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Abstract 

Background  Estimating malaria risk associated with work locations and travel across a region provides local health 
officials with information useful to mitigate possible transmission paths of malaria as well as understand the risk of 
exposure for local populations. This study investigates malaria exposure risk by analysing the spatial pattern of malaria 
cases (primarily Plasmodium vivax) in Ubon Ratchathani and Sisaket provinces of Thailand, using an ecological niche 
model and machine learning to estimate the species distribution of P. vivax malaria and compare the resulting niche 
areas with occupation type, work locations, and work-related travel routes.

Methods  A maximum entropy model was trained to estimate the distribution of P. vivax malaria for a period between 
January 2019 and April 2020, capturing estimated malaria occurrence for these provinces. A random simulation 
workflow was developed to make region-based case data usable for the machine learning approach. This workflow 
was used to generate a probability surface for the ecological niche regions. The resulting niche regions were analysed 
by occupation type, home and work locations, and work-related travel routes to determine the relationship between 
these variables and malaria occurrence. A one-way analysis of variance (ANOVA) test was used to understand the 
relationship between predicted malaria occurrence and occupation type.

Results  The MaxEnt (full name) model indicated a higher occurrence of P. vivax malaria in forested areas especially 
along the Thailand–Cambodia border. The ANOVA results showed a statistically significant difference between aver‑
age malaria risk values predicted from the ecological niche model for rubber plantation workers and farmers, the two 
main occupation groups in the study. The rubber plantation workers were found to be at higher risk of exposure to 
malaria than farmers in Ubon Ratchathani and Sisaket provinces of Thailand.

Conclusion  The results from this study point to occupation-related factors such as work location and the routes 
travelled to work, being risk factors in malaria occurrence and possible contributors to transmission among local 
populations.
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Background
Malaria has been a public health priority of the Greater 
Mekong Subregion for years, although in recent years, 
high treatment failure rates in Plasmodium falcipa-
rum in eastern Thailand have necessitated rapid policy 
responses. To address the concerning rates of antima-
larial drug resistance, In 2020, Thailand’s Ministry of 
Public Health changed the first-line therapy for P. falci-
parum to artesunate-pyronaridine (AS-PY) in Sisaket, to 
address high treatment failure rates [1]. This resulted in 
a steep decline of P. falciparum cases to the point where 
Plasmodium vivax has become the predominant species 
causing malaria cases in Thailand, with a much smaller 
proportion of P. falciparum cases. Many of these cases 
have been clustered along international borders, includ-
ing the borders with Myanmar and Cambodia [2]. How-
ever overall, malaria prevalence has been decreasing in 
recent years, and Thailand has a goal to eliminate malaria 
by 2024. From 2012 to 2017, there was a 67% decline in 
the number of cases including an accelerated decline of 
39% from 2016 to 2017 [3]. While Thailand is moving for-
ward with its elimination goals, there are still significant 
pockets of malaria in Thailand as recent reports [4] indi-
cate that malaria cases have doubled in fiscal year 2022 
compared with the previous fiscal year.

Estimating malaria risk across a region provides local 
health officials with information useful for the mitiga-
tion of possible local transmission paths, and for under-
standing the risk of exposure for local populations. In 
this study, a machine learning approach was utilized to 
estimate the spatial distribution of malaria in two prov-
inces in eastern Thailand, Ubon Ratchathani and Sisaket, 
where both P. vivax and P. falciparum had been found in 
clinical studies and was being monitored by a team from 
the United States Armed Forces Research Institute of 
Medical Sciences (AFRIMS). The research objective was 
to estimate the association of occupation-related fac-
tors, including occupation type and work locations, with 
estimated malaria occurrence in these two provinces to 
understand how local populations may be vulnerable to 
malaria based on where they reside, where their work-
place is located, and the routes they take to reach their 
workplace. Malaria occurrence here refers to the prob-
ability of having malaria at a location.

