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Abstract 

Background:  Current efforts to estimate the spatially diverse malaria burden in malaria-endemic countries largely 
involve the use of epidemiological modelling methods for describing temporal and spatial heterogeneity using 
sparse interpolated prevalence data from periodic cross-sectional surveys. However, more malaria-endemic countries 
are beginning to consider local routine data for this purpose. Nevertheless, routine information from health facilities 
(HFs) remains widely under-utilized despite improved data quality, including increased access to diagnostic test-
ing and the adoption of the electronic District Health Information System (DHIS2). This paper describes the process 
undertaken in mainland Tanzania using routine data to develop a high-resolution, micro-stratification risk map to 
guide future malaria control efforts.

Methods:  Combinations of various routine malariometric indicators collected from 7098 HFs were assembled across 
3065 wards of mainland Tanzania for the period 2017–2019. The reported council-level prevalence classification in 
school children aged 5–16 years (PfPR5–16) was used as a benchmark to define four malaria risk groups. These groups 
were subsequently used to derive cut-offs for the routine indicators by minimizing misclassifications and maximizing 
overall agreement. The derived-cutoffs were converted into numbered scores and summed across the three indica-
tors to allocate wards into their overall risk stratum.

Results:  Of 3065 wards, 353 were assigned to the very low strata (10.5% of the total ward population), 717 to the low 
strata (28.6% of the population), 525 to the moderate strata (16.2% of the population), and 1470 to the high strata 
(39.8% of the population). The resulting micro-stratification revealed malaria risk heterogeneity within 80 councils and 
identified wards that would benefit from community-level focal interventions, such as community-case management, 
indoor residual spraying and larviciding.

Conclusion:  The micro-stratification approach employed is simple and pragmatic, with potential to be easily 
adopted by the malaria programme in Tanzania. It makes use of available routine data that are rich in spatial reso-
lution and that can be readily accessed allowing for a stratification of malaria risk below the council level. Such a 
framework is optimal for supporting evidence-based, decentralized malaria control planning, thereby improving the 
effectiveness and allocation efficiency of malaria control interventions.
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Background
The future of malaria control and elimination depends 
on characterizing the level of disease risk in time and 
space, which should be constantly reviewed to guide 
optimal, tailored malaria control strategies specific to 
sub-national settings [1, 2]. Traditionally, malaria parasite 
prevalence data among community residents, collected 
through periodic cross-sectional surveys, has been used 
to characterize malaria ecologies sub-nationally [3–7]. 
Over the last 20  years, increasingly complex, model-
based, geo-statistical approaches [8, 9] have been applied 
to assembled community parasite prevalence data to pro-
vide interpolated data for high-resolution malaria risk 
maps [10–13]. These approaches have been commonly 
used at national levels in providing national malaria con-
trol programmes (NMCPs) with baseline information on 
infection risk for various decision-making and planning 
purposes [14–24].

However, community parasite prevalence data are col-
lected nationally only periodically every 2–3  years and 
household sampling strategies lack power for small area 
estimation. Data are therefore sparse in time and space, 
and unable to describe the malaria situation continu-
ously and at fine spatial resolutions with precision. A 
more ubiquitous source of information derives from rou-
tine health service data, collected continuously at most 
populated locations. These data provide a rich source 
of malariometric indicators in different population age 
and risk groups. Outside of countries aiming for malaria 
elimination, where individual case detection is a fun-
damental requirement, most stable endemic countries 
have not fully exploited routine data to its full potential. 
This was largely due to issues with the quality of the data 
and their completeness [25–27]. In recent years, these 
concerns have been tackled across sub-Saharan Africa 
(SSA) due to various factors such as the launch of the 
revitalized WHO policy of test-treat-track [28] that has 
increased testing rates, the transition towards the elec-
tronic district health information system (DHIS2) that 
has improved health reporting rates [29] and the imple-
mentation of continuous data quality assessments [30]. 
Consequently, routine data are now increasingly recom-
mended and used for national stratification of malaria 
risk and decision-making [31–37].

Most national stratifications of malaria risk have con-
sidered one or two administrative levels (province, 
region, district, council) and are called ‘macro-stratifica-
tion’ here. These often correspond to the federal planning 
of control and resource allocation levels [32]. However, 

marked epidemiological risk heterogeneity has been seen 
at these levels, and a lower level stratification has been 
proposed: micro-stratification [38–40]. Malaria transmis-
sion is spatially heterogeneous in its distribution at every 
scale, driven by local ecologies, climate and population 
settlement [41–45]. With an increasing empowerment of 
decentralized health sector governance and recognizing 
the small area variations in malaria risk, there is a need 
to improve our abilities to develop more detailed data 
platforms and risk analyses [46]. Such a more granular 
stratification of malaria risk will allow for better spatially 
targeted malaria control responses and hence improve 
effectiveness and allocation efficiency.

