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Abstract 

Background As both mechanistic and geospatial malaria modeling methods become more integrated into malaria 
policy decisions, there is increasing demand for strategies that combine these two methods. This paper introduces a 
novel archetypes‑based methodology for generating high‑resolution intervention impact maps based on mechanis‑
tic model simulations. An example configuration of the framework is described and explored.

Methods First, dimensionality reduction and clustering techniques were applied to rasterized geospatial environ‑
mental and mosquito covariates to find archetypal malaria transmission patterns. Next, mechanistic models were run 
on a representative site from each archetype to assess intervention impact. Finally, these mechanistic results were 
reprojected onto each pixel to generate full maps of intervention impact. The example configuration used ERA5 and 
Malaria Atlas Project covariates, singular value decomposition, k‑means clustering, and the Institute for Disease Mod‑
eling’s EMOD model to explore a range of three‑year malaria interventions primarily focused on vector control and 
case management.

Results Rainfall, temperature, and mosquito abundance layers were clustered into ten transmission archetypes with 
distinct properties. Example intervention impact curves and maps highlighted archetype‑specific variation in efficacy 
of vector control interventions. A sensitivity analysis showed that the procedure for selecting representative sites to 
simulate worked well in all but one archetype.

Conclusion This paper introduces a novel methodology which combines the richness of spatiotemporal map‑
ping with the rigor of mechanistic modeling to create a multi‑purpose infrastructure for answering a broad range of 
important questions in the malaria policy space. It is flexible and adaptable to a range of input covariates, mechanistic 
models, and mapping strategies and can be adapted to the modelers’ setting of choice.
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Background
Malaria is one of humanity’s oldest and most insidi-
ous ailments, co-evolving with mosquitoes and humans 
over millions of years [1]. This long history, combined 
with its complex transmission pathways, makes malaria 
a uniquely heterogeneous and environmentally sensi-
tive disease. Understanding malaria in a given location 
requires not just an understanding of human behavior, 
movement, and demographics, but also a detailed knowl-
edge of resident mosquito species and their behavior, 
local climate and hydrology, and the seasonal patterns of 
the landscape.

Computational modeling and malaria policy have been 
linked since the 1950s, from seminal pen-and-paper 
equations by Ronald Ross and George Macdonald to 
today’s detailed computational models capable of simu-
lating individual humans, mosquitoes, climates, immune 
responses, malaria interventions, and much more. The 
fundamental goal of these models is to help decision-
makers craft a malaria strategy that aligns with the epi-
demiological, economic, and cultural circumstances at 
hand.

The two main classes of malaria model in use today are 
mechanistic transmission models, which explicitly simu-
late disease spread in a population, and spatiotemporal 
models, which utilize geospatially-referenced covariates 
and classical statistical methods to generate estimated 
maps of malaria burden, intervention coverage, and other 
malaria-relevant features. The Malaria Atlas Project 
(MAP) is known for its high-resolution maps of malaria-
related variables [2–10]. Over the last 15 years a num-
ber of mechanistic modeling groups, most prolifically at 
Imperial College, the Swiss Tropical and Public Health 
Institute, Northwestern University, PATH, the Ifakara 
Health Institue, the MORU Tropical Health Network, 
and the Institute for Disease Modeling (IDM), have sup-
ported decision-making at the local, national, and global 
scale [11–15].

Mechanistic and spatiotemporal models serve comple-
mentary purposes in malaria. Spatiotemporal models elu-
cidate the past and present of disease burden and related 
metrics, which mechanistic models can then use for 
insight into the future. Maps provide a rich descriptive 
landscape, while mechanistic models contribute causal 
structure and exploration of counterfactual or hypotheti-
cal scenarios. As both modeling methods have grown 
in popularity and demand, there is increased interest in 
products that combine the two approaches, allowing for 
a spatially and temporally detailed exploration of the con-
sequences of different policy decisions. This paper intro-
duces a novel methodology which combines the richness 
of spatiotemporal mapping with the rigor of mechanistic 
modeling to create a multi-purpose infrastructure for 

answering a broad range of important questions in the 
malaria policy space.

Mechanistic models draw strength from their ability to 
replicate detailed relationships, but suffer several limita-
tions. First, these detailed models require a large amount 
of input data to configure and calibrate to a particular 
setting. When tasked with simulating settings with-
out such a rich data space, mechanistic models can be a 
challenge to appropriately configure. Second, mechanis-
tic model complexity carries with it an associated com-
putational cost. A single simulation can take minutes or 
hours to run, even on high-performance computing sys-
tems, often limiting the number of scenarios or locations 
that can reasonably be simulated. In contrast to these 
challenges, spatiotemporal methods are designed with 
incomplete data as an assumption and perform well at 
high resolutions [16, 17]. However, these statistical meth-
ods crucially lack the explicit causal relationships that 
allow mechanistic models to effectively test the conse-
quences of different policies.