To generate an estimate of the spatial variability of 
malaria occurrence within these provinces, a maximum 
entropy-based modelling tool (MaxEnt) was used to 
model the malaria species distribution. MaxEnt is an eco-
logical niche modelling tool that predicts species distri-
bution across a defined geographic area using case data 
and relevant environmental variables [5]. The true distri-
bution of a species is represented as a probability distri-
bution that considers the constraints of incidence data in 

relation to the empirical average of environmental data at 
sites where cases are detected [6–8]. MaxEnt produces 
a probability map showing whether a species existed in 
a location or not, and this tool was used to predict the 
species distribution of P. vivax malaria for the period, 
January 2019 to April 2020 in Ubon Ratchathani and 
Sisaket. Environmental and sociodemographic variables 
were used to train the ecological niche model, includ-
ing precipitation, temperature, elevation, land cover and 
population density as well as the locations of known 
local positive P. vivax and P. falciparum cases in these 
two provinces. These variables were used to determine 
the suitable environmental conditions for local malaria 
transmission and to create a probability surface that cap-
tures the ecological niche, reflecting the likelihood of 
malaria occurrence across the study area. The relation-
ship between the probability of malaria occurrence and 
occupation type, work-related locations, as well as esti-
mated travel routes between home and work locations 
(at village-level granularity) has been analysed to better 
understand the impact that residential and work loca-
tions, as well as work-related travel have on risk of expo-
sure in outdoor settings and local transmission of malaria 
within this study area.

Several studies have used an ecological niche modelling 
approach to model the species distribution of Anopheles 
mosquitoes. Studies where the maximum entropy tool 
was used to determine the spatial distribution of the local 
Anopheles mosquito species have been undertaken in 
regions all over the world, including Asia and the Mid-
dle East [9], South America [10, 11], and Africa [12, 13]. 
MaxEnt has also been used to model the effects of cli-
mate change on malaria transmission and Anopheles spe-
cies density in China [14], Iran [15], and parts of Africa 
[16]. In the model, local P. vivax malaria cases were used 
to train the machine learning model and estimate the 
percent probability of malaria occurrence given certain 
geographical and population factors.

The correlation between demographic variables and 
malaria risk has been previously studied, for example, an 
investigation of malaria risk factors in northern Namibia 
used survey data of malaria positive and negative indi-
viduals to identify significant risk factors for malaria in 
Namibia. In this study, cattle herders and police were the 
occupation types at the highest risk, and cross-border 
travel, open sleeping quarters, and working in agricul-
ture overnight had a significant relationship with malaria 
infection [17, 18]. Significant risk factors for P. vivax 
malaria infections in Western Thailand included previ-
ous history of clinical malaria, occupation in agriculture, 
and travel to Myanmar [19]. In further studies, malaria 
prevalence has been very high in forest and forest fringes 
along rural stretches of border areas in Thailand, and 
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forest workers, and local migrants were the individuals at 
highest risk [20–23]. Researchers found that challenges 
for malaria control existed especially in border regions 
with highly mobile migrant workers [24]. Recent research 
findings showed that limited vector protection for forest 
goers was one of the main reasons underlying malaria 
transmission hotspots located in the border areas [25, 
26]. As occupation and work-related travel were expected 
to play a key role in exposure to malaria infection [25], 
this study focused on how different environmental fac-
tors impact the spatial distribution and extent of the eco-
logical niche in Ubon Ratchathani and Sisaket, a P. vivax 
transmission prone area of eastern Thailand.

Methods
Data and study area
Ubon Ratchathani and Sisaket were selected based on 
an ongoing collaboration with researchers at the United 
States Armed Forces Research Institute of Medical Sci-
ences (AFRIMS) based in Bangkok, Thailand who were 
conducting clinical studies of malaria in these two prov-
inces (Fig. 1a).

Travel histories and other demographic data were 
collected by the AFRIMS research team as part of an 
ongoing study from March 2019 to April 2020 from 40 
individuals reporting to malaria clinics and posts in Ubon 
Ratchathani and Sisaket. Polymerase chain reaction tests 
were applied to all samples to confirm speciation. Nearly 
all cases (39 cases) were diagnosed as P. vivax. (Fig. 1a). 

