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Abstract 

Background Microscopic examination is commonly used for malaria diagnosis in the field. However, the lack of 
well-trained microscopists in malaria-endemic areas impacted the most by the disease is a severe problem. Besides, 
the examination process is time-consuming and prone to human error. Automated diagnostic systems based on 
machine learning offer great potential to overcome these problems. This study aims to evaluate Malaria Screener, a 
smartphone-based application for malaria diagnosis.

Methods A total of 190 patients were recruited at two sites in rural areas near Khartoum, Sudan. The Malaria Screener 
mobile application was deployed to screen Giemsa-stained blood smears. Both expert microscopy and nested 
PCR were performed to use as reference standards. First, Malaria Screener was evaluated using the two reference 
standards. Then, during post-study experiments, the evaluation was repeated for a newly developed algorithm, 
PlasmodiumVF-Net.

Results Malaria Screener reached 74.1% (95% CI 63.5–83.0) accuracy in detecting Plasmodium falciparum malaria 
using expert microscopy as the reference after a threshold calibration. It reached 71.8% (95% CI 61.0–81.0) accuracy 
when compared with PCR. The achieved accuracies meet the WHO Level 3 requirement for parasite detection. The 
processing time for each smear varies from 5 to 15 min, depending on the concentration of white blood cells (WBCs). 
In the post-study experiment, Malaria Screener reached 91.8% (95% CI 83.8–96.6) accuracy when patient-level results 
were calculated with a different method. This accuracy meets the WHO Level 1 requirement for parasite detection. 
In addition, PlasmodiumVF-Net, a newly developed algorithm, reached 83.1% (95% CI 77.0–88.1) accuracy when 
compared with expert microscopy and 81.0% (95% CI 74.6–86.3) accuracy when compared with PCR, reaching the 
WHO Level 2 requirement for detecting both Plasmodium falciparum and Plasmodium vivax malaria, without using the 
testing sites data for training or calibration. Results reported for both Malaria Screener and PlasmodiumVF-Net used 
thick smears for diagnosis. In this paper, both systems were not assessed in species identification and parasite count-
ing, which are still under development.
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Conclusion Malaria Screener showed the potential to be deployed in resource-limited areas to facilitate routine 
malaria screening. It is the first smartphone-based system for malaria diagnosis evaluated on the patient-level in a 
natural field environment. Thus, the results in the field reported here can serve as a reference for future studies.

Keywords Malaria microscopy, Computer-aided diagnosis, Automated screening, Machine learning, Field testing, 
Smartphone application

Background
Microscopic examination of Giemsa-stained blood films 
is a primary diagnostic tool for malaria case management 
[1]. However, manual microscopy is time-consuming 
and error-prone. Additionally, training qualified person-
nel comes with a high cost [2, 3]. To address this issue, 
researchers have spent effort in recent years to automate 
this process [4].

One approach is to fully automate microscopic exami-
nation, which typically involves building a hardware 
device that can streamline the process from the imaging 
step to the final diagnosis. Delahunt et al.proposed Auto-
scope [5], an automated digital microscope coupled with 
computer vision and machine learning algorithms. It can 
diagnose Plasmodium falciparum malaria by analysing a 
Giemsa-stained thick smear. Later, this prototype system 
evolved to a more advanced version and was renamed 
EasyScan Go [6, 7], adding functions to diagnose non-
P. falciparum species and an algorithm for thin smear 
analysis. Several other groups [8–10] also proposed sys-
tems with similar hardware designs. EasyScan Go is tak-
ing the lead compared to others in that their algorithms 
can perform patient-level malaria diagnosis in all aspects, 
including parasite detection, quantitation, and species 
identification. They have evaluated their system based on 
the slide set that the World Health Organization (WHO) 
provides for external competence assessment of malaria 
microscopists and conducted field evaluation [6, 7].