In the past, mechanistic modeling analyses working at 
the continental scale in Africa have utilized a range of 
methods to address these practical and computational 
challenges. Griffin et al. [18] modeled a range of stylized 
seasonality patterns and mosquito species mixes to assess 
intervention strategies. While this approach showcases 
hypothetical scenarios, there is no explicit link between 
any true location and any stylized seasonal profile, mak-
ing geographic trends or burden estimation impossible. 
Walker et  al. [11] grouped rainfall, entomological, and 
transmission intensity spatial covariates into three, four, 
and 18 clusters respectively, and ran simulations on all 
possible combinations of these groups before re-project-
ing onto the pixel level. This exhaustive strategy does not 
take advantage of the spatial relationships between differ-
ent covariates, which could reduce computational burden 
and generate more informative cluster properties.

The methodology presented in this paper leverages the 
strength of both mechanistic and spatiotemporal meth-
ods to allow computationally-feasible generation of high-
resolution maps that reflect mechanistically modeled 
scenarios. This process generates a range of archetypal 
seasonal and entomological profiles that can be useful for 
exploratory data analysis while also generating an explicit 
link between these profiles and any given location across 
Africa. This mapping capacity provides a computationally 
efficient pathway for presenting results geospatially and 
in terms of expected burden change.

Here, high-resolution, high-dimensional spatial 
covariates and machine learning methods are har-
nessed to generate a small number of spatially-explicit 
“archetypes” of malaria transmission, characterized by 
their covariate similarity. Next, mechanistic models are 
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run on a representative site from each archetype, rather 
than on every pixel individually. Finally, spatial data 
and model results create a lookup table through which 
maps of intervention impact are generated.

Sorting many observations of high-dimensional 
data into groups by similarity is a common problem 
in machine learning. A common solution is to deploy 
a two-step process of first reducing the dimensional-
ity of the dataset, and then clustering this reduced-
dimensional data into groups [19–21]. This approach 
is appealing for its flexibility, but requires a number of 
specific decisions that can materially impact results. 
Namely: 

1 Which covariates should be selected, and how should 
they be standardized?

2 Which algorithm should be used for dimensionality 
reduction?

3 Which algorithm should be used for clustering, and 
how should the number of clusters be determined?

When clustered results are being used as inputs for 
mechanistic models and subsequent generation of new 
maps, additional questions emerge: 

4 How should representative sites be selected from 
each cluster?

5 Which mechanistic model should be used to assess 
intervention impact?

6 How should results from representative sites be 
reprojected back onto other members of the group?

This paper reviews each of these questions in turn, begin-
ning with a discussion of the choices available in each 
space and their implications. As a demonstration, it 
describes the results of an eradication feasibility exercise 
undertaken by IDM and MAP in 2018. The original work 
was conducted by request of international stakeholders 
seeking guidance on whether eradication might be possi-
ble under highly optimistic environmental circumstances 
and malaria control scenarios. It harnessed spatiotem-
poral climate and mosquito covariates, IDM’s EMOD 
malaria transmission model, and MAP’s malaria preva-
lence maps to generate scenarios of malaria intervention 
impact at the 5km-by-5km pixel level for all of sub-Saha-
ran Africa in 2050. The original analysis [22, 23] utilized 
an earlier version of the framework, and the version pre-
sented here represents a validation check to ensure that 
similar results arise from a more in-depth approach. A 
sensitivity analysis exploring the representativeness of a 
given “representative site” is also described.

The primary goal of this document is to introduce 
a novel modeling paradigm in sufficient detail to be 

adapted for other use cases. Throughout, the terms 
“archetypes strategy” and “archetypes framework” will 
be used to describe the general methodology of using 
dimensionality reduction and clustering to locate a sub-
set of sites appropriate for mechanistic modeling. The 
term “example configuration” will be used to describe the 
specific set of choices within the broader strategy that are 
shown here for demonstration. The archetypes strategy is 
flexible and generalizable to any covariate set, mechanis-
tic modeling platform, and geographic scale. The meth-
ods sections are subdivided into a general discussion 
and an explicit description of the example configuration 
parameters. The results section focuses on describing 
example configuration outcomes. Finally, the discussion 
section highlights lessons learned and other use cases of 
this archetypes framework.

Methods
In the sections below, each of the six methodological 
questions described in the introduction is explored in 
detail. General theory is described first, followed by a 
description of the specific choices made in the example 
configuration. For the example configuration, simplicity 
was favored, but more complex options are noted.

Covariate selection
General
The covariates used for clustering should be selected 
mindfully to capture the types of variation to which the 
transmission model is most sensitive. For malaria, these 
should almost always include covariates that capture 
the different seasonality patterns of different malaria-
endemic regions, as this directly impacts disease sea-
sonality. For models that explicitly simulate different 
mosquito behaviors by species, covariates describing 
relative species abundance are also valuable. Baseline 
malaria transmission intensity is another useful source 
of input data, but its inclusion depends on the use case. 
The example configuration described below intentionally 
excluded it from the clustering process, instead running 
simulations for each archetype over a range of trans-
mission intensities. Other possible covariates of inter-
est include intervention history, health care accessibility, 
population demographics, and other behavioral inputs. 
Covariate data must geographically cover the region of 
interest, and should be utilized on the same spatial reso-
lution as the final results. Covariate data for malaria will 
often also include a temporal component showing either 
seasonality or secular time.