Due to the single case of P. falciparum that was reported, 
the study sample data is referred collectively as "malaria 
case data,” with the majority of cases being P. vivax. 
The survey participants met several requirements to be 
selected as participants in the study by AFRIMS, namely 
they were males or non-pregnant females, were older 
than 18 years and were civilian or military. They under-
stood spoken Thai or a local language. In the survey, par-
ticipants were asked to name their (permanent) home 
village to confirm that the data represent a local popu-
lation. Other data used in this study included variables 
such as malaria diagnosis, age, sex, occupation type, and 
GPS coordinates for work locations and travel distance to 
work. For the AFRIMS survey data, the GPS coordinates 
were obtained for an approximate location near to their 
permanent residence in the village where they reside, and 
for work locations the approximate geographic coordi-
nates capturing a close location were obtained for where 
they worked. This information was used in the analysis of 
occupation and work-related travel in relation to the esti-
mated probability of malaria occurrence.

A landcover product for Myanmar, SERVIR KEKONG 
Land Cover Portal, was used for ecological niche model-
ling [27]. Based on the dataset, the primary land cover 
classes for Ubon Ratchathani and Sisaket provinces were 
forested areas, crop lands, and rice paddy fields. There is 
an escarpment with higher elevation (peak of 761 m) that 
is highly forested along the border of both provinces with 
Cambodia (Fig.  1b). This escarpment area has very low 

Fig. 1  a Study area of Ubon Ratchathani and Sisaket, Thailand and the malaria cases per district in study sample enrolled by AFRIMS, and b 
landcover from SERVIR KEKONG Land Cover Portal and home village locations for malaria cases from data provided by AFRIMS
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population density, however many of the surveyed indi-
viduals regularly travelled into this region for their work.

In addition to the research data collected by AFRIMS, 
the malaria case data from the online malaria infor-
mation system (OLMIS) managed by the Ministry of 
Public Health for Thailand (MOPH) was also obtained 
(Fig. 2). These data included the number of P. vivax and 
P. falciparum malaria cases in each district for Ubon 
Ratchathani and Sisaket from January 2019 to April 
2020. The MOPH recorded 125 P. vivax malaria cases 
in Ubon Ratchathani and 201 cases in Sisaket, for a 

total of 326 P. vivax cases within the two provinces dur-
ing this period. It is possible that the 40 cases identi-
fied by the AFRIMS study are included in the 326 cases 
reported by the OLMIS dashboard. After simulating 
locations for these cases, these data were used to train 
the machine learning model for malaria niche estima-
tion. Lastly, the road network data were obtained from 
Open Street Map (OSM) for Ubon Ratchathani and 
Sisaket, and used these data to estimate travel routes 
from home villages to estimated work locations of the 
survey participants.

Fig. 2  Annual parasite index by district recorded by the OLMIS between January 2019 and April 2020 classified using natural breaks overlaid with 
both simulated home village locations from OLMIS, and recorded home village locations from AFRIMS survey
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Eight different remotely-sensed environmental data 
layers were used for malaria ecological niche estima-
tion including total precipitation, landcover, population, 
elevation, slope, and average, minimum and maximum 
temperatures for both provinces. Precipitation esti-
mates were obtained from WorldClim and included the 
monthly total amount of precipitation at a 21  km reso-
lution, which was then averaged to create an annual 
precipitation layer for 2018 [28]. Landcover data are cat-
egorical and sourced from the Mekong Landcover Viewer 
[29]. From the original data, there are 20 different land 
cover classifications, however these classes were con-
solidated into nine classes by generalizing multiple forest 
classes to a general classification of forested areas. Shut-
tle Radar Topography Mission (SRTM) 2014 elevation 
data was used in this research, including for calculating 
slope using ArcGIS Pro 2.6.2 [30]. Temperature vari-
ables were annual averages for 2020 and were obtained 
from NASA’s Moderate Resolution Imaging Spectrora-
diometer (MODIS) [31]. Lastly, population density data 
were sourced from Oak Ridge National Laboratory’s 2019 
Landscan resource [32].