Complex modelling approaches of parasite prevalence 
are often challenged by limited national capacity and 
ownership issues [14, 47, 48]. As NMCPs are gaining 
more analytic capacity and confidence in using routine 
DHIS2 data, including the local development of embed-
ded malaria dashboards, quality checks and monthly/
quarterly reports, this situation is changing [49–51]. 
Statistical modelling of routine health data, spatially and 
temporally, in low-income countries is in its nascent 
stages and largely driven by partners outside of malaria-
endemic countries. Data analytics for NMCPs must be 
transparent and straightforward, as well as guided by 
principles of completeness, coverage and inter-operabil-
ity between various malaria indicators.

This work builds upon previous effort started as a 
collaborative exercise with the Tanzanian NMCP [37] 
to improve the use of routine malaria indicators from 
DHIS2, and propose a novel, pragmatic and data-rich 
method for implementing malaria risk micro-stratifica-
tion below council levels.

Methods
Context
In 2017, during a mid-term review of the national 
malaria strategic plan (NMSP) [52] followed by a 
malaria expert consultative meeting [53], it was rec-
ognized that in order to sustain Tanzania’s reduc-
tions in malaria burden, a more geographic-tailored 
package of interventions was needed. This led to a 
country-managed, data-driven approach to develop 
a macro-stratification malaria risk map at the second 
level of administrative unit, across 184 councils [37, 
54, 55]. Each council was assigned to one of four risk 
strata: very low, low, moderate, and high. An assem-
bly of survey data from available prevalence surveys, 
together with routine data was used to define the four 
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risk categories by means of expert-informed empirical 
ranges of malaria prevalence in school children (PfPR5–

16yrs). Routine data included fever test positivity rates 
(TPR), annual parasite incidence (API) and antenatal 
attendee test positivity rates (ANC TPR). Based on this 
novel approach to using multiple data sources [36], a 
revised NMSP was issued in 2018 [56]. Additional work 
and consultative processes, as well as intervention mix 
optimization in each risk strata using stochastic model-
ling [54, 55] led to the development of the NMSP for 
2021–2025 [57]. As per NMSP recommendation, the 
stratification exercise should be renewed every 3 years, 
to account for the changing epidemiology of the dis-
ease. To extend analytics and support the decentralized 
health system in Tanzania, the NMSP recommended 
approaches are repeated for risk stratification at ward 
levels to account for intra-council heterogeneity.

Administrative boundaries and populations at risk 
in mainland Tanzania
Mainland Tanzania is organized into multiple admin-
istrative levels. The country has 26 administrative 
regions, divided into 184 councils. Councils serve 
as the key operational unit for central government 
resource allocation and planning disease prevention 
and management activities, with own budgeting abili-
ties. Councils are further divided into wards, which 
serve as the lower levels of administrative resource 
units and disease reporting. A total of 3311 wards have 
been defined according to the 2012 national census for 
mainland Tanzania. Out of these, 2427 are rural, 370 
are mixed and 514 are urban (Additional file 1: Fig. S1). 
The number of wards per council range from two to 43 
wards depending on the size of the council, and these 
allow for a much more granular risk definition, espe-
cially in areas with marked altitudinal variation. Each 
ward, depending on its size, includes between one to 18 
health facilities (HFs) that serve the surrounding village 
populations. Unfortunately, the precise HF catchment 
population remains largely undefined, and aggregated 
population units for each ward was therefore used for 
the micro-stratification process. The population for 
each ward was obtained from the publicly available 
2012 population and housing census in Tanzania con-
ducted by the National Bureau of Statistics [58]. Annual 
growth rates at the council level (computed from the 
average annual continuous growth rate formula) were 
applied to the ward population data to project each 
ward population to the period 2017–2019. This allowed 
the compute of the denominators for API calcula-
tions, and to quantify populations residing in the ward 
malaria risk classifications.

Routine health facility data processing
Since 2009, the health management and information 
system (HMIS) of Tanzania has seen an evolution from 
a paper-based system to the electronic DHIS2 system. 
DHIS2 is an open source, web-based software platform 
for reporting, analysis and dissemination of health data. 
It captures information from both the private (26%) and 
public (74%) HFs and can be accessed by officials work-
ing in the health sector, through registered creden-
tials. The work presented here utilized key malaria data 
extracted from the HMIS/DHIS2: the total number of 
falciparum malaria laboratory-confirmed cases, total 
number of malaria rapid diagnostic tests (RDTs) per-
formed, and total number of confirmed cases and RDT 
tests performed in pregnant women attending antenatal 
care (ANC) during their first visits. These data were used 
to compute three malaria indicators: API, RDT TPR and 
ANC TPR (details presented in Table 1). Since the major-
ity of reporting HFs [N = 7878 (99%)] providing labora-
tory services in Tanzania use RDT as the main diagnostic 
test (88% of total tests performed), and routine micros-
copy is prone to quality issues [59], only RDT test results 
were considered for the micro-stratification analysis.