Covariates are collected into a “stack” of spatial or 
spatiotemporal input files measuring different met-
rics on different scales. It is important to normal-
ize or rescale these covariates prior to performing 
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dimensionality reduction to avoid an artificial effect 
due to differently-scaled inputs. Even after normali-
zation, however, a decision must be made regarding 
the relative weight of different inputs. For instance, 
in the example configuration below, clustering covari-
ates included 12 rainfall layers, 12 temperature layers, 
and three mosquito species relative abundance lay-
ers. These covariates were not differentially weighted 
prior to dimensionality reduction, meaning that 
the rainfall and temperature layers had a stronger 
impact on results than the mosquito abundance lay-
ers. This choice was acceptable for the work at hand, 
but different circumstances might encourage different 
weighting.

Example configuration
Environmental covariate data on rainfall and air temperature 
were sourced from the ERA5 project (https:// www. ecmwf. 
int/ en/ forec asts/ datas ets/ reana lysis- datas ets/ era5), a global 
reanalysis that generates internally-consistent estimates for 
a wide range of climate parameters across the globe. Spe-
cifically, monthly mean total precipitation and 2-meter air 
temperature from 2000 to 2018 were downloaded. Monthly 
means were averaged across the time series to generate 
synoptic 12-month trends. Because ERA5 spatial resolu-
tion is 0.25◦-by-0.25◦ (approximately 30km-by-30km at the 
equator), covariates were resampled down to the 5km-by-
5km level and realigned to match MAP’s standard spatial 
specifications.

Covariate data on the relative abundance of Anopheles 
arabiensis, funestus, and gambiae were obtained from Sinka 
et al. [6]. These values are static estimates and did not require 
resampling as they already met MAP spatial specifications.

All covariate rasters were masked to align with MAP 
estimates of Plasmodium falciparum transmission lim-
its, and pixel-level values extracted into a nonspatial 
dataset for further analysis. Once extracted, pixel-level 
values of air temperature and rainfall were rescaled 
to fall between zero and one. Because they contained 
some extreme values that severely skewed the distri-
bution, the most extreme 1% of rainfall values were 
reassigned to the 99th percentile value before being 
rescaled. Relative vector abundance values are propor-
tions, and therefore these values already fell between 
zero and one and did not require rescaling. See Fig.  1 
for covariate distributions before and after rescaling.

Dimensionality reduction
General
If the covariate selection process only locates a few vari-
ables of interest, a dimensionality reduction step may not 
be necessary. However, beyond the point that covariates 

can comfortably be plotted together (four or five layers 
at most), dimensionality reduction can be a valuable tool 
both for data exploration and for more effective clus-
tering. The goal of these techniques is to collapse high-
dimensional data into a lower-dimensional space in a way 
that preserves as much of the original data variation as 
possible, creating a denser and richer database from a 
sparser one. A wide range of dimensionality reduction 
techniques are available in machine learning software 
packages.

This analysis utilized Singular Value Decomposi-
tion (SVD), a strategy similar to Principle Components 
Analysis which locates the set of orthogonal vectors in 
a high-dimensional dataset that cover the most variance 
in the data, and returns those vectors in order of vari-
ance explained [24, 25]. SVD is evaluated by plotting how 
much variance in the original dataset is explained by the 
most informative singular vectors. If a small number of 
vectors covers a large portion of the initial variance, then 
only that smaller-dimensional dataset need be retained 
for further analysis. While straightforward to implement, 
SVD is not a time-series method, meaning that dimen-
sionality reduction does not explicitly take into account 
causal correlations between the different monthly layers 
of climate data. Other strategies, such as Fourier trans-
forms or dynamic mode decomposition, are worth con-
sideration if simple methods such as SVD do not yield 
informative results, or if the input data covers long time 
series rather than synoptic trends.

Example configuration
The final covariate dataset was comprised of 27 dimen-
sions: 12 layers each of rainfall and air temperature data 
and three layers of relative vector abundance data. SVD 
was applied using the svd command in R version 3.6.2. 
Points that are close together in this reprojected space 
are expected to be similar in terms of their rainfall, tem-
perature, and relative vector proportions. Upon running 
SVD, the first three singular vectors explained over 95% 
of the variation in the full dataset, and were retained for 
clustering (Fig. 2).

Clustering
General
The literature and theory on clustering algorithms is vast 
[26, 27], including many excellent tutorials for beginners. 
Briefly, clustering strategies are unsupervised learning 
methods that group data points together based on prox-
imity in all provided dimensions.

The example configuration utilized k-means for clus-
tering. This algorithm benefits from simplicity and 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Fig. 1 Distribution of covariates for Singular Value Decomposition (SVD) across all pixels before and after rescaling. Synoptic monthly mean 
temperature (degrees C) and rainfall (mm/month) are from the ERA5 project. Relative vector abundance, a static metric, tracks the proportion of 
Anopheles arabiensis, funestus, and gambiae in each pixel



Page 6 of 22Bertozzi‑Villa et al. Malaria Journal          (2023) 22:138 

relatively quick runtime using an iterative geometric 
search, but suffers two major setbacks. First, the choice 
of cluster count k must be specified by the user, which 
can lead to nonintuitive cluster groupings if an inap-
propriate k is selected. Intuitively, the goal of k-means 
is to minimize data variance within clusters while maxi-
mizing it between clusters. A heuristic but common 
solution for addressing the cluster count problem is 
the use of “elbow plots”, in which cluster count is plot-
ted against the ratio of between-cluster variance and 
total variance. This ratio is monotonically increasing, 
since the cluster count that maximizes this ratio is a k 
equal to the number of data points, but the goal is to 
find a k for which the plot makes an “elbow” and begins 
to increase more slowly. Other strategies for selecting 
cluster counts for k-means include the use of Jaccard, 
Dunn, and Silhouette indices [27].