Methodology
Using the malaria case data and the environmental 
data, the malaria parasite distribution was determined 
using an ecological niche model for the study area. The 
relationship between the ecological niche, and work 
locations and occupation types were analysed using a 
leave-one-out validation process to determine which 
variables have the strongest relationship with areas with 
a higher probability of malaria occurrence. To imple-
ment this process, a number of models were created. 
Each variable was excluded in turn, and a model created 
with the remaining variables. Then a model was created 
using each variable in isolation. In addition, a model was 
created using all variables, as before. The area under the 
ROC curve (AUC) values from all the results were com-
pared to determine the relative strength of each variable.

As the cases provided through the OLMIS for Thailand 
were geolocated only to the district level, a random simu-
lation workflow was conducted using R to generate esti-
mates of home village locations for these malaria-positive 
individuals (Fig. 2).

The random simulation process was executed based on 
the following rules:

•	 Points were randomly generated within the district 
boundary;

•	 The number of points generated corresponded to the 
number of cases within each district;

•	 Locations with low residential population numbers 
based on Landscan 2019 population estimates were 

excluded, including the forested escarpment area 
along the Cambodia border;

•	 Uniform random sampling was used as the popula-
tion distribution for the area is widely spread, with 
only a few urban areas with higher population den-
sity such as the City of Ubon Ratchathani, the former 
capital of the province, with a population of 79,000 
(Department of Provincial Administration, 2014). 
However, the risk of contracting malaria in urban 
areas is likely to be less than in rural areas as health 
care providers tend to cluster in urban areas, and the 
lack of habitats for the vector and a lack of travel to 
rural areas in urban areas. Public health measures are 
more likely to be in place and to have sufficient fund-
ing to be maintained in urban areas [33, 34].

The generated points were used as occurrence data in 
the ecological niche model. One thousand different sets 
of random points by district were simulated in order to 
generate the highest level of randomness and to avoid 
bias in the results [35, 36]. All environmental variables 
were pre-processed using R to be the same projection, 
extent, and spatial resolution.

The MaxEnt modelling tool was run over 1000 itera-
tions for each set of randomly generated home village 
locations and the eight pre-processed environmental lay-
ers in R. Three different training–testing splits were ana-
lysed to test the sensitivity of the models and evaluate the 
quality of the results including 70-30, 80-20 and 100% of 
the data as training data. The area under the curve (AUC) 
values for the 1000 iterations were averaged to determine 
the training–testing split that was used for the analyses.

A random sampling approach was used to estimate 
100 work locations for rubber plantation workers and 
farmers. Farmers were assumed to have worked in both 
“Rice paddy” and “Cropland” regions while rubber plan-
tation workers were assumed to work in “Forest” regions 
(Fig.  2). This assumption was tested using the demo-
graphic data collected by AFRIMS. The work locations 
were then generated using a uniform random sampling 
package from R package ‘sf ’ applying these restrictions 
for the working regions for farmers and rubber planta-
tion workers, respectively.

Logistic regression was applied to estimate the associa-
tion between the estimated probability of malaria occur-
rence and occupation types. This study focused only on 
two occupations, farmers and rubber plantation work-
ers, classified as categorical variables when building the 
model. These two occupation groups were tested because 
they comprised 65% of the collected data and represent 
different land cover classes (forested areas, croplands, 
and rice paddies), allowing us to analyse one group that 
works in forested areas and one that does not. A one-way 
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Analysis of Variance (ANOVA) test was applied to deter-
mine the difference in malaria risk between different 
occupations. In this study, the probability of malaria 
was measured being present at a location as determined 
from the ecological niche model. This probability served 
as the dependent variable while occupation type was the 
independent variable. The ANOVA test made it possi-
ble to understand if there were significant differences in 
the probability of malaria at the work locations for either 
rubber plantation workers or farmers. The ecological 
niche model values were extracted at the estimated work 
locations obtained based on the Landcover data and ana-
lysed for the corresponding occupation type.

