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Abstract 

Since its first report in Anopheles mosquitoes in 1950s, insecticide resistance has spread very fast to most sub-Saharan 
African malaria-endemic countries, where it is predicted to seriously jeopardize the success of vector control efforts, 
leading to rebound of disease cases. Supported mainly by four mechanisms (metabolic resistance, target site resist‑
ance, cuticular resistance, and behavioural resistance), this phenomenon is associated with intrinsic changes in the 
resistant insect vectors that could influence development of invading Plasmodium parasites. A literature review was 
undertaken using Pubmed database to collect articles evaluating directly or indiretly the impact of insecticide resist‑
ance and the associated mechanisms on key determinants of malaria vector competence including sialome composi‑
tion, anti-Plasmodium immunity, intestinal commensal microbiota, and mosquito longevity. Globally, the evidence 
gathered is contradictory even though the insecticide resistant vectors seem to be more permissive to Plasmodium 
infections. The actual body of knowledge on key factors to vectorial competence, such as the immunity and micro‑
biota communities of the insecticide resistant vector is still very insufficient to definitively infer on the epidemiological 
importance of these vectors against the susceptible counterparts. More studies are needed to fill important knowl‑
edge gaps that could help predicting malaria epidemiology in a context where the selection and spread of insecti‑
cide resistant vectors is ongoing.
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Background
Malaria is the biggest killer among vector-borne dis-
eases [1] and has claimed the lives of milllions of peo-
ple over centuries [2]. In 2020, 241 million cases were 
reported leading to 627,000 deaths. The African region 
has paid the highest tributes with 96% of all deaths [3]. 
Malaria disease is caused by Plasmodium parasites, 
which are transmitted to humans by the bites of infected 
female mosquitoes of the genus Anopheles [4]. In Africa, 
Plasmodium falciparum is the most epidemiologically 
important of malaria parasites infecting humans [5], and 
Anopheles gambiae, Anopheles coluzzii, Anopheles funes-
tus and Anopheles arabiensis are the dominant vector 
species [6].

Malaria control includes medical treatment of cases 
and protective measures against the vectors to prevent 
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and/or limit contacts with human hosts during which 
transmission occurs. The control of mosquito popula-
tions on a large scale using insecticide-treated nets (ITNs) 
and indoor residual spraying, associated with increase 
case management, has led to a remarkable reduction in 
malaria burden from 81.1 cases per 1000 population in 
2000 to 58.9 in 2015 [3]. After this period, the impact 
of control efforts on malaria burden have dwindled, 
coinciding with the spread of insecticide resistant vec-
tors across most endemic countries [3, 7]. Resistance of 
Anopheles mosquitoes to insecticides, reported for the 
first time in Africa in the 1950s [7], concerns four main 
classes of insecticides used in public health for vector 
control purposes, namely pyrethroids, organochlorines, 
organophosphates and carbamates [7, 8]. There are four 
mechanisms deployed by mosquitoes to become insensi-
tive to the insecticides, including by order of importance 
(1) degradation of insecticide molecules by detoxification 
enzymes (metabolic resistance), (2) modification of the 
target affinity of the insecticide (target site resistance), (3) 
reduced penetration of the insecticide (cuticular resist-
ance) and, (4) avoidance of insecticide-treated surfaces 
(behavioural resistance). Of these four mechanisms tar-
get site and metabolic resistances are most likely to lead 
to control failure [9].

In target site resistance, a change (leucine changed to 
a phenylalanine or a serine at position 1014) occurring 
in the amino acid sequence of the voltage gate sodium 
channel (vgsc) leads to a reduced sensitivity of mosqui-
toes to pyrethroids and organochlorines. This phenotype 
is known as knock down resistance or kdr [10, 11]. When 
the amino acid change (glycine replaced by serine at 
position 119) occurs in the neurotransmitter acetyl-cho-
linesterase, it occasions resistance to organophosphates 
and carbamates, termed ace-1 resistance [12, 13]. About 
metabolic resistance, insecticide resistant mosquitoes 
increase the expression of detoxification enzymes, such 
as the cytochrome P450 monooxygenases, glutathione 
S-transferases (GSTs) and esterases, that eliminates xeno-
biotic compounds (including insecticides) before they 
reach their target. In another instance, an amino acid 
substitutions in the sequence of detoxification enzymes 
could modifiy its affinity with the insecticides in insect 
vectors [14]. For example, several cytochrome P450 
genes (CYP6P9a, CYP6P9b and CYP6M7) are involved in 
resistance to pyrethroids in the species An. funestus [15, 
16]; while a substitution of leucine by phenylalanine at 
position 119 in the epsilon class of GST (GST2- L119F) 
confers a cross-resistance to dichloro-diphenyl-trichloro-
ethane (DDT) and pyrethroids in the same vector species 
[17].