A second weakness of k-means is its radial search 
methodology. Because this clustering algorithm mini-
mizes the Euclidean distance between a cluster centroid 
and the data points around it, clusters that are tightly 
grouped in all dimensions will be captured more effec-
tively than elliptical or other cluster shapes. Heuristi-
cally, this did not appear to affect the algorithm’s ability 
to find distinct groups, but nonspherical methods such 
as CLARA or Gaussian Mixture Models (GMMs) may be 
more appropriate in some settings. GMMs, which utilize 
a Bayesian fitting procedure, have the added benefit of 
allowing for the calculation of information criteria, giving 

a more principled and less heuristic way to select cluster 
counts compared to k-means.

Example configuration
Having reduced the dimensionality of the dataset from 
27 to three, the next step was to classify points into 
transmission archetypes representing unique envi-
ronmental and entomological patterns of relevance 
to malaria transmission. To identify these distinct 
archetypes, k-means clustering was performed on the 
reduced-dimensional dataset output by SVD. K-means 
was run using the MacQueen algorithm [28] on the 
reduced-dimensional dataset over a range of possible 
cluster counts from 3 to 15, and elbow plots computed. 
Unfortunately, these plots did not show a strong elbow 
(Fig. 3), so a cluster count of 10 was selected as a com-
promise between relatively high variance ratio and a 
visually intuitive and distinguishable set of archetypes 
(Figs. 4, 5, 6). K-means was applied using the  kmeans  
command in the  stats  R package version 4.0.5. See 
the Results section for a more in-depth description of 
k-means outputs.

Selecting representative sites
General
The clustering step groups the data into archetypes. 
Next, a set of specific covariate values must be selected 
for each archetype to use as inputs into the transmis-
sion model. One viable option would be to take the 
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Fig. 3 K‑means elbow plot for k between 3 and 15. The x‑axis shows 
cluster count, while the y‑axis shows the proportion of total data 
variance that is captured by between‑cluster variance in each setting. 
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vectors after singular value decomposition (SVD). The first three 
vectors were retained for clustering analysis
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Fig. 4 K‑means results. Top and side view of pixel values reprojected onto the first three singular vectors, after k‑means clustering with a k of ten. 
Colors refer to different clusters and match subsequent ten‑cluster plots. Black dots indicate true cluster centroids, while dark grey dots show 
procedurally‑selected representative sites
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mean or median across all data points and use these 
as model inputs for the archetype, acknowledging that 
this measure of center will not reflect any true location 
and may be sensitive to outliers in the clustering pro-
cess. Using the values at each cluster centroid would 
be less sensitive to outliers, but still not reflect any 
true physical location. A third alternative, used in the 

example configuration, is to select the data point clos-
est to each k-means cluster centroid and use this as a 
representative site for the archetype as a whole. Visual 
examination of the k-means clusters (Fig. 4) shows that 
the third approach is nearly identical to the second 
in the example configuration, as there is generally a 
trivial distance between the true cluster centroids and 

3 Clusters 4 Clusters 5 Clusters

6 Clusters 7 Clusters 8 Clusters

9 Clusters 10 Clusters 11 Clusters

12 Clusters 13 Clusters 14 Clusters

Fig. 5 Cluster maps for k of 3 to 14. Black crosses indicate procedurally‑generated representative sites (the pixels closest to cluster centroids)
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their nearest data point. A sensitivity analysis was con-
ducted to assess the acceptability of this approach.

Example configuration
The data point closest to each cluster centroid (determined 
using k-Nearest Neighbors, with k set to one) was selected 
as the site whose input data would be used for simulation. 
K-nearest neighbors was applied using the  get.knn  
command in the  FNN  R package version 1.1.3.

Site selection sensitivity analysis
In the main analysis, a single centrally-located point is 
used as a proxy for all other locations in that cluster. A 
sensitivity analysis was conducted to assess how other 
locations in each cluster behaved under the same inter-
vention scenarios. Ten pixels were randomly chosen from 
each cluster, and all intervention scenarios were re-run 
on these 100 points in the same way that they were on 
the original ten. Results were compared to those from 
the cluster centroid sites alone to assess within-cluster 
variance.

Selecting and configuring a malaria model
General
A number of mechanistic malaria models are com-
monly used by groups consulting with national or 

international malaria policy groups. These include 
OpenMalaria [29], EMOD [14], the Imperial model 
[18], and VCOM [30]. These models vary with respect 
to their structure, ease of use, and public accessibility 
and can produce measurably different estimates under 
similar initial conditions [31]. Modelers should have 
a close familiarity with their model of choice prior to 
embarking on the exercises described in this document. 
In particular, it is necessary to understand the input 
parameters to which each model is most sensitive and 
how this sensitivity impacts covariate and archetype 
selection; how to appropriately parameterize each site’s 
demographics, climate, entomology, and interventions; 
and how to run checks to diagnose unexpected model 
behavior before acting upon any conclusions from 
model results.