To further analyse the relationship between occupa-
tion-related factors and malaria occurrence, a road net-
work and buffer analysis was conducted to determine the 
risk of exposure that could be associated with the travel 
routes to work. The shortest paths from home villages to 
the estimated work locations for the cases identified by 
AFRIMS were calculated using ArcGIS Pro 2.6.2 and the 
OSM street network. Using a 1  km buffer around work 
locations and a 500-m buffer that extended from the 
work location along the shortest path routes, these areas 
were also analysed with respect to their overlap with the 
niche areas.

Results
Base on the AFRIMS survey data, the primary occupa-
tion types of those surveyed included farmers (35%), rub-
ber plantation workers (30%), service workers (12.5%), 
forestry officers (10%) and monks (7.5%). When compar-
ing the results of the three different training and testing 
split model runs for estimating ecological niche, there 
was little deviation in the average AUC values used to 
assess predictive accuracy, and the contributions of envi-
ronmental variables. The average AUC differed less than 
0.015 between the model runs, and the top contribut-
ing environmental variables were consistently eleva-
tion, average and maximum temperature, and landcover 
(Table  1). As the 70-30 training testing split results 
returned the highest accuracy of 79%, this split was used 
to further analyse occupation and travel in the context of 
ecological niche.

The estimated ecological niche results showed that the 
highest probability locations of malaria occurrence were 
located along the Thailand–Cambodia border, particu-
larly in the forested escarpment area (Fig.  3). The high-
est probability locations were also detected for northern 
Ubon Ratchathani province near the Thailand-Lao bor-
der. Using a natural breaks classification, the model 
results were classified into four classes reflecting the 
probability of malaria occurrence and assigned work 
locations from AFRIMS survey data into a class based on 

the ecological niche model value at these locations. The 
results showed that the majority of the study sample pop-
ulation fell into class 3 (79%), where there was a 41–60% 
chance of malaria occurrence, with 95% of work locations 
falling in class 3 or 4 (Fig. 3). None of the work locations 
were found in a class 1 area, i.e., areas with the lowest 
probability of malaria occurrence.

To understand the potential malaria risk for rubber 
plantation workers and farmers, the simulated work loca-
tions for the two occupation groups were analysed using 
the landcover data and the study sample data was used 
to validate the simulation points. The results showed 
that 72% of simulated work locations for both farmers 
and rubber plantation workers were consistent with the 
reported work locations from the survey.

A logistic regression analysis was applied to occupation 
type and predicted MaxEnt values. The outputs showed 
the coefficient for predicted MaxEnt value was positive 
with a coefficient of 9.03 and a p-value of 9.3e−10. The 
one-way ANOVA test returned a statistically significant 
difference between the average MaxEnt predicted values 
for the two occupation types of rubber plantation work-
ers and farmers, returning a p-value of 1.73e−13. Based 
on the box-plot results, the average MaxEnt predicted 
values for rubber plantation workers were higher than 
those for farmers (Fig.  4). Rubber plantation workers 
were estimated to have significantly higher risk of expo-
sure to malaria compared to farmers based on the pre-
dicted values from the machine learning analysis.

Analysing the estimated travel routes between home 
village and work locations in the context of the niche 
extent showed that travel for the two occupation groups 
occurred in areas with higher probability of malaria 
occurrence (Fig.  5). The travel routes were found to go 
through areas corresponding to higher niche classes. This 
is important to understand because regular daily travel 
increases the chance of exposure to infection by travel-
ling through higher probability areas of local malaria 

Table 1  Percent contributions of environmental variables used 
to train the ecological niche model

Environmental Variable 70-30
(%)

80-20
(%)

100
(%)

Elevation 49.61 49.82 49.57

Landcover 8.88 8.75 8.58

Population 0.99 0.99 0.97

Precipitation 3.6 3.57 3.23

Slope 3.45 3.35 3.27

Average temperature 16.76 16.45 17.36

Maximum temperature 10.84 11 11.02

Minimum temperature 5.85 6.01 6



Page 7 of 11Memarsadeghi et al. Malaria Journal           (2023) 22:52 	

occurrence. When averaging model values within buffer 
areas, the results showed that rubber plantation work-
ers were travelling in areas with higher probabilities of 
malaria occurrence (average ecological niche value of 
0.515) slightly more than other occupations (average eco-
logical niche value within buffers for all occupations of 
0.503).