Data cleaning
Routine malaria data were extracted directly from DHIS2 
from a total of 7988 (94%) reporting HFs for each month 
for the period January 2017 to December 2019. Dupli-
cate reports and HFs with no testing performed in any 
of the 36 reporting months were excluded. As the DHIS2 
database is unable to distinguish zeros from missing val-
ues marking them as blank, it was assumed that missing 
values of otherwise complete reports were true zeros. 
A threshold of 50% completeness of reporting across 
36  months was used and any HFs with reporting less 
than this were excluded from the analysis. Furthermore, 
HFs with more than 5 consecutive months of missing 
reports within a year were also excluded from the analy-
sis. Extreme outliers, defined as monthly values that sig-
nificantly deviated from the HF’s overall time series trend 
across the 36 months, were excluded using the R package 
anomalize [60] (Additional file  1: Text S1) and visually 
verified before being subsequently treated as a missing 
monthly report.

Data aggregation
Geographical coordinates of the HFs were obtained 
from the master HF list of Tanzania [61] and linked to 
the DHIS2 data using the unique HF identifier code. The 
ward shape file was then used to allocate the HFs to their 
respective wards (Additional file 1: Fig. S2). Monthly data 
of the total malaria tests performed and those tested 



Page 4 of 14Thawer et al. Malaria Journal          (2022) 21:345 

positive from all HFs were aggregated to provide annual-
ized estimates per council and per ward for the reporting 
period (2017–2019) and subsequently used to compute 
the three selected routine malaria indicators: (1) RDT 
TPR; (2) API; and, (3) ANC TPR (definitions of these 
indicators are presented in Table  1). The monthly data 
were aggregated for the whole year in order to align with 
the national strategic plan development and review cycle 
every 3 years and provide risk estimates for the period of 
analysis. The council level estimates were used to derive 
the cut-offs for categorizing the routine indicators as per 
the school prevalence classifications (see details of pro-
cess below) whilst ward level estimates were used for the 
micro-stratification. A pragmatic, conservative approach 
was taken to ensure that the maximum ward value from 
the 3 years for each indicator was used. Taking the high-
est of the three annual ward values to reflect the ward 
estimate for the period of analysis ensured that wards 
were rather over- than under-allocated into risk strata.

The micro‑stratification procedure
The micro-stratification risk scoring was developed in 
three steps: (a) suitable cut-offs were defined to allocate 
the three routine indicators into four risk categories, 
based on a pre-classification on the basis of prevalence 
values in school children; (b) the three selected routine 
indicators assigned to four malaria risk categories were 
converted into numbered scores; and, (c) for each ward, 
the total score was summed across the three correspond-
ing malaria indicators to obtain an overall score that was 
used to assign each ward to a risk stratum (very low, low, 
moderate or high), based on scoring thresholds (see defi-
nitions below). The strategic approach undertaken was 
purposively designed to ensure that the approach was 

simple and could easily be adapted by the NMCP and 
health planners at council levels.

Definition of indicator cut‑offs for malaria risk 
categorization at the council level
In the micro-stratification process, the classification of 
prevalence in school children (PfPR5–16) was used as a 
gold standard in guiding the selection of appropriate cut-
offs for converting the three routine malaria indicators 
into risk categories. In mainland Tanzania, nationwide 
school malaria parasitaemia surveys (SMPS) targeting 
public primary school children have been conducted 
biennially since 2014 [62]. Schools were sampled based 
on (1) existing public primary schools in each council, 
and (2) expected malaria endemicity [62–64] to pro-
vide credible estimates of infection prevalence in ages 
5–16  years for each of the 184 councils. Because of the 
quality and comprehensiveness of these data, as well as 
the fact that they were collected concurrently with the 
routine data, they served as a ‘gold’ standard for catego-
rizing the routine indicators. Since SMPS results were 
available at council level, the risk categorization of the 
three routine indicators was also done first at council 
level.

The maximum prevalence in school children estimated 
per council across the past two surveys conducted in 
2017 and 2019 was used to define stringent baseline cut-
offs for each of the three routine indicators in a system-
atic process. Firstly, the prevalence in school children was 
used to define four malaria risk groups: very low (PfPR5–

16 < 1%), low (PfPR5–16 1 to < 5%), moderate (PfPR5–16 5 
to < 30%), and high (PfPR5–16 ≥ 30%) and each council 
was categorized into one of these four risk levels. These 
endemicity cut-offs were guided by WHO classifications 

Table 1  Indicators used for malaria risk micro-stratification

HMIS Health Management Information System, DHIS2 District Health Information System 2, RDT malaria Rapid Diagnostic Test, Pf Plasmodium falciparum, SMPS School 
Malaria Parasitaemia Survey
a Periods refer to 1 January to 31 December of the corresponding year
b Based on population estimates from the 2012 census

Source Indicator Numerator Denominator Perioda Age Level

HMIS/DHIS2 Laboratory

 Fever test positivity rate 
(RDT TPR)

No. positive Pf-pan RDT No. Pf-Pan RDT tests per-
formed

2017–2019 All ages Council and Ward

 Annual parasite incidence 
(API)

No. positive Pf-pan RDT Per 1000 populationb

Antenatal clinic

 Test positivity rate (ANC 
TPR)

No. positive Pf-pan RDT No. Pf-Pan RDT tests per-
formed in pregnant women 
at first visit

2017–2019 Reproductive age Council and ward

SMPS  Parasite prevalence No. positive Pf-pan RDT No. Pf-Pan RDT tests per-
formed in school children

2017, 2019 5–16 years Council
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along with consultative discussions between NMCP and 
malaria experts [37, 56, 65].