When pursuing the archetypes strategy, modelers will 
utilize values from the clustering covariates for some 
model inputs, but must choose how to initialize all 
variables not included in the clustering covariates. For 
instance, in the example configuration, the clustering 
analysis provided input rainfall, temperature, and ento-
mology variables, but not demographic, intervention his-
tory, or transmission intensity variables. As described in 
detail below, this analysis held most other variables static 
across all sites, and ran simulations at a range of initial 
transmission intensities, but different use cases might call 
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for different input parameters in different representative 
sites.

Example configuration
This modeling analysis was conducted using the EMOD 
simulation software produced by the Institute for Dis-
ease Modeling. See the Appendix for an introduction to 
EMOD. All simulations were run with an initial popula-
tion of 2000 to balance population size with computa-
tional constraints, a birth rate of 36.3 live births per 1000 
people per year from the World Bank Database, and a 
complementary mortality rate to ensure a stable popula-
tion over time. Each human in the model was assigned a 
unique risk of being bitten by a mosquito, such that the 
distribution of biting risk in the community overall was 
exponential [32].

Simulations were initialized by running one 39-year 
intervention-free simulation for each of 25 initial trans-
mission intensities and 10 random seeds, generating a 
collection of 250 baseline populations upon which to test 
intervention impact. Transmission intensities were varied 
by scaling mosquito larval habitat capacity, which linearly 
impacts the number of adult mosquitoes and the level of 
malaria transmission in the absence of interventions. The 
intervention-free immunity establishment period should 
approximate the length of a human life, and is frequently 
set to 50 years. A 39-year period was selected because 
this is the duration of time for which climate data was 
available from ERA5. Ten is a common choice for num-
ber of random seeds to test in EMOD, and has been 
shown to cover the variation in most parameters well. 
Twenty-five transmission intensities were chosen to thor-
oughly cover variability in this important parameter. One 
hundred fifty-two different intervention packages were 
tested, covering a wide range of vector control, drug, 
and vaccine-based malaria prevention strategies. These 
intervention parameters were originally part of a project 
to test eradication feasibility in best-case scenarios, and 
therefore often represent coverage levels or policies more 
rigorous than those commonly in use today (for example 
mass bednet campaigns every year instead of every three 
years). Each intervention was run for three years, and its 
efficacy assessed by mean Plasmodium falciparum para-
site rate among 2–10 year-olds ( PfPR2−10 ) in the final 
year of the intervention compared to the final year of the 
intervention-free simulation.

Climate inputs of air temperature, rainfall, and relative 
humidity were constructed from the publicly-available 
ERA5 climate reanalysis model. For each representative 
site, daily climate data from 1980 to 2018 was down-
loaded from ERA5. The “2m_temperature” channel 
was used for air temperature, the “total_precipitation” 
channel for rainfall, and the “2m_temperature” and 

“2m_dewpoint_temperature” channels used to calculate 
relative humidity according to a method developed by 
the company Vaisala [33]. The intervention-free simula-
tions to establish population immunity were run using 
climate data from 1980 to 2018, and the three-year inter-
vention simulations were run using climate data from 
2016 to 2018.

Mosquito parameters can be found in Table  1, and 
intervention descriptions and parameters in Tables 4 and 
3.

Recreating maps
General
Once model simulations have run for each archetype’s 
representative site, these individual-site results must be 
reprojected back onto pixel level results. The methodol-
ogy described below constructs a lookup table to convert 
from baseline per-pixel transmission to intervention-
impacted transmission in each archetype. If transmis-
sion intensity was included as a clustering covariate, the 
lookup table approach would differ in its details but be 
similar in essence.

Example configuration
Once all EMOD simulations were complete, maps of 
intervention coverage were reconstructed as follows. 
First, a pixel-level map of Plasmodium falciparum preva-
lence among children aged 2–10 ( PfPR2−10 ) was selected 
from the Malaria Atlas Project. Because these EMOD 
simulations were initiated from intervention-free scenar-
ios, the MAP estimate of PfPR2−10 in 2000 was selected 
as a proxy for malaria prevalence in the absence of any 
interventions. Then, for each intervention scenario and 
each pixel p in the selected map, the following steps were 
taken: 

1 The archetype a to which the pixel p belongs was 
identified;

2 A spline was generated between data points of initial 
and final PfPR2−10 across all transmission intensities 
in archetype a;

3 This spline was used to map the initial PfPR2−10 cor-
responding to that of pixel p and archetype a to the 
final PfPR2−10 in that intervention scenario;

Table 1 EMOD mosquito species parameters

Name Anthropophily (%) Endophily (%)

arabiensis 65 50

funestus 65 85

gambiae 85 85
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4 This final PfPR2−10 was logged as the “intervention 
impact” of pixel p.

This allows for the reconstruction of maps hypothesizing 
the potential impact of different interventions across the 
continent.

Results
Presented here are the results of the example 
configuration.