Discussion
Computing the ecological niche showed higher prob-
abilities of P. vivax occurrence was along the Thailand–
Cambodia border. Additional high probability locations 

Fig. 3  Estimated ecological niche and work locations based on the GPS coordinates from AFRIMS data

Fig. 4  Comparison of average MaxEnt values by occupation type
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were detected in northern Ubon Ratchathani province 
near the Thailand-Lao border. The species distribution 
was modelled primarily for P. vivax malaria as there was 
a higher probability of P. vivax occurrence reflected by 
both the MOPH and AFRIMS data. This region of the 
world is also commonly referred to as having “border 
malaria”, i.e., a higher prevalence of malaria in South-
east Asia exists along international borders [2, 37, 38] 
and the niche analysis also returned this pattern of spe-
cies distribution. Similar to the findings in this research, 
a study focused on the Buriram and Surin provinces of 
Thailand determined through multiple linear regression 
analysis that “the high-risk areas of malaria cases were on 
the Thai-Cambodian border” and that malaria morbidity 
rates were strongly associated with forested areas [39]. 
Further, in an overview of the epidemiological patterns 
of malaria in the Greater Mekong Subregion from 1998 
to 2007, researchers found that malaria was most preva-
lent in forested and forest-fringe areas, primarily along 

international borders [40]. The niche model results also 
reflected these findings, as it similarly predicted higher 
probabilities of P. vivax occurrence in a similar ecologi-
cal area. The red and orange regions of the border areas 
which are representing regions with high risk of malaria 
of the mapped niche shown in Figs.  4, 5, are also con-
sistent with the active malaria transmission foci map for 
2020 for Ubon Ratchathani and Sisaket as produced by 
the Sudathip et al. [41].

The ANOVA test results showed significant differ-
ences between forest and non-forest-based occupations, 
indicating a significant relationship between occupation 
type and working in an area of higher malaria occur-
rence. Further analysis showed that compared to farmers, 
rubber plantation workers were working in areas with a 
higher risk of malaria occurrence. This higher risk may 
be due to the fact that the working hours and outdoor 
practices of rubber plantation workers often overlap with 
peak mosquito biting times [42, 43].

Fig. 5  Analysing occupation-related travel routes and malaria occurrence probability using buffer analysis
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Previous studies have found a relationship between 
occupation type and malaria risk. For example, out of 
over 4000 malaria cases reviewed in seven provinces 
of southern Thailand (Chumphon, Nakhon Si Tham-
marat, Krabi, Phangnga, Phuket, Ranong and Surat Thani 
provinces), nearly 62% malaria cases occurred in rub-
ber plantation workers [44]. One study, based on quali-
tative ethnographic research of the Oddar Meanchey 
Province of Cambodia, found that those who worked in 
forests experienced multiple episodes of malaria more 
frequently than other occupations. Local residents 
understood the increased malaria risk, but for economic 
purposes, continued to pursue forest-based livelihoods. 
This geographic pattern is further supported by the anal-
ysis in this study, which estimated the highest probabil-
ity of malaria occurrence in the forested areas along the 
Thailand–Cambodia border, and observed low but posi-
tive correlations between occupation types that worked 
in forests [45]. Researchers also found that forest-related 
occupations and economic drivers, such as logging of 
rosewood trees and other luxury timber, were the main 
reason for forest going which increase their exposure to 
malaria [46]. Similarly, another study conducted in Pra-
chuap Khiri Khan Province of Thailand found that occu-
pation as a rubber farmer/tapper was highly correlated 
with malaria affected households, and this correlation 
was statistically significant [47]. The same conclusion 
was drawn in this research that these same occupations 
worked in and travelled through areas with higher niche 
values and probabilities of malaria occurrence. The find-
ings showed that likely daily travel routes take individu-
als from homes that may not be in a risk area to a work 
location that is in a risk area and that travel can be a pos-
sible driver for infection. Travel has been shown to play 
a key role in transmission [48] and, therefore, working 
in an area corresponding to a higher niche category, and 
travelling in and out, may increase the chance of trans-
mission and infection. A recent study in Myanmar also 
found that forest workers have a higher malaria exposure 
compared with farmers as they were more likely to travel 
to regions with higher malaria prevalence for work [49].