Despite the widespread distribution of insecticide 
resistance, its impact on overall malaria epidemiology 

remains unclear and is currently a subject of intense 
debate. The evaluation of the potential impact of insec-
ticide resistance on vectorial competence is therefore 
becoming an important and urgent research theme 
whose findings will help understanding whether it alters 
or enhances the permissiveness of malaria vectors to 
Plasmodium parasites, from its early stage (ookinete) to 
the infective form (sporozoite). In this review, the evi-
dence of insecticide resistance impact on the infectivity 
of mosquitoes to Plasmodium was explored in the litera-
ture, and changes in intrinsic factors that could predict 
or explain the outcome of an infectious blood meal intake 
were broached. Finally, the knowledge gaps were pointed 
out.

Search strategy
A literature search was undertaken in the PubMed data-
base to extract articles addressing the following themes: 
(1) Plasmodium infection in insecticide resistant malaria 
vectors, (2) sialome of insecticide resistant malaria vec-
tors, (3) effect of insecticide resistance on the immunity 
of malaria vectors, (4) microbiota of insecticide resist-
ant malaria vectors and infection, and (5) fitness cost of 
insecticide resistance in malaria vectors. The first search 
terms were “Anopheles” and “insecticide resistance” and 
they were associated with either “Plasmodium infection”, 
“vector competence”, “salivary gland”, “sialome”, “micro-
biota”, “gene expression” or “longevity”. Additional articles 
were extracted from the references lists of the full pub-
lications. The search was done between February and 
August 2022 and there was no restriction regarding the 
date of publication of the articles. A total of 560 articles 
were obtained from the search. Articles that addressed 
insecticide resistance in Anopheles in a broad manner, 
and not in relation with either Plamodium infection, vec-
tor competence, sialome, or longevity were discarded. 
Therefore, 28 articles related to the themes mentioned 
above were selected and used for the review.

Malaria vector competence
Vector competence is the intrinsic ability of anophe-
line species or populations to allow the development of 
Plasmodium parasites from ookinete to infective sporo-
zoites. When a mosquito takes an infectious blood 
meal from human, the gametocytes ingested begin 
their development in the midgut. The male gametocyte 
transform into eight microgametes after three rounds 
of mitosis, meanwhile the female gametocytes matures 
into macrogametes [4]. These cells fuse to form zygotes 
that thereafter change into ookinetes in the lumen of 
the intestine. The ookinetes then strive through the 
epithelium of the midgut and once in its basal side, 
transform into oocysts. The oocysts undergo several 
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rounds of asexual multiplication (sporogony) leading to 
the production of thousands of haploid sporozoites in 
each oocyst. Mature occysts rupture and release sporo-
zoites in the hemocoel,  which immediately migrate to 
the salivary glands. The extrinsic incubation period of 
the parasite is about 14  days with the transition from 
ookinetes to mature oocysts having the highest dura-
tion (about 10 days) [18, 19].