Covariate scaling, dimensionality reduction, and clustering
Before rescaling, synoptic ERA5 air temperature values 
ranged from 2.2 to 39.0 degrees Celsius, with a median 
value of 24.9 degrees and an interquartile range (IQR) 
from 22.4 to 27.0. ERA5 rainfall ranged from 0 to 3,058 
mm/month, with a median value of 40.6 and an IQR from 
4.9 to 130.8. Rainfall values were capped at the 99th per-
centile cutoff of 367 mm. Relative mosquito abundance 
values ranged from 0 to 1, with continent-wide propor-
tions of 43.0% arabiensis, 36.8% gambiae, and 20.2% 
funestus among those pixels with mosquitoes. Figure  1 
shows covariate distributions before and after rescal-
ing. Both rainfall and mosquito vector abundance show 
peaks near zero and one, while temperature peaks most 
strongly in the center of the distribution.

Figure 2 shows the variance explained by the first five 
singular vectors in the SVD procedure. The first three 
singular vectors accounted for 95.3% of all variance and 
were retained for the clustering analysis. Figure 3 shows 
the elbow plot for the k-means procedure. It shows that, 
while a k of ten captures over 85% of total data variance as 
between-cluster variance, a slighlty higher cluster count 
would have covered over 90% of this ratio. Figure 4 shows 
a snapshot of the reprojected data points in 3D space, 
colored according to the k-means results. Black dots rep-
resent true cluster centroids, while gray dots indicate rep-
resentative sites. The shape of this data is roughly circular 
or toroidal, with those sites that have appreciable num-
bers of mosquitoes and rainfall comprising the edges of 
the circle and only the low-rainfall, low-mosquito-count 
lime green vector clustering near the origin. Visual exam-
ination shows that the ten-cluster k-means differentiates 
several distinct groups, but may combine some groups 
that are visually fairly distinct, such as the two lobes of 
the turquoise cluster (Cluster 4).

Archetype creation and site selection
Figure  5 shows archetype maps over a range of cluster 
counts from 3 to 14. Across all cluster counts, archetypes 
tend toward geographic contiguity. Given that the clus-
tering covariates themselves demonstrate strong spatial 
autocorrelation, this result is perhaps unsurprising, but 

lends algorithmic credence to historical strategies of 
heuristically grouping regions by climate or seasonality. 
Also notable is the stability of archetype affiliation across 
different cluster counts. The three-cluster map identifies 
a strongly seasonal Sahelian/coastal band across west 
Africa, a band in central Africa with opposite seasonal-
ity to the first, and more arid regions to the north and 
south. Adding clusters allows separation of the northern 
and southern arid regions, followed by increasingly dis-
tinct latitudinal bands in west Africa and a stable bound-
ary between central Democratic Republic of the Congo 
(DRC) and northern Zambia and Mozambique. Lake 
Victoria, Rwanda, and Burundi are also reliably grouped 
together and distinct from their immediate surround-
ings, usually matched to an archetype further south. 
The southern tip of Madagascar is reliably grouped with 
southern Mozambique, while the rest of the island joins 
the same archetype as northern Mozambique and Zam-
bia. The eastern coastline of Madagascar sometimes joins 
the archetype dominated by southern DRC. The ten-
cluster map was selected for the example configuration to 
strike a heuristic balance between variance explained in 
the elbow plot (Figure 3) and the communicative value of 
showing archetypes with visually distinct seasonality and 
mosquito mixes.

Figure 6 shows a map of the ten archetypes used in the 
example configuration, along with the associated tem-
perature and rainfall time series and relative abundance 
of different mosquito species. In the time series, solid 
colored lines represent the median across the archetype, 
shaded areas indicate the interquartile range, and dot-
ted lines indicate the 95% variance interval. Solid black 
lines represent the climate values of the representative 
site for each archetype, also indicated as black crosses 
on the map. Additional file 1 shows similar maps for all 
cluster counts tested. The ten-archetype setting captures 
a detailed range of different climate modalities on the 
continent. Three latitudinal bands across the Sahara to 
the coast show seasonal rainfall of increasing magnitude 
and duration (magenta, turquoise, and gold). Relative 
arabiensis proportions decline, and gambiae proportions 
increase, along the same gradient. These latitudinal bands 
continue down the western side of the continent, with 
a bimodal gambiae-dominated archetype in northern 
DRC (purple), a strongly seasonal gambiae-dominated 
archetype in southern DRC (orange), and a more gently 
seasonal arabiensis and funestus-dominated archetype 
across northern Namibia and Botswana into southern 
Zimbabwe and Mozambique (plum). Archetypes are 
least contiguous along the continental divide, with Ethio-
pia, Uganda, and much of western Kenya showing a mix 
of archetypes. This effect is likely driven by the complex 
and highly varied topography of the Great Rift Valley, 
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which introduces sharper gradients of temperature, pre-
cipitation, and mosquito species than more smoothly-
varying landscapes elsewhere on the continent. The 
horn of Africa is classified into two bimodal archetypes 
dominated by arabiensis, one with a substantial fraction 
of funestus (maroon) and one without (blue). Zambia, 
northern Mozambique, southern Tanzania, and most of 
Madagascar comprise a strongly seasonal archetype with 
a near-even mix of all three vectors (dark green). A broad 
area of central Tanzania is associated with the lower-
rainfall, arabiensis-dominated southern band rather than 
any of the archetypes it borders (plum). The lime green 
archetype in southern Africa is distinguished by having 
few to no mosquitoes, and is excluded from simulation 
analysis. With the exception of the two representative 
sites in the horn of Africa, which display considerably 
higher rainfall than their archetypes’ median values, rep-
resentative site time series line up well with the time 
series of the archetype medians. These two clusters have 
fewer members and higher variability than many of the 
others, which may explain this effect. Table  2 describes 
the geography and mosquito characteristics of each rep-
resentative site.