Another approach is to use a semi-automated method 
that automates only part of microscopy, such as the field 
of views (FoVs) analysis, with a camera or smartphone 
device mounted to the microscope for imaging. A semi-
automated system requires more human intervention 
than a fully automated system. However, it usually con-
sists of less sophisticated hardware components that 
can make it more affordable and, in some cases, easier 
to deploy. These are critical features since most malaria-
endemic regions are resource-limited areas. Several 
publications have proposed semi-automated systems 
[11–14]; however, none of those has been evaluated in 
the field for patient-level diagnosis.

The system discussed in the following falls into the 
semi-automated group. The core is Malaria Screener 
[15], an Android mobile application that automates par-
asite detection using machine learning and computer 

vision algorithms. This application includes an image 
acquisition module, a parasite detection module that can 
detect malaria parasites by analysing the FoVs of micros-
copy, and a data management module that saves and can 
export diagnostic records. This study reports the perfor-
mance of the semi-automated mobile system during a 
field evaluation in Sudan.

Methods
The performance evaluation was conducted during 
a case–control study organized by FIND (global alli-
ance for diagnostics) [16] with the help of the Institute 
of Endemic Diseases, University of Khartoum, Sudan 
(IEND), to evaluate the Malaria Screener software devel-
oped by the National Library of Medicine (NLM) at 
the National Institutes of Health (NIH). Patients were 
recruited at two primary hospitals in Sudan, one in the 
Alsororab (SOR) area and another one in the Gezira 
Slanj (GS) area, 40 and 50 km north of Khartoum where 
P. falciparum and Plasmodium vivax are endemic. The 
patients were recruited during the second malaria season 
between October 2020 and March 2021.

Sample size calculation was performed according 
to [17]. It was estimated that 100 patients positive for 
malaria (cases) by on-site microscopy (approx. 1.1xN) 
would need to be recruited for the evaluation to obtain 
a reliable estimate of the expected sensitivity, with 95% 
power of getting a 95% confidence interval of ± 10% or 
less, while allowing for procedural errors in 10% of all 
cases. Furthermore, it was estimated that 90 patients 
negative for malaria (controls) by on-site microscopy 
(approx. 1.4xN) would need to be recruited for the evalu-
ation to obtain a reliable estimate of the expected speci-
ficity with 95% power of getting a 95% confidence interval 
of ± 10% or less while allowing for procedural errors in 
10% of all controls.

Patients were enrolled consecutively until reaching the 
calculated numbers (190 patients in total, 95 from each 
site). Patients were five years of age and older. Patients 
with symptoms and signs of severe disease or comorbidi-
ties such as central nervous system or cardiovascular dis-
ease, as defined by World Health Organization (WHO) 
guidelines, were excluded, as were those who had 
received anti-malarial treatment in the four weeks before 
enrollment. Patients were enrolled after signing informed 
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consent documents. Finger-prick blood samples were 
collected by a capillary tube to prepare blood smears, and 
dried blood spots (DBS) were prepared for PCR analysis. 
Figure  1 describes the procedures that were performed 
during this study.

Manual light microscopy
Light microscopy was performed for malaria diagno-
sis, species identification, and parasite counting. Blood 
smears were stained by a 3% freshly prepared Giemsa 
solution for 45 min before washing and air-dried for one 
hour at room temperature according to WHO standard 
procedures [18]. The slides were first examined at the 
hospitals of each region by site microscopists and later 
verified by a second microscopist at the University of 
Khartoum’s Institute of Endemic Diseases. The Obare 
method calculator [19] was used to determine whether 
the two readings agreed. A third expert microscopy read-
ing was performed in the event of a discrepancy. All 
microscopists were WHO Level 1 expert microscopists.