In mosquito host, Plasmodium face several immune-
related bottlenecks deployed to prevent the success-
ful transition from its early stage in the midgut to the 
sporozoite stage in the salivary glands [18]. The out-
come of the parasite infection is reported to depend 
mainly on the mosquito-Plasmodium genetics adapta-
tion [19, 20]. Another very important factor that influ-
ences the above outcome is the compatibility of the 
duration of parasite development with the longevity of 
the mosquitoes [21, 22]. Only species in which Plas-
modium reaches infective form are referred to as com-
petent vectors and could ensure malaria transmission. 
The impact of vector competence on the transmission 
of malaria can be estimated using Ro (Fig. 1), the basic 
reproductive number developed by McDonald in 1957. 
The McDonald model gives the threshold for a disease 
to persist or spread (Ro greater than 1) or to disappear 
(Ro less than 1) [23]. The Ro represents the number of 
individuals in a susceptible human population that are 
expected to get infected via a mosquito bite when a sin-
gle infected individual is present in the population [24, 
25]. In the Ro equation, two parameters are related to 
vector competence:  probability of mosquito infection 
(b) and mosquito longevity (p) (Fig. 1). Modifications of 
the values of components of this equation for a given 
vector population will cause either an augmentation or 
reduction in the transmission dynamics of the disease, 
leading probably to a change in the epidemiological 

profile of the locality concerned. It was established 
that an increase in b will increase the Ro, whereas a 
decrease in p will cause the opposite [26].

Insecticide resistance and malaria vector infectivity 
to Plasmodium parasite
The rapid spread of insecticide resistance among malaria 
vectors accross endemic countries in the past dec-
ade have raised several questions among which that of 
knowing what is its impact on mosquito permissiveness 
to Plasmodium? Only a limited number of studies have 
tried to elucidate this question [27–35]. These stud-
ies compared P. falciparum infection rates in resistant 
Anopheline vectors with susceptible ones, either caught 
in the field or experimentally infected (Table 1).

Anopheles gambiae strain bearing kdr resistance allele 
(Vgsc-L1014S) was found naturally more infected by 
sporozoites than the susceptible counterpart [27]. Similar 
findings were experimentally observed in the same spe-
cies, as well as in Anopheles coluzzii [30, 32]. Contrary to 
kdr resistance, An. gambiae with ace-1 resistance allele 
did not differ from individuals that have the wild type 
allele (not conferring insecticide resistance) on infec-
tion rate despite significantly higher oocyst prevalences 
were  observed in the resistant strain [32]. More studies 
using field populations are needed to ascertain whether 
a lower longevity suspected by the author and/or other 
factors are involved.

Regarding metabolic resistance, recent breakthroughs 
in designing simple PCR-based assays to detect glu-
tathione S-transferase (GST)-based and cytochrome 
P450-mediated resistance in An. funestus sensu stricto 
provided a unique opportunity to assess its impact on the 
mosquito’s ability to develop the parasites. The L119F-
GSTe2 resistant genotypes of this species showed, in an 
experimental infection study, higher permissiveness to 
oocyst infections than susceptible ones [31]. Similarly, 
in naturally infected populations of the same species, 
homozygote L119F-GSTe2 genotypes were found more 
infected by sporozoites though no significant difference 
was found at the level of oocyst prevalence [28]. In other 
hands, Lo and Coetzee [36], infecting experimentally two 
selected sub-colonies of FUMOZ displaying different 
degree of pyrethroid resistance by Plasmodium berghei, 
found that the insecticide resistant colonies were less 
permissive to infection than the susceptible ones. No 
investigation has so far explored the relationship between 
P450s genes implicated in insecticide resistance and P. 
falciparum infection in An. funestus. Moreover, because 
of the absence of markers of metabolic resistance in An. 
gambiae sensu lato such studies are still lacking in these 
species.

Fig. 1  Basic reporductive number (Ro), Ross-MacDonald model. 
In bold, parameters of the vectorial competence influenced by 
insecticide resistance
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Impact of insecticide resistance on mosquito sialome
Bloodsucking arthropods, like mosquitoes, have evolved 
saliva containing a mixture of pharmacologically active 
molecules that help them counteract the hemostatis and 
inflammatory responses of the vertebrate host during 
bites, thus facilitating blood meal intake [37]. However, 
the activity of these molecules goes beyond the scope 
of ensuring blood meal success, as they possibly influ-
ence the completion of Plasmodium development in the 
salivary gland of malaria vectors. Proteins secreted by 

the salivary gland belong to several families (D7, mucin, 
gSG1, gSG2, gSG6 peptide, gSG7, cE5, 8.2-kDa, 6.2-kDa, 
etc.) [38] whose function include (1) cytoskeletal and 
structural activities (2) digestion, (3) circadian rythm and 
chemosensory, (3) immunity, (4) metabolism and other 
[39]. The development of insecticide resistance in malaria 
vectors is accompanied by physiological changes [26] that 
may affect the sialome composition with consequences 
on the vector competence. Few studies have investigated 

