table 1. 
Each child had on average 2.94 test occurrences during 
follow-up giving rise to a total of 14,404 events during 
the entire study period.

Temporal distribution
Table  1 shows the distribution of fevers (axillary tem-
perature of ≥37.5  ℃) for the cross-sectional surveys. 
In Junju, approximately 1034 (2.19%) occasions of fever 
were reported during the cross-sectional surveys. A 
decreasing trend of fevers was observed over the study 
period except for 2005 and 2006 where the samples 
were collected specifically for a vaccine trial [25]. The 
prevalence of Plasmodium falciparum was also arti-
ficially high during this period since the participants 
were recruited during the malaria season. A decline in 
the prevalence of P. falciparum parasite was observed 
between 2006 to 2013 from 30.21% to 8.78%. This was 
followed by a slight increase in 2014 and 2015 then 
another decline in 2016 to 4.32% in 2017.

Relationship of fever to parasitaemia over time
The probability that a fever case was malaria attribut-
able at a given parasite density � changed gradually over 
the study period as shown in Fig. 2. The MAF was esti-
mated using the Bayesian latent class model and logistic 
regression using Junju cohort data only. The Bayesian 
latent class gave a lower MAF estimate, Bland–Altman 
bias = 0.20 (0.16–0.24), compared to the logistic model. 
After estimating the sensitivities and specifities of dif-
ferent parasite densities, the optimal parasite cut-off 
was selected using the logistic regression for the dif-
ferent years (Additional file 1: Table S1). However, the 
number of malaria positive individuals did not vary sig-
nificantly with the new thresholds compared to the pre-
viously defined 2500p/µl threshold (Additional file  1: 
Fig.  S1), despite the changing patterns. Notably, the 
Bayesian latent class approach and the logistic power 
models approximated a similar pattern of MAF but the 
estimates were lower in the former model. Comparable 
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patterns were also observed in the probabilities,�i , pre-
dicted from the individual parasite densities (Addi-
tional file 1: Fig. S1).

Non‑febrile individuals
An interval estimate for the prevalence of malaria fever 
was estimated using the Bayesian latent class model. The 
individual probabilities from the Bayesian fit for non-
febrile participants with parasitaemia were adjusted 
using the interval estimate for the prevalence of malaria 
fever. This is shown in Additional file 1: Fig. S2 and Addi-
tional file  1: Fig.  S3 where non-febrile cases had lower 
clinical malaria likelihood compared to the febrile cases 
for the parasite-positive individuals. Detailed implemen-
tation of the methodology is included in the repository as 
OpenBUGS and R codes.

Impact of age on MAF
The MAF estimates were higher for older age groups than 
the children < 1  year as shown in Fig.  3A. Additionally, 
the predicted individual probabilities declined with age 
as shown in Fig.  3B (Logistic power F = 12.63; p < 0.001 
and Bayesian F = 18.95,p < 0.05) and likewise the logistic 
power model had higher estimates and a smaller range 
than the Bayesian latent class predictions Additional 
file 1: Table S2 and Additional file 1: Fig. S4. This shows as 
expected that the age groups of 1–5 years and 5–10 years 
had a higher probability of having malaria compared 
to the other age groups. The younger age groups had a 
higher specificity and sensitivity intersection (Fig.  3C) 
indicating a lower parasite density threshold for clinical 
episodes compared to the older age groups.

Predicted probabilities from Bayesian latent class 
model were compared with the binary outcome defined 
using logistic parasite density thresholds in identify-
ing correlates of disease protection. To compare the 

perfomance, data on antibody responses to selected P. 
falciparum merozoite antigens for a study done in Kilifi 
was used. Specifically, the data had antibody measure-
ments for the survey conducted in Junju in the year 2008 
and a subset of the Chonyi cohort in the year 2000 [26].

A cut-off of 2500 parasites/µl Additional file 1: Table S1 
plus fever was used to define the binary outcome (malaria 
positive, parasites ≥ 2500 parasites/µL or negative oth-
erwise). The less predicted probabilities from Bayesian 
latent class models were used as the response variable to 
fit the zero–one inflated beta regressions. Table 2 shows 
that using the probability as the outcome gave compara-
ble point estimates with the binary outcome. The bino-
mial multilevel models, however, had high standard 
errors and Bayesian Information Criterion (BIC) values.

Discussion
In areas with high malaria transmission, differences in 
the prevalence of malaria fever can occur due to change 
in transmission intensities or differences in levels of 
immunity in various subsets of the population like age 
groups [2]. The present study shows a variation of trans-
mission intensity over time, and how this contributes to 
variation in the MAF. Similarly, a previous study done in 
Kilifi showed that immunity to malaria is affected by age 
and transmission [2]. The study compared Chonyi, a high 
transmission area and Ngerenya, a low transmission area. 
The sites had a variable age-specific clinical disease pat-
tern with Ngerenya having a higher MAF compared to 
Chonyi overall and specifically for the older age group of 
5-19 years. Shifting MAF was also observed with chang-
ing transmission patterns in the current study. A shift in 
malaria transmission intensities and malaria epidemiol-
ogy has been reported in different endemic areas [14, 27].

Therefore, it is important to review MAF and case 
definitions with changing transmission settings. Fur-
thermore, transmission intensity correlates with the 

Fig. 2  A Temporal estimates of attributable fraction (AF) from 2005 to 2017 using Bayesian latent class models and logistic power models. Pf. Pos is 
the prevalence of parasite positivity during the cross-sectional bleed. B Bland–Altman plot of agreement
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rate of acquisition of natural immunity [28]. A decrease 
in malaria transmission intensity led to reduced immu-
nity which would result in a higher tendency to acquire 

malaria attributable fevers at lower parasite densities as 
was observed in this study.