Blood film examination using Malaria Screener
Malaria Screener-assisted microscopy requires mount-
ing a smartphone onto the eyepiece of a microscope. 
Each site was equipped with a Samsung Galaxy A10 

smartphone and an Olympus CX23 microscope. Malaria 
Screener (version 1.6.6) was downloaded from Google 
Play Store and installed on each device. While screening 
a blood smear, a microscopist looked for suitable FoVs for 
the app to capture, and the app instantly processed the 
images on the phone. These two actions were repeated 
until a user-specified WBC threshold was met (This 
threshold is 200 by default and can be changed by the 
user). Then, the app displayed the diagnostic results and 
saved the diagnosis and the captured image data, which 
were later exported to an external database. A diagram of 
the workflow is shown in Fig.  2. More details regarding 
the software can be found in previous publications [15, 
20, 21]. Before the study, a training session was provided 
to the microscopists to teach them how to use the app. 
This includes attaching the smartphone to the eyepiece 
with the adapter, selecting proper FoVs, and adjusting 
settings, for example. A user manual was also provided 
for future reference (The user manual is attached as 
Additional file 1).

Slides from the GS site were used to fine-tune the sys-
tem parameters. Fine-tuning mainly consisted of analys-
ing the receiver operating characteristic (ROC) to find a 
confidence threshold leading to the highest patient-level 
accuracy. Then, Malaria Screener was tested on SOR site 

Fig. 1 Flow chart of the study procedures. For Malaria Screener, P. vivax samples were excluded since it can only process P. falciparum malaria. For 
PVF-Net, a newly developed deep learning-based algorithm, one mixed infection sample was excluded since it cannot process mixed infection
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samples by a microscopist on site. However, the results 
for P. vivax samples were excluded because the algorithm 
in Malaria Screener was only ready to be used for P. falci-
parum malaria.

Blood film examination using PVF‑Net (Post‑study 
experiment)
After the study, an improved version of the diagnostic 
algorithm was developed. This new framework is called 
PlasmodiumVF-Net [22] (PVF-Net). Its algorithm design 
is different from Malaria Screener. It can detect both P. 
falciparum and P. vivax infections. However, the mech-
anism to aggregate results from object to image level is 
like Malaria Screener in that PVF-Net averages probabili-
ties, although it manages different thresholds for P. falci-
parum and P. vivax. PVF-Net was trained and calibrated 
using a dataset from Bangladesh, as described by Kassim 
et  al. [22]. Images collected from the Sudan blood slide 
samples were re-examined using PVF-Net in a post-study 
experiment.

DNA extraction and nested PCR
DNA extraction was performed from DBS using a 
QIAamp DNA extraction kit following the manufac-
turer’s instructions (Qiagen, Germany). Nested PCR 
was performed to identify malaria species following 
Snounou et  al. using previously published primers [23]. 
In each assay, a positive control of P. falciparum and P. 
vivax [DNA sample from P. falciparum (3D7 strain) and 
P. vivax (Sudanese isolate)] was included, and a negative 
control (DNA sample negative for malaria) was included 
as well.

Patient‑level diagnosis
An object-level (parasite) diagnosis was performed first 
within each blood smear image; then, results were com-
bined across images to determine whether a patient was 
positive or negative.

The deep learning classifier provided a confidence 
score for each detection in an image. The average score of 
all detections was computed and used as the confidence 
score of an image (Eq. 1). Then, the average score of all 
images was taken as the confidence score of the corre-
sponding smear, meaning patient (Eq.  2). If the patient 
score exceeds a certain threshold, then the patient is con-
sidered positive; otherwise, the patient is considered neg-
ative. Slides from the GS site were used for fine-tuning to 
determine this threshold.

pi prediction likelihood of parasite candidate.
n1 number of parasite candidates in the image.
Confimg confidence score of the image.
n2 number of images captured for the smear.
Confpatient confidence score of the smear.

Evaluation
System performance was evaluated on the patient-level 
based on accuracy, sensitivity, and specificity. Micros-
copy and PCR were used as reference standards for eval-
uation, where decisions of WHO Level 1 microscopists 
were used for microscopy.