Table 1  Summary of studies evaluating the impact of insecticide resistance on malaria vectors susceptibility to P. falciparum infection

a: field strain; b: laboratory strain; ns: Non Significant; s: Significant; α: insecticide exposure to confirm resistance status probably post infection; β: insecticide exposure 
to confirm resistance status prior to infection

Mosquito species Type of experiment 
performed

Type of infection Infection outcome References

Prevalence Intensity

An. gambiaea kdr-resistant strain compared 
to susceptible strain

Natural Higher sporozoite infection 
prevalence in resistant strains

[27]

An. funestus s.sa GSTe2-resistant genotypes 
compared to susceptible 
genotypes

Natural No difference in oocysts infec‑
tion prevalence ns

Higher sporozoite infection 
prevalence in resistant strains

[28]

An. gambiae s.l.a ace-1-resistant strain com‑
pared to susceptible strain

Natural Higher oocyst infection preva‑
lence in resistant strains

[29]

An. gambiae s.l.a kdr-resistant strain compared 
to susceptible strain

Natural No difference in oocysts infec‑
tion prevalence ns

[29]

An. gambiaea kdr-resistant strain compared 
to susceptible strain

Experimental Higher oocyst infection preva‑
lence in resistant strains

Higher sporozoite infection 
prevalence in resistant strains

Higher oocyst load in the 
resistant strains

Higher sporozoite infection 
load in the resistant strains

[30]

An. coluzziia kdr-resistant strain compared 
to susceptible strain

Experimental Higher oocyst prevalence in 
the resistant strains

Higher sporozoite infection 
prevalence in resistant strains

Higher oocysts load in the 
resistant strains

Higher sporozoite load preva‑
lence in the resistant strains

[30]

An. funestus s.sa GSTe2-resistant genotypes 
compared to susceptible 
genotypes

Experimental Lower oocyst infection preva‑
lence in homozygous resistant 
genotypess

Higher oocysts load in 
homozygous and heterozy‑
gous resistant genotypess

[31]

An. gambiaeb ace-1-resistant strain com‑
pared to susceptible strain

Experimental Higher oocyst prevalence 
infection in resistant strains

No difference in sporozoite 
infection prevalencens

No difference in oocyst and 
sporozoite infection loadns

[32]

An. gambiaeb kdr-resistant strain compared 
to susceptible strain

Experimental Higher oocyst infection preva‑
lence in resistant strains

Higher sporozoite infection 
prevalence in resistant strains

Lower oocyst and sporozoite 
infection load in resistant 
strains

[32]

An. gambiaeb ace-1-resistant strain com‑
pared to susceptible strain

Higher oocyst infection preva‑
lence in resistant strains

[33]

An. gambiaeb kdr-resistant strain compared 
to susceptible strain

Experimental Higher oocyst infection preva‑
lence in resistant strains

[33]

An. gambiaeb kdr-resistant strain compared 
to kdr-resistant strain exposed 
to insecticides

Lower oocyst infection preva‑
lence in resistant strains

No difference in oocyst infec‑
tion loadns

[34]

An. gambiaeb ace-1-resistant strain com‑
pared to ace-1-resistant strain 
exposed to insecticides

Experimental Lower oocyst infection preva‑
lence in resistant strains

Lower oocyst infection load in 
resistant strains

[34]

An. gambiaea kdr-resistant strain compared 
to kdr-resistant strain exposed 
to insecticide-treated nets

Experimental Lower oocyst infection preva‑
lence in resistant strains

Lower oocyst infection load in 
resistant strains

[35]



Page 5 of 11Suh et al. Malaria Journal           (2023) 22:19 	

changes in the sialome in the insecticide resistant vectors 
[40, 41].