A strong rationale for developing malaria vac-
cines comes from cohort studies, which show that 

Fig. 3  Malaria attributable fractions and probabilities over age group for all the study participants

Table 2  A comparison of a binary and probability outcome using high vs low antibody levels in Junju 2008 and Chonyi 2000 cohort

Coef Regression Coefficients, SE Standard Error, BIC Bayesian Information Criterion

Binary outcome Probability outcome Probability Bayesian

Coef. (SE) BIC Coef. (SE) BIC Coef. (SE)

Junju Cohort AMA1 −0.30 (0.32) 427.73 −0.22 (0.20) 416.026 −0.23 (0.19)

MSP2 0.09 (0.34) 428.6 −0.04 (0.20) 417.3474 −0.04 (0.21)

MSP3 −0.24 (0.35) 428.18 −0.16 (0.19) 415.947 −0.19 (0.21)

Chonyi Cohort AMA1 0.18 (0.34) 426.8972 −0.24 (0.11) 390.0447 −0.26 (0.13)

MSP2 −0.67 (0.54) 425.4389 −0.33 (0.14) 401.3226 −0.34 (0.15)

MSP3 0.68 (0.35) 423.5147 −0.11 (0.12) 410.5933 −0.12 (0.14)
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individuals continuously exposed to malaria develop 
immunity that initially prevents death from severe dis-
ease, and subsequently recurrent illness [12, 29]. The 
main assumption in defining correlates of protection to 
inform vaccine development is that malaria case defi-
nition is non-biased. Many of the studies classify the 
participants into two groups (clinical malaria case and 
non-case) using a defined parasitaemia threshold plus 
fever [1, 2, 7–9]. The optimal parasite density thresh-
old is selected from maximum combined sensitivity 
and specificity after fitting the case definition models 
[1]. Additionally, the models estimate the probabilities 
individual episodes of fever are malaria attributable at 
a given density of parasitaemia [1, 3, 17].

The logistic power model is the widely used tech-
nique for case definition [2, 7–9, 30] and rarely the 
Bayesian latent class model [3, 17]. However, in this 
study the logistic approach was observed to give higher 
but comparable pattern estimates with the Bayesian 
latent class model. Similarly, this was observed in a 
study done by Vounatsou et al. comparing the logistic 
power and Bayesian latent class model [3]. The logistic 
model approach, however, has been reported to have a 
limitation of estimating imprecise standard errors and 
negative probabilities sometimes [5]. Comparatively, in 
this present study, the logistic approach also gave high 
probability estimates with narrow variation in the low 
parasite densities compared to the latent class model. 
In vaccine studies, the latent class was reported to 
help in identifying possible biases in efficacy estimates 
since it utilizes the whole range of possible parasite 
density cut-offs [19]. An inverse relationship of clinical 
malaria and age has been shown [11, 31], similarly, this 
was observed with the estimated probabilities which 
decreased with age.

Continuous variables, like the probabilities used here 
have been shown to have more variation information 
and statistical power and are sometimes preferred 
over the categorization of data [22]. Several articles 
[20–23] have also pointed out problems associated 
with the categorization of data. This study, compares 
the performance of using probability and binary out-
come model the association with clinical malaria [26]. 
Assuredly, the probability model had a good statistical 
fit; lower BIC estimates and standard errors and gave 
comparable coefficients with the binary model. Also, 
the point estimates were similar to what was reported 
by Murungi et. al in the 2008 study using the same 
cohort [26], in which they reported risk ratios esti-
mated using a modified Poisson regression [32]. This 
study however, reports coefficients showing a lower 
probability of disease for individuals with high anti-
body measurements.

Strengths and limitation
For this study bi-weekly active surveillance was con-
ducted. Therefore, short-lived asymptomatic infections 
below the level of detection by microscopy and exposure 
that does not result in a blood stage infection may have 
been missed. Parasite density cut-offs plus fever are used 
mostly in malaria endemic studies to inform policy. This 
study examined whether the varying intensity of malaria 
transmission affected the estimation of optimal cutoffs 
using the Junju cohort. Varying thresholds estimates 
were observed; however, this did not have a substan-
tial impact on the number of febrile malaria individuals 
in this study. This research demonstrates the statistical 
advantage of utilizing probability outcomes over parasite 
thresholds. It has been shown that continuous variables, 
like the probabilities used, have more variation informa-
tion and statistical power. Sometimes this is preferred 
over the categorization of data, however, a training data-
set is required to estimate the probabilities [22].

In the malaria attributable fraction estimation, this 
study assumed independence of the malaria episodes of 
individuals with repeated measurements over the years. 
This was a major limitation; however, this was handled 
by considering the first 6  months of follow-up for the 
study participants per year of recruitment to reduce 
inter-dependence.

Conclusion
The present study compares the performance of the 
logistic and Bayesian models in estimating MAF. Utiliza-
tion of probabilities estimated from the Bayesian estima-
tor has a better statistical fit in modelling the association 
of correlates of disease compared to the dichotomization 
approach of cases and controls using parasite thresh-
olds from the logistic estimator. Another objective was 
to investigate whether the varying intensity of malaria 
transmission had a significant impact on parasite density 
thresholds.

Results from Junju and Chonyi cohorts verify the valid-
ity of using the probability outcome to identify correlates 
of disease protection while still having a better statistical 
fit. The computational time to fit the zero-inflated mod-
els was higher compared to the binary-based regression 
models and a training class is required for the latent 
class models which can be a limitation for some cohort 
designs.

Approaches to estimating an individual’s marginal 
probabilities of clinical malaria over a given follow-up 
time would be of importance for creating parsimoni-
ous models. Further studies to compare the probabilities 
estimated from models utilizing the quantitative nature 
of the parasite densities without grouping the data 
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in conjunction with changing transmission would be 
valuable.
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