(1)Conf img =
1

n1

n1∑

i=1

pi

(2)Conf patient =
1

n2

n2∑

i=1

Conf img

Fig. 2 System workflow overview
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Results
Sudan data statistics
A total of 380 slides were prepared with blood collected 
from the 190 patients of the two participating sites. 103 
(54.2%) patients were male, and 87 (45.8%) were female. 
The average age of the patients was 29.8, with a stand-
ard deviation of 15.6. Specifically, two slides were col-
lected for each patient, one for analysis and another for 
backup, containing both a thin and a thick smear. Of the 
190 slides used for analysis, 100 (52.6%) tested positive 
by expert microscopy, and 90 (47.4%) tested negative. 
Among the positive slides, 61 were P. falciparum, 38 were 

P. vivax, and one was a P. falciparum + P. vivax mixed 
infection.

A total of 2944 images were collected from thick blood 
smears (15.5 images/patient), and 875 images were col-
lected from thin blood smears (4.6 images/patient). 
Details about the image collections can be found in 
Table  1. More images were gathered from thick smears 
because the minimum WBC count threshold used (1000) 
was high compared to the WBC concentration of the 
slides. Approximately 10 to 20 images were collected for 
each thick smear, and around 4 to 6 images were gathered 
for each thin smear, as shown in Fig. 3.

Evaluation using expert microscopy as a reference
Malaria Screener was tested on SOR P. falciparum and 
negative samples only. This part of the dataset includes 85 
patients (40 positive patients and 45 negative patients). 
Meanwhile, during post-study experiments, PVF-Net 
was tested on both P. falciparum and P. vivax species 
from both sites, including 189 patients (99 positive and 
90 negative patients). The evaluation results are listed in 
Table 2.

Parasite detection with Malaria Screener (P. falciparum only)
Malaria Screener achieved 74.1% (95% CI 63.5–83.0) 
accuracy in detecting P. falciparum malaria through 
thick smears. It correctly saw whether malaria is present 
in 63 of 85 patients. This result meets the WHO Level 
3 criterion in the parasite detection category [24]. The 

Table 1 Overview of the dataset collected in Sudan

Number of 
slides

Thick smear 
images

Thin 
smear 
images

Site GS P. Falciparum 21 395 90

P. Vivax 28 409 125

Negative 45 705 197

Mixed infection 
of P. F. & P. V

1 28 4

Sum 95 1537 416

Site SOR P. Falciparum 40 609 197

P. Vivax 10 124 53

Negative 45 674 209

Sum 95 1407 459

Fig. 3 Histogram distribution of patient image counts
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application has a high sensitivity of 100% (95% CI 91.2–
100) and a relatively low specificity of 51.1% (95% CI 
35.8–66.3). During a post-study experiment, a different 
patient-level classification method was tried. Specifically, 
a threshold based on the number of parasite candidates 
was used to determine whether a patient was infected or 
uninfected. As a result, Malaria Screener achieved 91.8% 
(95% CI 83.8–96.6) accuracy,  92.5% (95% CI 79.6–98.4) 
sensitivity, and 91.1% (95% CI 78.8–97.5) specificity. This 
result meets the WHO Level 1 criterion in the parasite 
detection category.

Parasite detection with PVF‑Net—post‑study experiment
The images of Sudan data were re-analysed during this 
post-study experiment. Results are listed below (PVF-Net 
cannot handle mixed infections; therefore, one patient 
with a mixed infection of P. falciparum and P. vivax was 
excluded. Thus, the total number of patients is 189 rather 
than 190 for this experiment). PVF-Net correctly identi-
fied whether there was a malaria infection for 157 of 189 
patients through thick smear analysis, yielding an accu-
racy of 83.1% (95% CI 77.0–88.1). This result meets the 
WHO Level 2 requirement for parasite detection. The 
sensitivity is 86.9% (95% CI 78.6–92.8), and the specific-
ity is 78.9% (95% CI 69.0–86.8). For P. falciparum only, 
its accuracy is 82.8% (95% CI  75.8–88.4), sensitivity is 
88.5% (95% CI  77.8–95.3), and specificity is 78.9% (95% 
CI  69.0–86.8). For P. vivax only, its accuracy is 80.5% 
(95% CI  72.5–86.9), sensitivity is 84.2% (95% CI  68.8–
94.0), and specificity is 78.9% (95% CI 69.0–86.8).