The secretory protein 100  kDa, which is encoded by 
Saglin (a cytoskeletal and structural gene present in An. 
gambiae salivary gland) was considered as the binding 
target of P. falciparum and P. berghei on salivary gland 
prior to penetration into the latter [42]. This protein 
was found down-regulated in ace-1 bearing An. gam-
biae strain, suggesting an impact on the vector infectiv-
ity to Plasmodium [43]. However, a recent study showed 
that the 100 kDa Protein is unevenly distributed on the 
salivary glands lobes. Its absence on the primary site of 
sporozoites occupancy in the salivary glands, the distal 
lateral lobes, implies that this protein may instead have a 
secondary role in the infection of the organ [44–46].

The D7 salivary family has been identified in malaria 
vectors among the most expressed proteins involved in 
the antihemostatic activity and probably in digestion of 
blood meal [47–50]. Elanga et  al. [40] showed that two 
short forms of the D7 family genes (D7r3 and D7r4) 
are over-expressed in pyrethroid resistant An. funestus 
(L119F-GSTe2), whereas almost all D7 genes are under-
expressed in pyrethroid resistant An. gambiae (kdr, 
L1014F). A comparable observation was made in insec-
ticide resistant Culex quinquefasciatus (ace-1 resistance) 
[51] as well as in two strains of Aedes aegypti (homozy-
gotes resistant C1534 and G1016 kdr) [52]. These find-
ings show that insecticide resistance mechanism may 
affect the sialome composition differently.

Several immune proteins such as the anti-microbial 
peptides cecropin and defensin were found in the saliva 
of mosquitoes [39, 53]. These immune proteins under-
score the role of the salivary gland in the refractoriness 
of the Anopheles to infections [39, 53]. The small num-
ber of studies that evaluated the impact of insecticide 
resistance alleles on salivary gland gene expression in 
mosquito vectors have not reported significant changes 
related to immune genes as compared with the suscepti-
ble counterparts [41, 43, 51, 52], alluding that the resist-
ant status to insecticide does not influence noticeably 
the immune component of the sialome. If these factors 
are indeed unchanged regardless of the mosquito allelic 
composition, nothing is known whether under infection 
the expression profile of these immune proteins will vary 
or not according to the mosquito genotype. Das et al. [39] 
and Djegbe et  al. [51] demonstrated that salivary gland 
genes expression is influenced by blood meal intake and 
varies towards the period coinciding with the matura-
tion of Plasmodium parasites in mosquitoes [54]. This 
evidence was not previously studied and should be taken 
into account in subsequent research works that aims at 
identifying differentially expressed genes of the salivary 

gland and elucidating their impact on the malaria vector 
competence.

Impact of insecticide resistance on vector immunity
When the infectious blood meal reaches the midgut of 
the female Anopheles, the immune system is deployed to 
prevent infections [20]. In the midgut, P. falciparum faces 
the peritrophic membrane, a physical barrier developed 
to prevent infections. It also protects against the damag-
ing effects of the human blood factors like antibodies and 
regulates several digestive enzymes [55, 56]. Enzymes 
such as trypsin 1 and 2, chymotrypsin, carboxypeptidase, 
aminopeptidase and serine protease are upregulated 
during digestion to cleave the large content of proteins 
in the blood meal [57–60]. These proteases are appar-
ently involved in the elimination of Plasmodium infec-
tions [61]. Three studies attempted to elucidate the effect 
of insecticide resistance on vectors’ immunity [62–64]. 
Mitri et al. [62], in a study evaluating genes implicated in 
the infectivity of An. coluzzii, demonstrated that the kdr-
bearing para gene which carries mutations of the voltage-
gate sodium channel (confering insecticide resistance) is 
not associated with infection but rather the ClipC9 gene 
directing the synthesis of Serine protease. This suggest 
that the effect of the resistant character on refractoriness 
to infection may be due to genes other than that involved 
in resistance to insecticides, and which happen to be 
linked to it. The Serine protease plays an important role 
in the activation of the three major immune signaling 
pathways in mosquitoes: Toll, Imd and JAK/STAT [20], 
which cause the release of antimicrobial peptides (AMPs) 
notably defensins, cecropins, attacin, gambicin and 
AgSTAT-A, effective against malaria parasites infections. 
Vontas et  al. [63], using pyrethroid and organochlorine 
resistant An. gambiae strains, showed that defensin and 
cecropin are upregulated after pre-exposure to perme-
thrin. This study sugggests that insecticide resistant mos-
quitoes may be better equipped than susceptible ones to 
combat infections, but these two immune effectors alone 
may not be decisive in rendering the vector completely 
refractory to malaria infections as many other pathways 
activated concomitantly during parasitic invasion are 
altogether implicated in the outcome of a contamination 
[20].