Secondly, in order to identify the best routine data cut-
offs, a misclassification analysis was undertaken against 
school prevalence categories at the council level. For each 
routine indicator, the sensitivity, specificity, false positiv-
ity rate (FPR), and false negativity rate (FNR) were calcu-
lated per risk group for a range of cut-off values to ensure 
that the most robust cut-off values were selected (Addi-
tional file  1: Table  S1). The selection of robust cut-offs 
for the routine malaria indicators was guided by a set of 
criteria, relevant for malaria control: (i) maximizing the 
specificity in the very low and low strata to reduce false 
positive councils in these strata; (ii) maximizing the sen-
sitivity in moderate and high strata in order to reduce the 
number of false negative councils; and (iii) maximizing 
the overall agreement of the risk groups between school 
prevalence and routine indicators. These criteria ensured 
to minimize the misallocation of councils belonging to 
the higher strata to the lower strata where the largest 
changes in the intervention packages are seen and was 
termed as unacceptable (Additional file  1: Text S2). For 
instance, when selecting the optimal cut-off to define the 
very low and low risk category for the routine indicators, 
the criteria was based on trade-offs for minimization of 
FPR of councils with PfPR5–16 > 1% and PfPR5–16 > 5%, 
respectively, into the lower risk category and maximiza-
tion of the overall agreement between indicators. Simi-
larly, when selecting the optimal cut-off to define the 
moderate and high categories for the routine indicators, 
the criteria were based on trade-offs between minimiza-
tion of FNR of councils with PfPR5–16 > 30% to the lower 
risk category and maximization of the overall agreement 
between indicators.

Following the selection of suitable cut-offs for all the 
routine indicators at the council level, the same cut-offs 
were applied to the routine indicators at the ward level to 
categorize them into their respective risk groups at that 
level.

Assignment of risk scores at the ward level
In order to combine the risk categories of the three rou-
tine indicators into a single stratum value per ward, a 
combined scoring approach was used for each ward. This 
entailed assigning numbered scores from 1 to 4 to each 
indicator per ward, corresponding to the respective risk 
categories: ‘very low’ (score 1), ‘low’ (score 2), ‘moderate’ 
(score 3), and ‘high’ (score 4).

Combination of routine indicators
To obtain the overall malaria risk score per ward, the 
assigned indicator scores were summed across the indi-
cators. The total score ranged from 3 to 12 and was 

grouped into four risk categories to form the epidemio-
logical strata. Specifically, wards with an overall score ≤ 3 
were allocated to the very low stratum, > 3 to ≤ 6 to the 
low stratum, > 7 to ≤ 9 to moderate stratum, and > 9 in 
the high stratum. Since not all wards had HFs with both 
ANC and laboratory services, the number of routine 
indicators per ward differed. As a result, the sub-division 
of the total score to classify the wards to the overall risk 
strata differed for those wards with fewer than three rou-
tine indicators (Additional file 1: Table S2).

Quantification of malaria risk heterogeneity 
within councils
In order to identify the councils that had the largest 
variation of malaria risk within their boundaries, the 
proportion of wards with different ward-level risks was 
quantified. This heterogeneity was computed by calculat-
ing the number of wards assigned to the moderate and 
high transmission strata occurring within the councils 
with PfPR5–16 < 5% and the number of wards assigned 
to the very low and low transmission strata occurring 
within councils with PfPR5–16 ≥ 5%. The corresponding 
proportion of the total population residing in these wards 
was also quantified.

R Studio [66] was used for cleaning and analysis of the 
data downloaded from DHIS2. All maps were produced 
using the QGIS software version 3.4.14 [67].

Results
Coverage and completeness of routine HMIS/DHIS2 data
Figure 1 provides a descriptive summary of the HFs and 
indicators included in the micro- stratification.

Of the 7988 geo-coded HFs, the geo-coordinates for 
the majority (85%) were obtained from the master HF 
registry, while for 11% of HFs, the geo-coordinates did 
not match the indicated ward name in the master HF 
registry and therefore adjusted accordingly to reflect the 
indicated ward. A large proportion of these HFs offer-
ing malaria services belonged to the public health sec-
tor (72%), with 26% belonging to the private sector and 
2% whose ownership status was not known at the time 
of analysis. Dispensary and clinics represented most of all 
the HFs (85.7%), followed by health centers (10.7%) and 
hospitals (3.6%) (Additional file 1: Fig. S2).