Detection sensitivity at different parasitaemia levels
The sensitivity of the system was measured at different 
parasitaemia levels. The samples were separated into 
three parasite density groups: < 1000 p/µL, 1000 – 10,000 
p/µL, and > 10,000 p/µL. Sensitivity maintained the same 
for Malaria Screener among the three groups. It was 
100% (95% CI 2.5-100) at < 1000 p/µL (n = 1), 100% (95% 
CI 79.4-100) at 1000–10,000  p/µL (n = 16), and 100% 
(95% CI 85.2-100) at > 10,000 p/µL (n = 23). Sensitivity 
varied for PVF-Net among the three groups. It was 50.0% 
(95% CI 15.7-84.3) at < 1000  p/µL (n = 8), 77.5% at (95% 
CI 61.6-89.2) 1000–10,000 p/µL (n = 40), and 100% (95% 
CI 93.0-100) at > 10,000 p/µL (n = 51) (Fig. 4).

Evaluation using nested PCR as a reference
Nested PCR tests were performed on all 190 patients and 
compared with results from Malaria Screener and PVF-
Net. The 85 non-P. vivax patients at the SOR site include 
40 microscopy-positive patients with P. falciparum infec-
tion and 45 negative patients. A nested PCR test con-
firmed microscopy diagnosis for 77 patients while finding 
parasites in 8 microscopy-negative patients. Malaria 
Screener only identified three of those eight slides as pos-
itive. Thus, compared to PCR, Malaria Screener’s detec-
tion accuracy dropped to 71.8% (95% CI 61.0–81.0). The 
sensitivity is 89.6% (95% CI 77.3–96.5), and the specificity 
is 48.7% (95% CI 31.9–65.6).

When compared to PCR on 189 patients, PVF-Net cor-
rectly detected whether malaria was present in 153 of 189 
patients, reaching 81.0% (95% CI 74.6–86.3) accuracy. It 
has a relatively high sensitivity of 81.1% (95% CI 72.6–
87.9) while achieving a relatively high specificity of 80.8% 
(95% CI 70.3–88.8). More details are shown in Table 3.

Processing time
Following the semi-automated approach, the app analy-
ses each image automatically, while the user identifies 
FoVs. Hence, the total time needed to process one smear 

Table 2 Malaria Screener and PVF-Net evaluation using microscopy as a reference

Evaluation Metrics Accuracy, % (95% CI) Sensitivity, % (95% CI) Specificity, % (95% CI)

Index tests

 Malaria Screener (85 patients) 74.1 (63.5—83.0) 100 (91.2—100) 51.1 (35.8—66.3)

 PVF-Net (189 patients) 83.1 (77.0—88.1) 86.9 (78.6—92.8) 78.9 (69.0—86.8)

Fig. 4 Sensitivity (%) of Malaria Screener and PVF-Net at different 
parasitaemia levels
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contains both the app’s runtime and the user’s operating 
time. It took, on average, only 11.47 and 9.96 s for the app 
to analyse one thin and thick smear image, respectively, 
on the used smartphone devices. However, since users 
also needed time to adjust the microscope between FoVs, 
they found that the overall processing time per smear for 
Malaria Screener was only slightly shorter than manual 
microscopy, although Malaria Screener is much faster in 
processing each FoV. However, the user’s operating time 
was not assessed systematically in this study. The above 
statement is only based on users’ observations.