In Culex pipiens which is vector of many pathogens 
including arboviruses [65], filarial worms [66], and 
protozoa [67], immune response was stimulated in an 
insecticide resistant field strain by injection of Lipopoly-
sacharide (LPS) immune elicitor. As result, no difference 
was found in the expression of defensin and cecropin as 
compared to the control group; but only an increase in 
gambicin was recorded [68]. One point can be drawn 
from these results to infer what might happen in malaria 
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vectors: Plasmodium infections may trigger the overex-
presion of some immune factors while the other may have 
their expression either down regulated or unchanged.

The reactive oxygen species (ROS) produced by cellu-
lar metabolism are another class of effectors of the innate 
immunity that can negatively affect malaria parasites 
[69, 70]. They kill the parasites through both lytic and 
melanization pathways [20]. Ingaham et al. [64] showed 
that An. coluzzii VK7 colony displaying kdr resistance 
mechanism, CYP6M6 and CYP6P3 metabolisers, had 
oxidoreductase  overexpressed after sub-lethal exposure 
to deltamethrin, suggesting that this species could be 
more refractory to Plasmodium infection. At this point, 
it is necessary to verify whether under natural conditions, 
insecticide-resistant Anopheles mosquitoes will display 
an overexpression of ROS or not.

Cellular immune responses are carried out by varous 
type of hemocytes that eliminate pathogens by phago-
cytosis, lysis and melanization [20]. Organochlorines 
and organophosphate were found to affect differently 
the hemocytes abundance including granulocytes in the 
insect Rhynocoris kumarii  [71]. In mosquitoes, studies 
are needed to ascertain the impact of insecticide resist-
ance on cellular immunity and the resulting effect on the 
infectivity of resistant vector to malaria parasite. Regard-
ing melanization of pathogens, it is lead by the phe-
noloxidase (PO) produced by Oenocytoids [72, 73] and 
is regulated by serine protease inhibitors. In field-caught 
C. pipiens resistant to insecticide through an increase in 
detoxification (esterase) and target site mutation (ace-
1), PO expression was equal to that of susceptible group 
[74], suggesting that some genes associated with immu-
nity might not be affected by insecticide resistance char-
acter in mosquitoes. No studies have verified the effect of 
insecticide resistance on PO in malaria vectors.

Impact of insecticide resistance on commensal intestinal 
microbiota of malaria vectors
Bacteria, fungi and viruses colonize the gut, salivary 
glands and reproductive organs of the mosquitoes. These 
microorganisms are mainly acquired from the environne-
ment and its composition is largely influenced by its 
aquatic breeding sites [75, 76]. In addition, the microbi-
ota composition is highly dynamic, varying greatly with 
localities and seasons [77–79]. These variations of micro-
biota composition within field mosquitoes may partly 
explain the variability in infection levels in the field [80].

Mosquito microbiota has great potential for impeding 
the transmission of malaria by altering vectorial capac-
ity [81]. Also, the microbiota is capable of influencing the 
biology of the host such as altering its immunity, nutri-
tion, digestion, vectorial competence, reproduction, 
and insecticide resistance [82–87]. With the growing 

concerns about the rapid spread of insecticide resistance 
in Anopheles mosquitoes, some studies have explored the 
functions of the mosquito’s gut microbial communities 
in the development of resistance. For example, distinct 
microbita populations were found associated with organ-
ochlorine resistance in An. arabiensis [86] and Anoph-
eles albimanus [88]. Similarly, an association between 
specific microbiota and intense pyrethroid resistance 
was reported in An. gambiae [89] and Anopheles ste-
phensi [90], suggesting a microbiota-mediated insecticide 
resistance mechanism. Dieme et  al. [91] suggested that 
changes in the feeding behaviour of insecticide resistant 
vectors may lead to higher microbial diversity. This diver-
sity could modify the repertoire of protective bacteria 
against pathogen infections and/or that of their enhanc-
ers, with consequences on the vectorial competence [9, 
92]. Recently, Bassene et al. [93] showed that, in the spe-
cies An. gambiae and An. funestus, the microbiota was 
signifanctly different between P. falciparum-infected and 
non-infected samples, although the resistance status of 
these mosquitoes was not evaluated. More refined stud-
ies are needed to characterize the microbial communities 
harboured by the insecticide resistant malaria vectors. 
Also the contribution of microbiota against other fac-
tors to the vectorial competence of insecticide resistant 
malaria vectors remains to be investigated.