Simulation outputs and intervention maps
Figure 7 shows example impact curves for each archetype 
under different intervention scenarios, as well as their 
translation into maps of predicted impact. The impact 
curves show pre-intervention malaria prevalence on the 
x-axis and malaria prevalence after three years of inter-
ventions on the y-axis. The line of equivalence, shown in 
grey, indicates no change between initial and final preva-
lence, while the colored curves show simulation results 
across the range of transmission intensities. More effec-
tive intervention packages have curves that swing farther 
toward the lower right corner of the plots.

The first scenario, upper left map and dot-dashed lines, 
does not have interventions and therefore recreates the 

baseline 2000 prevalence map. The second, upper right 
map and dotted lines, shows a complex intervention 
mix of annual ITN distributions with moderate cover-
age (40%), annual IRS campaigns with 20% coverage, 
and low access and use of artemether-lumefantrine case 
management (AL CM), with 20% of clinical cases receiv-
ing treatment. The third, lower left map and solid lines, 
shows three years of high antimalarial access and use 
(80% of clinical cases receiving treatment), but no other 
interventions. The fourth, lower right map and dashed 
lines, shows a scenario in which the only intervention is 
a hypothetical attractive targeted sugar bait (ATSB) with 
a 3% mortality rate. For more intervention details see 
Table 3.

In all cases, initial prevalence is the primary driver of 
intervention impact, but the importance of account-
ing for archetype is highlighted in comparing scenarios. 
For example, the upper and lower right maps generally 
produce similar results despite consisting of non-over-
lapping interventions. However, difference between the 
two are clear especially in the plum-colored archetype, in 
which Angola and southern Zambia have different elimi-
nation outcomes between the two exercises and southern 
Mozambique performs better under an ATSB approach 
than a complex intervention mix. The antimalarials-only 
map differs considerably from both of the other inter-
vention packages. In particular, it is more effective than 
either of the others at high baseline prevalence levels, 
but often comparable or less effective at low baseline 
prevalence. This generates a map with a similar elimina-
tion landscape, but many fewer hotspots, than the other 
two. Plots and maps of all 152 interventions are available 
under the “10-Site Setting” label at https:// insti tutef ordis 
easem odeli ng. github. io/ arche types- inter venti on- impact- 
idmto ols/.

Each archetype, because of its unique mix of vectors, 
possesses a different percentage of mosquito bites that 
occur indoors as opposed to outdoors. It is important 

Table 2 EMOD Site descriptions

Site # Description arabiensis 
Proportion

funestus 
Proportion

gambiae 
Proportion

Anthropophily 
(%)

Endophily 
(%)

Total Indoor 
Biting (%)

1 Lime, Southern Africa 0 0 0 0 0 0

2 Teal, Sahel 0.45 0.55 0 65 70 45

3 Purple, northern DRC and coastal west Africa 0 0.01 0.99 85 85 72

4 Gold, west Africa 0.07 0.28 0.65 78 82 64

5 Blue, horn of Africa 1 0 0 65 50 32

6 Magenta, Saharan border 0.84 0.16 0 65 56 36

7 Plum, southern Africa and central Tanzania 0.71 0.29 0 65 60 39

8 Orange, southern DRC to Gabon 0 0.02 0.98 85 85 72

9 Maroon, northern Somalia 0.64 0.36 0 65 62 41

10 Green, Zambia, Mozambique, Malawi, and Madagascar 0.22 0.39 0.39 73 78 56

https://institutefordiseasemodeling.github.io/archetypes-intervention-impact-idmtools/
https://institutefordiseasemodeling.github.io/archetypes-intervention-impact-idmtools/
https://institutefordiseasemodeling.github.io/archetypes-intervention-impact-idmtools/
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for this model framework to capture the differential 
impact of indoor-biting-targeted interventions in set-
tings with different indoor biting rates. Figure  8 dem-
onstrates this capability. Here, each line represents an 
archetype, colored according to its indoor biting percent-
age as determined by its mosquito species mix. The left 
panel shows an intervention setting with high coverage 

of insecticide-treated nets and indoor residual spraying, 
both of which target mosquitoes indoors. This interven-
tion package, as expected, is much more effective in areas 
with a higher percentage of bites occurring indoors. The 
right panel demonstrates the inverse property: under an 
intervention package that includes only anti-malarial 
drugs and therefore does not directly target mosquitoes 

Table 3 EMOD intervention descriptions

Intervention Details

Insecticide‑treated nets (ITNs) Distributed annually on January 1st;
Initial blocking 90%, decaying exponentially with a 2‑year half‑life;

Initial killing 60%, decaying exponentially with a 4‑year half‑life;

Nets are discarded with exponential decay and a 6‑month half‑life;

A randomly‑selected 10% of the population never receives a net;

Everyone who owns a net uses it every night.