Inter‑observer variation among microscopists
A cross-checking quality control system was imple-
mented during the reference microscopy test. Among 
100 patients with positive reads, the first two microsco-
pist readings reached consensus decisions regarding spe-
cies and parasitaemia for only 27 patients while having 
discordant diagnoses for 73 patients, according to the 
Obare method calculator. A Bland–Altman plot (Fig.  5) 
for assessing agreement of parasitaemia estimations 
between the first two microscopist readings showed the 
mean difference to be 3.58, and limits of agreement range 
from 2.52 to 4.64 on a logarithmic scale.

Microscopists vs. PCR
Nested PCR tests confirmed microscopy diagnosis for 
178 patients while finding parasites in 11 patients that 
microscopists identified as negative. Thus, compared to 
PCR, the WHO Level 1 microscopists achieved a 94.2% 
accuracy, confirming that they meet the WHO Level 1 
requirement for parasite detection.

Discussion
Malaria Screener screened 85 patients from the SOR site 
for P. falciparum. It achieved 74.1% (95% CI 63.5–83.0) 
accuracy, 100% (95% CI 91.2–100) sensitivity, and 51.1% 
(95% CI 35.8–66.3) specificity. Switching the patient-
level classification method improved the results to 91.8% 
(95% CI 83.8–96.6) accuracy, 92.5% (95% CI 79.6–98.4) 
sensitivity, and 91.1% (95% CI 78.8–97.5) specific-
ity. PVF-Net screened 189 patients from both sites for 
P. falciparum and P. vivax. It achieved 83.1% (95% CI 

77.0–88.1) accuracy, 86.9% (95% CI 78.6–92.8) sensitiv-
ity, and 78.9% (95% CI 69.0–86.8) specificity. PVF-Net 
demonstrated a more robust performance than Malaria 
Screener, especially in specificity and its ability to detect 
both P. falciparum and P. vivax.

Overall, although the results from the two systems are 
still inferior to the top-tier expert microscopists and the 
systems were not ready yet for species identification and 
parasite counting, their performance showed that auto-
mated systems have the potential to be used in real-world 
settings. In addition, the results showed that the devel-
oped machine learning algorithms are generalizable in 
that this field study was conducted in a different malaria-
endemic region (Sudan) and by another group of malaria 
experts, compared to the region in which the original 
training data was acquired and where the system was 
trained (Bangladesh, Thailand).

Patient‑level result
This study reported patient-level results, an essential fea-
ture of any computer-aided system for malaria diagnosis 
to be meaningful in the field. However, such field stud-
ies have been lacking in smartphone-assisted malaria 
microscopy. Most studies were only focusing on object-
level or image-level evaluations so far. Even outside the 
scope of smartphone-based systems, only one such 
patient-level study [6] was found.

Table 3 Malaria Screener and PVF-Net evaluation using PCR as a reference

Evaluation Metrics Accuracy, % (95% CI) Sensitivity, % (95% CI) Specificity, % (95% CI)

Index tests

 Malaria Screener (85 patients) 71.8 (61.0–81.0) 89.6 (77.3–96.5) 48.7 (31.9–65.6)

 PVF-Net (189 patients) 81.0 (74.6–86.3) 81.1 (72.6–87.9) 80.8 (70.3–88.8)

Fig. 5 Bland–Altman plot for parasitaemia estimations between the 
first two microscopist readings
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There are some limitations to this study. The test data 
was not collected so that it could be easily organized 
to evaluate the software’s performance in diagnosing 
patients with different levels of parasitaemia. Although 
such an evaluation was included in this paper, the small 
number of patients at low parasitaemia levels is less than 
ideal. Besides, the study was not designed to evaluate the 
software’s performance for different slide qualities.