Impact of insecticide resistance on the longevity of malaria 
vectors
Mosquito longevity is a determinant factor for parasite 
maturation and could influences malaria transmission 
[94, 95]. In fact, the extrinsic incubation of Plasmodium 
in its hematophageous host is about 11–14 days. There-
fore, only mosquitoes whose lifespan is long enough 
could allow the complete development of the malaria 
parasite to the sporozoite infective stage and participate 
in the transmission of the disease. With the emergence 
and spread of insecticide resistance [7], many investiga-
tions were undertaken to gain knowledge of the effect of 
this phenomenon on the vectors’ longevity and so on its 
potential epidemiological impact.

So far, studies on the impact of insecticide resistance 
on malaria vectors longevity have focused on four spe-
cies: An. gambiae, An. arabiensis, An. coluzzii and An. 
funestus. Globally, the findings revealed a pleitropic 
effect of insecticide resistance on mosquito lifespan [33, 
96–108] (Table 2). The majority of studies (10/14) which 
used laboratory strains showed that pyrethroid resistant 
An. funestus and An. gambiae live longer than suscepti-
ble ones [100, 106]. Of the studies including field strains, 
a longer life span was reported in organochlorine and 
pyrethroid resistant An. funestus strains [104, 105]. In 
contrast, a shorter life span was observed in An. gambiae 
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strain resistant to organochlorine. It was reported that 
pre-exposure to insecticide in a manner micmicing field 
exposure to insecticides, affects the longevity of insecti-
cide resistant An. gambiae strain [97], and that delayed 
mortality observed in the vectors may be dependent 
on resistance intensity [98]. This later observation indi-
cates that findings obtained with laboratory colonies are 
to be taken with caution given that they may not reflect 
exactly what is oberved on the field [26]. Nevertheless, 
such studies remain important as they contribute to the 
understanding of the potential mechanisms affecting 
the vectors’ longevity [109, 110], notably resource-based 
trade-off and oxidative stress.

Resource based trade-off is an evolutionary ecology 
concept that states that when environmental constraints 
lead to the augmentation of resources to one biological 
trait, other traits will have their energy budget reduced 
[111]. Accordingly, when mosquitoes adopt the detoxi-
fication mechanism to prevent the effect of insecticide, 
an increased production of detoxifying enzymes follows 
and is maintained by the additional resources deployed 
for the function. Otali et  al. [100] have demonstrated 

that metabolism and longevity of insecticide resist-
ant An. gambiae are lower than that of the susceptible 
strain. Moreover, they showed that the resistant strain 
has higher Reactive Oxygen Species (ROS), which are 
factors determining oxydative stress. In fact, the ROS 
are multifunctional molecules produced by cells of all 
organisms during normal metabolism [112, 113]. They 
have been pointed out as key aging factor in other organ-
isms including Anopheles [114]. Therefore, mosquitoes 
that develop the capacity to cope with oxydative stress 
are likely to live longer. Oliver and Brooke [103] in an 
experiment evaluating the effect of oxidative stress on the 
longevity of both An. arabiensis and An. funestus bear-
ing respectively kdr and Cytochrome P450 mechanisms 
demonstrated that these species live longer, and that 
Cytochrome P450 activity seems more protective against 
oxydative stress.