Out of the total HFs, 7878 HFs (98.6%) across 3104 
wards performed RDT diagnostic testing, 6823 HFs 
(85%) across 3063 wards offered antenatal services, whilst 
no HFs were found across 201 wards (Fig.  1). When 
the completeness and consistency of the reports were 
assessed, the laboratory reports from 1208 (15.3%) HFs 
across 141 (4.5%) wards and antenatal reports from 684 
HFs (10.0%) across 70 (2.3%) wards were excluded from 
the analysis (Figs. 1 and 2a).
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These HFs had either less than 50% reporting rate (RR), 
more than 5 consecutive months of missing reports or 
reports with extreme outliers. The overall proportion of 

extreme outliers was low with only 0.2% and 0.1% of total 
reports from laboratory and ANC registers removed, 
respectively. The majority of the HFs after exclusion (86% 

Fig. 1  Descriptive summary of health facilities for which malaria data were utilized for micro-stratification. ANC antenatal clinic, IQR interquartile 
range, API annual parasite incidence, TPR test positivity rate
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of HFs submitting laboratory reports and 90% of HFs 
submitting ANC reports) had more than 75% RR across 
the 36-month period of analysis with only 14% (across 20 
wards) and 10% (across 104 wards) of the HFs with RR 
between 50 and 75% for laboratory and ANC reports.

Of the selected HFs used for stratification (n = 7098) 
(Fig.  2b), those offering both ANC and laboratory ser-
vices accounted for 80.5% of all HFs, while 13.5% offering 
only laboratory services and 6% offering only ANC ser-
vices. As a result, there were differing numbers of malaria 
indicators across the wards. Precisely, 2891 (87.3%) wards 
had all three routine indicators, 72 (2.2%) wards had only 
two indicators of RDT TPR and API, while 102 (3.1%) 
wards had only one indicator of ANC TPR. Excluded 
HFs with poor RR also accounted for some of the differ-
ing numbers of indicators across wards [143 (83%) wards 
with only one or two indicators and 41 (16%) wards with 
no facility points].

Data from the laboratory registers of the selected HFs 
were obtained for a total of 52.9 million malaria tests per-
formed by Pf-pan RDT, of which 14.7 million were posi-
tive for malaria. Similarly, data from the ANC registers of 
the selected HFs were obtained for a total of 5.7 million 
malaria tests performed on pregnant women, of which 
365,182 were tested positive for malaria (Fig.  1). When 
the distribution of the maximum annual mean values of 
all the indicators of wards within councils was examined, 
a heterogeneous distribution across wards was observed 
(Additional file 1: Fig. S6). For instance, in councils with 

PfPR5–16 < 1%, the API ranged from 0 to 243 per 1000 
populations, RDT TPR ranged from 0 to 76% and ANC 
TPR ranged from 0 to 10% across wards. The observed 
heterogeneity within the different councils confirmed the 
need for further characterizing malaria risk at the ward 
level.

Risk categorization of councils using routine indicators
For the 2017 and 2019 surveys, estimates of malaria 
infection prevalence were available from a total of 693 
sampled schools and 134,902 children across all 184 
councils nationwide [63, 64]. During this period, the 
maximum of the annual mean council prevalence ranged 
from 0.0 to 85.0%. Following the allocation of councils 
to the four malaria risk strata, 38 councils (20.6%) had 
PfPR5–16 < 1% (very low risk stratum), 32 councils (17.4%) 
had PfPR5–16 1 to < 5% (low risk stratum), 52 councils 
(28.3%) had PfPR5–16 5 to < 30% (moderate risk stratum) 
whilst 62 councils (33.7%) had PfPR5–16 ≥ 30% (high risk 
stratum).

For each school prevalence risk group, the sensitiv-
ity, specificity and overall agreement for the different 
values of the routine indicator cut-offs are presented in 
Fig. 3. A total of two, four and six councils with PfPR5–

16 > 1% were misallocated into the very low strata for 
the selected cut-offs of RDT TPR, API and ANC TPR, 
respectively, which translated to an overall agreement 
of 93% for RDT TPR and API, and of 95% for ANC 
TPR. Similarly, for the selected low category cut-offs 

Fig. 2  a Location of health facilities that were excluded (N = 890). b Location of health facilities by type of service that were utilized for 
micro-stratification (N = 7098). ANC antenatal clinic
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of RDT TPR, API and ANC TPR, a total of two, seven 
and four councils, respectively, with PfPR5–16 > 5% 
were misallocated to the low strata whilst maintaining 
the overall proportion agreement between indicators 
at 88% for RDT TPR and ANC TPR and 83% for API. 
When selecting the optimal cut-off to define the mod-
erate and high categories for the routine indicators, a 
total of two, seven and four councils with PfPR5–16 5 to 
< 30% were misallocated into the low or very low strata 
for the selected cut-offs of RDT TPR, API and ANC 
TPR, respectively. No councils belonging to the high 
risk group of PfPR5–16 ≥ 30% were misallocated to low 
and very low risk group by the selected routine indica-
tor cut-offs.

Table 2 summarizes the final selected cut-offs derived 
from the misclassification analysis conducted at the 
council level, and subsequently applied to categorize 
each of the routine indicators per ward into the four risk 
groups.