High sensitivity and low specificity
Malaria Screener demonstrated high sensitivity and low 
specificity performance during the field evaluation. This 
is primarily due to many parasite-like artifacts in the 
images. Unlike the training data, the field data contains 
more parasite-like staining artifacts, which are difficult 
for the model to distinguish. These artifacts caused false 
detections that led to negative patients being diagnosed 
as positive and likely increased the parasite count in 
positive patients. More details about the system’s per-
formance can be found in the additional files 2, 3, 4, and 
5 (File 2 includes overlays of blood smear images with 
detected parasite candidates. File 3 contains microscopy 
and PCR results for each patient, and File 4 contains 
object-level scores. Finally, File 5 provides object score 
histograms for each patient.). There are several options to 
improve this aspect in future iterations of the software. 
For instance, one obvious method is to add more real-
world data with parasite-like artifacts to the training set, 
which provides the model with more examples to learn 
about such artifacts. Another way is to add a filter after 
the parasite detection step to reduce the number of false-
positive detections. In addition, a threshold for the num-
ber of parasite candidates in the post-study experiment 
helped to overcome this problem, leading to a much 
higher specificity of 91.1% (95% CI 78.8 – 97.5). This is 
because the number of parasite candidates per slide is 
much lower for negative patients.

From object‑level scores to patient‑level diagnosis
The results of the post-study experiment showed that the 
method used for computing patient-level results greatly 
impacts the system’s patient-level performance. Initially, 
the image score was generated by calculating the mean 
of the object scores, and then, the patient score was 
generated by calculating the mean of the image scores. 
This method ignored the number of parasite candidates 
detected for a patient. Using a threshold for the maxi-
mum number of parasite candidates allowed in a nega-
tive patient avoided this issue and led to a much higher 
performance. If the number of parasite candidates for a 

patient exceeded the threshold, the patient was consid-
ered positive.

Using PCR as a reference test
PCR was used as a reference test to see what the perfor-
mance would be when evaluated with a more sensitive 
method. In addition, sponsors were interested in evalu-
ating the performance of the microscopists compared to 
PCR. The results showed that the performance of Malaria 
Screener and PVF-Net dropped when compared to PCR, 
especially in sensitivity, as expected. However, both sys-
tems still achieved the same WHO competency levels. 
The microscopists achieved an accuracy of 94%, confirm-
ing their WHO Level 1 qualification.

Practicality
For automated malaria diagnostic applications, practical-
ity plays an integral part in whether field practitioners 
will accept the technology. For this study, the following 
points are worth highlighting in this respect:

 i. Easy to deploy. The app itself can be easily down-
loaded from Google Play Store. A microscope 
adapter can be purchased online via a variety 
of options. Lastly, the app can run on standard 
Android devices.

 ii. Easy to use. A user manual was provided along 
with the software. Then, field experts learned how 
to use it after one short online training session.

 iii. Affordable. The testing device, a Samsung Galaxy 
A10, cost around $150 at retail price. An adapter 
can cost from $10 to $100.

 iv. The experts found that the app used in a semi-
automated fashion is not necessarily time-saving, 
especially when WBC concentration is low and 
more images must be captured to adhere to the 
protocol.

Conclusion
This paper reported evaluation results for Malaria 
Screener in a field study conducted by clinical experts 
in Sudan. According to WHO standards, Malaria 
Screener reached the Level 3 competence require-
ment in the category of parasite detection, although 
only for P. falciparum. This was improved to Level 1 in 
a post-study experiment. Also, in a post-study experi-
ment, a deep learning network (PVF-Net) achieved 
Level 2 competence in the category of parasite detec-
tion for both P. falciparum and P. vivax. To the best 
of our knowledge, this is the first patient-level evalu-
ation study of a smartphone-based malaria diagnostic 
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application. Therefore, this study can serve as a refer-
ence for evaluating similar systems in the future. The 
application shows promise for malaria screening in 
resource-limited areas. With continued improvements, 
especially for species identification and parasitaemia 
quantitation, Malaria Screener has the potential to 
facilitate malaria screening in the field.
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