Rivero et  al. [26] proposed the potential effect of dif-
ferent detoxifying enzymes on vector longevity. For 
example, Glutathion S-Transferase is considered to pro-
tect against oxydative stress. Confirming this point, a 
longer lifespan implicating Glutathion S-Tranferase in 

Table 2  Summary of studies assessing the impact of insecticide resistance on the longevity of malaria vectors

PY: Pyrethroid; OC: Organochlorine; CA: Carbamate; GSTe: Glutathion S-transferase; Es: Esterase; kdr: Knock down resistance; P450: Cytochrome P450 monoxygenase; 
RR: resistant strain, SS: susceptible strain; RRe: resistant strain exposed to insecticide; RRne: resistant strain non-exposed to insecticide; RRb: Resistant strain fed on 
blood; RRs: Resistant strain fed on sugar; > more; < less; = equal

Study species Origin of strains Class of 
insecticides

Resistance mechanism(s) Pre-Exposurea/Exposureb 
to insecticide

Effect on longevity References

An. gambiae s.l Field PY Not available Deltamethrin and 
permethrina

RR longevity > SS longevity [97]

Field PY & OC kdr Not applied RR longevity < SS longevity [96]

Field PY Not available Permethrin (Net) b RRe longevity = RRne [98]

Laboratory PY & OC kdr & P450 Permethrin (Hut-net) b

Laboratory PY Not available Deltamethrinb RR longevity < SS longevity [99]

Laboratory PY kdr, P450 and esterase Not applied RR longevity > SS longevity [100]

Laboratory OC kdr DDTa RR longevity = SS longevity [33]

CA ace-1 Bendiocarba RR longevity > SS longevity

Laboratory OC kdr, GSTe, P450 & Es Not applied RR longevity = SS longevity [101]

Laboratory OC GSTe, P450 & Es Not applied RRb longevity > RRs [102]

Laboratory OC GSTe, P450, Es;kdr Not applied RR longevity < SS longevity [103]

DDTa RRe longevity = RRne

Permethrina, RRe longevity < RRne

Deltamethrina RRe longevity < RRne

Malathion RRe longevity < RRne

An. funestus Field OC GSTe2 Permethrin (Net) b RR longevity > SS longevity [104]

Field PY & OC GSTe2 Not applied RR longevity > SS longevity [105]

Laboratory PY Not available Not applied RR longevity > SS longevity [106]

Laboratory PY & CA P450-a Not applied RR longevity = SS longevity [107]

Laboratory PY & CA P450-a Not applied RR longevity = SS longevity [108]

P450-b RR longevity = SS longevity

P450-a/P450-b RR longevity = SS longevity
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An. funestus was revealed with and without exposure to 
insecticide [104, 105]. In contrast, monoxygenase, known 
to be associated with an increase in oxydative stress has 
not led, as expected, to reduced longevity in An. funes-
tus [108]. More studies using field populations and mic-
micing field conditions are necessary to ascertain the 
full impact of insecticide resistance on longevity of the 
malaria vector.

Conclusion
The need for a comprehensive understanding of the 
impact of insecticide resistance on malaria vector com-
petence is unquestionable. The current state of knowl-
edge is not only insufficient but also contradictory to 
draw a definitive conclusion. A tendency nevertheless 
emerges from findings that insecticide resistance may 
increases the infectivity of malaria vectors to Plasmo-
dium, thus their vector competence. This is possibly due 
to changes in the expression of some genes notably those 
involved in blood-feeding and the immunity. Addition-
ally, microbiota communities vary in the resistant mos-
quitoes as compared to the susceptible counterparts. The 
actual effect of these changes in the course of infection 
and their impact on the infectivity of malaria vectors to P. 
falciparum is still to be investigated. Finally, the longevity 
of the vectors is not always affected by insecticide resist-
ance mechanisms. It is worth noting that, studies using 
vectors displaying metabolic resistance were under-
represented because molecular markers to diagnose this 
character were developped only recently, especially in An. 
funestus. Malaria vectors that bear metabolic resistant 
mechanism are, on an ecological immunology point of 
view, expected to have a number of biological functions 
impaired, including immunity. If established, this situa-
tion may cause them to become less refractory to Plas-
modium infection. Taking advantage of recent advances 
in the genomics, transcriptomics and molecular charac-
terization of insecticide resistance, more refined studies 
can now be undertaken to fill knowledge gaps regarding 
the effect of insectide resistance on key determinants of 
vectorial competence and subsequently predict changes 
in the epidemiology of malaria in a context of insecticide 
resistance escalation.
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