The corresponding spatial distribution by ward for each 
of the malaria risk indicator using the selected cut-offs is 
summarized in Additional file 1: Fig. S7. Although vari-
ations exist between indicators in terms of the number 
of wards falling within each risk category, overall a simi-
lar pattern of heterogeneity was observed. The wards in 
the northwest and southeast of the country were mostly 
categorized into the moderate to high risk groups, while 
the wards in the central corridor running from northeast 
to southwest were mostly in the low and very low risk 
groups consistently across the three routine indicators.

Micro‑stratification of wards and malaria risk 
heterogeneity
The resulting micro-stratification following the combi-
nation of multiple malaria routine indicators is shown in 
Fig. 4.

In total, 10.5% of the population resided in the 353 
wards allocated to the very low strata, 28.6% resided in 

Optimal Cut-offs Selected (Represented by dashed vertical line)
SMPS Very Low (PfPR5-16 <1%) Low (PfPR5-16 1-5%) Moderate (PfPR5-16 5-30%) High (PfPR5-16 >30%)
Criteria 
to select 
cut-offs

1. Minimize FPR
2. Maximize agreement 

1. Minimize unacceptable FPR
2. Minimize unacceptable FNR 
3. Maximize agreement

1. Minimize unacceptable FNR 
2. Minimize unacceptable FPR
3. Maximize agreement

1. Minimize unacceptable FNR 
2. Maximize agreement
*Note: All false negatives represent those that 
were allocated to the moderate strata

Indicator
Fever test 
positivity 
rate 
(RDT 
TPR)

Annual 
parasite 
incidence
(API)

Test 
positivity 
rate in 
pregnant 
women
(ANC
TPR)

Fig. 3  Misclassification analysis to select cut-offs for risk categories for the malaria indicators. FPR false positivity rate, FNR false negativity rate, TrPR 
true positivity rate, TPR test positivity rate

Table 2  Selected routine indicator cut-offs to categorize these indicators into risk groups at ward level

Prevalence in school children Very low risk (PfPR5–

16 < 1%)
Low risk (PfPR5–16 1 to 
< 5%)

Moderate risk (PfPR5–16 5 to 
< 30%)

High risk 
(PfPR5–

16 ≥ 30%)

Laboratory-based results

 1. Fever test positivity rate < 5 5 to < 15 15 to < 30 ≥ 30

 2. Annual parasite incidence < 10 10 to < 50 50 to < 120 ≥ 120

Antenatal clinic results

 3. Test positivity rate < 0.8 0.8 to < 3 3 to < 8 ≥ 8
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the 717 wards allocated to the low strata, 16.1% resided 
in the 525 wards allocated to the moderate strata, and 
39.8% resided in the 1470 wards allocated to the high 
strata. The 246 wards with no HFs represented approxi-
mately 5% of the total country population and because of 
the lack of all routine malaria indicators, no stratification 
could be conducted there.

The micro-stratification process revealed varying levels 
of heterogeneity within the wards of 80 councils (Fig. 5; 
Additional file 2: Table S3).

Of the councils with very low (PfPR5–16 < 1%) and low 
(PfPR5–16 1 to < 5%) prevalence, 12 had 6.6% of the pop-
ulation residing across 61 wards in the moderate-high 
transmission strata and 30 had 23.7% of the population 
residing across 188 wards in the moderate-high strata. 
Similarly, of the councils with moderate (PfPR5–16 5 to 
< 30%) and high (PfPR5–16 > 30%) prevalence, 32 had 
17.6% of the population residing across the 139 wards 

in very low-low transmission strata and 6 had 1% of the 
population residing in the 10 wards with low transmis-
sion strata. Overall, councils with low prevalence had 
the highest proportion of heterogeneous wards (37.2%), 
followed by councils with moderate prevalence (16.2%), 
then by councils with very low prevalence (9.2%) and 
finally the councils with high prevalence (1%).

Discussion
This paper demonstrates at the level of an entire coun-
try the potential of using quality routine malaria indica-
tors in informing on the malaria risk at the more granular 
levels: the third administrative level (wards). It builds on 
previous efforts taken by mainland Tanzania in using 
routine malaria indicators to stratify malaria risk at the 
second administrative level (councils) [37].

A strong feature of the method presented here is the 
triangulation of information from multiple malariometric 
indicators. The selected routine indicators represented a 
valuable and rich source of data in space and time across 
different age and immunological groups (children versus 
all ages and pregnant women). The approach categorized 
the three selected routine indicators using school preva-
lence classifications as a gold standard, since the preva-
lence rate in children is widely used as a reference metric 
for defining malaria risk [13, 68]. Because of the sampling 
strategy used in Tanzania for school surveys, it added 
further confidence to school prevalence serving as an 
appropriate benchmark for the misclassification analysis. 
Furthermore, the misclassification analysis was conserva-
tive and inclined to allocating wards to higher strata than 
to the lower strata that would otherwise receive reduced 
control efforts.