One possible limitation of this research is that the 
analysis did not consider the presence of existing malaria 
control measures such as personal protection behaviours, 
or preventive measures for the simulation analysis. Like-
wise, the cases that might be due to staying outside at 
work locations were not considered. For the analysis of 
travel routes, although a 1 km buffer around work loca-
tions and a 500-m buffer along the travel routes were 
used to include more potential travel areas and to miti-
gate the uncertainty of the travel routes, these are esti-
mates only and require more data to refine these values. 
For the AFRIMS survey data, the GPS coordinates were 

obtained using an approximate location near to the per-
manent residence in the village where they reside, and 
for work locations approximate geographic coordinates 
capturing a close location for where they worked were 
used. Future research could include ground truth data 
for the work locations and travel routes to validate the 
simulated routes used in this study. For example, GPS 
trajectory data can be used to provide more details about 
travel routes [50, 51]. For this study, district-level data 
was used when simulating the home locations for P. vivax 
cases from the OLMIS dataset. Future research could 
be undertaken at sub-district or village level data. More 
detailed and precise landcover data can also be used in 
the future to differentiate the working regions for rubber 
plantation workers and that of other forest workers. For 
this study, the possibility of recrudescence or relapse of 
P. vivax was not taken into account and for the AFRIMS 
survey data, it is not known if these were newly infected 
or recurrent cases. The data from the OLMIS dashboard 
also did not specify whether cases were first episodes 
or likely relapses. Distinguishing new infections from 
relapses is a continuing challenge in studies of P. vivax, 
and could have impacted the inferences.

Conclusions
In this study, the probability of malaria occurrence across 
Ubon Ratchathani and Sisaket provinces of Thailand 
was examined. A maximum entropy model was devel-
oped that used the known locations of positive malaria 
cases sourced from OLMIS, to produce a mapped prob-
ability surface that represented the percent probability 
of malaria occurrence in these provinces. Other inputs 
to the model included environmental variables sourced 
from remotely sensed datasets including temperature, 
landcover, precipitation, and elevation, and population 
density, and these were used to train the machine learn-
ing model. The highest probability of malaria occurrence 
in Sisaket was found along the Thailand–Cambodia bor-
der. For Ubon Ratchathani, other than the Thailand–
Cambodia border area, high malaria risk areas were also 
detected in the north of Ubon Ratchathani near the Thai-
land-Lao border.

An analysis of the relationship between occupation 
types and the model results returned a significant differ-
ence between the average probability of malaria occur-
rence for the work locations simulated using landcover 
data of different outdoor occupation groups. As part of 
this research, travel routes were generated and applied 
buffer analysis and then analysed these areas in the con-
text of the probability of malaria occurrence to under-
stand the relationship between daily work-related travel 
and the potential risk of exposure to malaria. The results 
showed that individuals working in and travelling to areas 
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with higher probabilities of malaria occurrence were 
at higher risk, and that rubber plantation workers were 
travelling in areas with higher probabilities of malaria 
occurrence more frequently than other occupation types. 
Daily travel to work that takes individuals into areas with 
higher probabilities of malaria occurrence raises the risk 
of exposure relating to these travel behaviours.
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