The use of routine indicators was contingent on the 
availability of data. Using data from HFs with RR > 50% 
ensured the reliability of our estimates. Applying a higher 
threshold for RR would have meant that only a small 
proportion of HFs (~ 20–25%) could be included in the 
analysis. Hence, the criteria of 50% reporting represented 

Fig. 4  Micro-stratification of malaria risk in mainland Tanzania for the 
period 2017–2019

Fig. 5  Number of heterogeneous wards per council prevalence risk group and corresponding population (%) residing in these wards
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a good compromise between data quality and the num-
ber of HF data available for analysis (Additional file 1: Fig. 
S8). Current guidelines by WHO recommends assessing 
four core dimensions for understanding the quality of 
routine data. These include: (i) completeness and time-
liness of data; (ii) internal consistency of reported data 
(presence of outliers, consistency over time and consist-
ency between data elements); (iii) external consistency 
with other data sources; and, (iv) external comparison 
with population data [69]. Due to the limited elements 
reported within the laboratory registers of Tanzania, the 
consistency with other data elements was not possible. 
Generally, the RR for HFs data were high in Tanzania 
with only a small proportion of reports having extreme 
outliers, allowing the use of such data in this systematic 
way for risk assessment. The country has also recently 
launched the malaria service and data quality improve-
ment tool that involves conducting facility supervision 
by council health teams on a quarterly basis to assess the 
malaria related services and data quality performance 
[70].

Although this may not be the case in other countries 
in SSA and could limit the applicability of this approach 
elsewhere, it stresses the importance for other countries 
to work towards strengthening their routine information 
system and reporting practices. Furthermore, the work 
presented in this paper made use of the local data avail-
able in Tanzania, as such, the approach would need to be 
tailored in other countries according to available metrics 
and local context.

The resulting risk map detailed to ward level (Fig.  4) 
revealed significant heterogeneity in malaria risk within 
80 councils and helped to identify areas where the pop-
ulation could be further prioritized to receive more tar-
geted community-based interventions. For instance, 
Bumbuli District Council is currently in the very low 
transmission strata, but the micro-stratification process 
revealed wards in the moderate and high transmission 
that could qualify for increased long-lasting insecticidal 
nets (LLIN) distribution (Additional file 1: Fig. S9). Com-
pared to previous approaches of distributing LLINs uni-
versally across all wards [71], this new knowledge could 
finely target LLIN distribution within such wards, allow-
ing a more efficient allocation of resources within a coun-
cil that was previously assumed to have a uniform risk.

Supporting ministries of health to establish a quantita-
tively and qualitatively high-performance routine surveil-
lance system, and strengthening the ability of NMCPs to 
analyse these data for developing stratification risk maps 
and on from that for decision making, is imperative for 
more efficient malaria control [1, 72]. It is crucial that 
each malaria-endemic country’s capacity is strengthened 
with regard to reliable data collection, detection of data 

biases, and its ability for conducting sensible analysis on 
a routine basis. Increased usage of maps for local deci-
sion making by NMCPs promotes knowledge and under-
standing of the various data sources and their limitations, 
trust and perceived ownership of the data, and finally 
increased knowledge and understanding of the processes 
of map construction [14].

The work presented here has some limitations that 
future work might address. The use of crude estimates of 
routine data does not account for important factors such 
as treatment-seeking rates, temporal and spatial missing-
ness in data, the underlying heterogeneous distribution 
of the population and the differing testing rates between 
transmission settings, all of which can potentially under/
over-estimate positivity rates [51, 73]. There have been 
many recent advances in statistical tools that use spati-
otemporal modelling and imputation methods to bet-
ter handle incomplete data and account for important 
biases present in routine data [32, 35, 43]. Since these 
approaches are complex, future work may explore com-
paring crude routine estimates against more complex sta-
tistical data modelling, in order to find an optimum point 
between accuracy and local ability to handle the data 
analysis process.

The estimates of the routine indicators used in the pre-
sent analysis come with uncertainty due to sampling error 
(Additional file  1: Fig. S10). The risk strata assigned to 
each ward through the approach described in this paper 
did not account for this uncertainty. Thus the uncertainty 
in the micro-stratification risk strata was quantified at the 
ward level. First, the uncertainty of the individual routine 
indicator estimates, measured using the standard error, 
were obtained using multilevel regression analysis and 
then a sampling-based approach was used to estimate 
the probability of being in each risk strata for each ward 
(Additional file 1: Text S3). The results of the regression 
and sampling-based analysis (Additional file  1: Text S4, 
Fig. S12) highlight the importance of considering the var-
iation of indicators when conducting the micro-stratifica-
tion, and in estimating the certainty of the assigned risk 
strata. While for the majority of wards (over 60%), con-
sidering the variability of indicators did not change the 
assigned risk stratum, a substantial proportion of wards 
were more sensitive to the uncertainty in the estimated 
indicators. These wards had a reasonable probability of 
being assigned to the risk stratum immediately below 
that of the initially assigned stratum.

Although the micro-stratification approach adopted by 
the NMCP in Tanzania was more conservative, ensur-
ing that wards were not misallocated to the lower strata, 
which would receive fewer vector control interventions, 
it is important that NMCPs take this uncertainty into 
account for more efficient planning of interventions. 
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Specifically, the wards with a low assignment probability 
would require more careful investigation of the possible 
causes of the greater uncertainty in the estimated indica-
tors. If the uncertainty is partly due to increased trans-
mission heterogeneity, this would suggest that a localized 
deployment of interventions would be more appropri-
ate compared to a ward-level approach. However, if the 
uncertainty is due to data collection and reporting, then 
more efforts need to be channeled towards optimizing 
the collection procedures.

Obviously, HFs may not always reflect the actual trans-
mission status of the ward since people from surround-
ing wards may also utilize their services. Furthermore, 
the estimates may not always represent the universe of 
all HFs since poor performing HFs and private providers 
that are not linked to the DHIS2 are not captured with-
out further adaptations. Obtaining accurate estimates of 
population denominators is currently a major challenge 
for defining HF catchment areas [74] in view of comput-
ing incidence rates, and until this knowledge is made 
available, the use of existing operational administrative 
boundaries as a proxy will continue to serve as the refer-
ence guide.

The current micro-stratification only considered the 
maximum value of the annual estimates for all ages in the 
past 3 years from DHIS2. It may be important to overlay 
the epidemiological risk map with other layers of infor-
mation that are known to affect transmission such as 
urbanization, seasonality, monthly trends, disaggregation 
by age groups, marginalization, intervention coverage, 
ecological factors as well as socio-economic and popula-
tion factors.

Furthermore, the availability of a comprehensive list 
of geo-coded HFs through the master HF list, that is 
dynamically updated in the HMIS/DHIS2, is a challenge 
in many parts of SSA [75, 76]. Ideally, the DHIS2 should 
represent information from all healthcare providers, 
however this is often not the case in many countries, with 
a large proportion of HFs missing in the DHIS2. Avail-
ability of an updated list of health providers is crucial to 
allow understanding of true reporting completeness, and 
availability of its geo-coded information allows linkage of 
HFs to its correct administrative boundaries especially 
at the finer spatial scales for correct quantification of 
risks. Efforts are needed to encourage countries to geo-
reference all HFs and accordingly update their national 
databases.

Finally, the work presented here did not account for the 
fact that the relationship between the different indicators 
that represent different population age groups may not 
always be linear. An in-depth understanding of how they 
relate to one another and with more traditional meas-
ures of modelled prevalence estimates in the different 

transmission settings is crucial. Efforts to understand this 
relationship and incorporate routine data sources into 
modelled prevalence risk maps are emerging [77].

The WHO High Burden to High Impact (HBHI) strat-
egy recommends countries to conduct stratification 
analysis at the sub-national levels, preferably at district 
level or at lower levels in accordance with the local con-
text [78]. Mainland Tanzania has fully adopted a sub-
national tailoring of interventions at the council level 
[57]. It is now recognizing the need for micro-stratifica-
tion and decentralization of malaria control as indicated 
in its current strategic plan [57]. Wards are expected to 
become the ultimate target for further evidence-based 
malaria control planning by the Council Health Manage-
ment Teams (CHMTs), especially for community-based 
interventions including community case management 
and focal vector control initiatives such as indoor resid-
ual spraying (IRS) and larviciding, down to ward level. 
Macro-stratification becomes more relevant across coun-
cils with homogenous transmission that require universal 
allocation of interventions across its population. How-
ever, for those councils with heterogeneous transmission 
within its administrative boundaries, these would need 
concentrated efforts in areas that most need them. The 
role of CHMTs in highly malaria-endemic countries has 
been traditionally limited to the operationalization at 
council level of key preventative malaria interventions 
such as LLINs, IRS, case management, and intermit-
tent preventative treatment in pregnant women (IPTp), 
planned at central levels.

Whether the operationalization of micro-stratification 
and micro-planning is feasible remains to be assessed 
and will require close monitoring of the processes at 
all levels to ensure that it is replicated across councils. 
More importantly, there is a growing need to capacitate 
CHMTs to assemble, clean, interpret, and understand 
associated levels of uncertainty in their local data so as 
to undertake assessments of the local heterogeneity espe-
cially of wards that are not transitioning its transmission 
levels downwards at the same rate as others. For this, the 
need for granular data is crucial to empower the CHMTs 
to make use of the local data across health sectors. 
Micro-stratification is expected to allow this profound 
change in health planning processes by promoting a cul-
ture of data usage and equip council level with the capac-
ity and tools to understand and appropriately respond to 
the local situation.

Conclusion
The micro-stratification approach undertaken for main-
land Tanzania has moved the agenda from council-level 
risk mapping to one at ward level reflecting the need for 
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the decentralization of malaria control planning. Contin-
uous efforts to improve routine data remains crucial for 
ensuring a reliable source of data for local epidemiologi-
cal monitoring at sub-council level. This can have imme-
diate potential in capacitating CHMTs to take charge of 
their routine data and respond in an appropriate manner 
to maximize impact and turn malaria surveillance into a 
core intervention.
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