Indoor residual spraying (IRS) Distributed annually on January 1st;
Initial killing 60%, decaying exponentially with a 6‑month half‑life;

No correlation between IRS and ITN coverage.

Artemether‑Lumefantrine (AL) case management Constant throughout simulation;
“Coverage” refers to the probability of seeking care given a clinical case;

Upon deciding to seek care, per‑day probability of care‑seeking is 0.15;

No age dependence;

Drugs clear infection and provide about two weeks of additional protection.

Dihydro‑artemisinin‑Piperaquine (DP) case management Constant throughout simulation;
Same as AL case management, but with 1 month of protection after use.

Pre‑Erythrocytic vaccine (PEV) Constant throughout simulation;
90% acquisition blocking, decaying exponentially;

6‑ and 12‑ month decay half‑lives;

Distributed to infants upon reaching 6 months of age.

Transmission‑blocking vaccine (TBV) Distributed annually on January 1st;
90% transmission blocking, decaying exponentially;

6‑ and 12‑ month decay half‑lives;

Distributed to adults age 15‑49.

Attractive targeted sugar baits (ATSB) Distributed twice per year on January 1st and July 1st;
Reported in terms of per‑feed mortality rate, not coverage;

6‑month box duration of efficacy.

Monoclonal antibodies (mABs) Distributed annually on January 1st;
Simulated via a PEV (see parameters above);

Distributed to adults age 15‑49;

3‑month box duration of protection.

Fig. 7 Example intervention impact results for four of the 152 interventions tested. The line plots (top) show intervention impact curves 
disaggregated by archetype, with archetypes colored according to the map (top right). The four prevalence maps (bottom) show hypothetical 
Plasmodium falciparum parasite rate among children aged 2–10 ( PfPR2−10 ) for each scenario. These maps were created by starting from a 
baseline map of 2000 as a proxy for a landscape without malaria interventions. For each initial prevalence value in the baseline map, a new 
prevalence value was found using the lines in the top set of plots. The linetype of subplot borders in the lower plots matches the linetype of 
interventions in the upper plots. For more detail about interventions see Table 3. ITN: Insecticide‑treated net; IRS: Indoor residual spraying; AL CM: 
Artemether‑Lumefantrine case management; ATSB: Attractive targeted sugar bait

(See figure on next page.)
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at all, there is no differential impact across indoor biting 
intensities. Table 2 describes the mosquito characteristics 
of each representative site.

Site selection sensitivity analysis
Figure  9 shows the location of all 100 sensitivity sites. 
With one exception, the sensitivity analysis showed that 
the representative sites appropriately capture variation 
within archetypes. Figure 10 shows an example interven-
tion package, with the impact curve of each archetype’s 
representative site plotted in color and the curves of the 
ten randomly-selected sites shown in black. Shaded areas 
represent variation across the ten random seeds run for 
each site. If the representative sites were effective prox-
ies for their archetypes, the colored lines and shaded 
areas would cover all or most of the black lines and 
shaded areas. While there are a few archetypes in which 
the representative sites’ variation is slightly too narrow, 
especially the North Horn and Coastal West curves, in 
general the representative sites capture both the shape 
and the variation across the sensitivity sites. The one 
exception is the Sahelian archetype, in which the repre-
sentative site curve overestimates intervention impact at 
moderate transmission intensities compared to the sensi-
tivity analysis sites. The representative site for this arche-
type is in southern Burkina Faso, while the sensitivity 

sites are almost all situated farther east in Ethiopia, South 
Sudan, and northern Nigeria– perhaps too heteroge-
neous a landscape to be accurately captured by a single 
site. Future work may consider limiting the longitudinal 
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Fig. 8 Sensitivity of sites to biting intensity for vector control vs non‑vector‑control interventions. In both plots, each line represents an 
archetype’s representative site, colored according to its indoor biting percentage as determined by its mosquito species mix. The left panel shows 
an intervention setting with 80% coverage of insecticide‑treated nets and indoor residual spraying, both of which target mosquitoes indoors. 
This intervention package, as expected, is much more effective in areas with a higher percentage of bites occurring indoors. The right panel 
demonstrates the inverse property: under an intervention package that includes only anti‑malarial drugs and therefore does not directly target 
mosquitoes at all, there is no differential impact across indoor biting intensities

Fig. 9 Sensitivity analysis sites. Black crosses indicate the location of 
all 100 reqpresentative sites used for sensistivity analysis
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or latitudinal extent allowed by a single archetype to 
improve the accuracy of the framework. Similar plots 
for all 152 intervention packages are available under the 
“Sensitivity Analysis” label at https:// insti tutef ordis easem 
odeli ng. github. io/ arche types- inter venti on- impact- idmto 
ols/.

Discussion
Mechanistic models are versatile tools for malaria inter-
vention planning, but deploying them over large geo-
graphic areas at a useful spatial resolution poses both 
theoretical and computational challenges. This paper 
introduces a flexible and customizable archetypes-based 
framework that harnesses the richness of available spa-
tial data and spatiotemporal modeling products to assess 
potential intervention impact across a range of settings, 
and discusses key decision points to consider when con-
structing such a framework. It includes a detailed exam-
ple of how the framework might be configured. This 
example configuration demonstrates that dimensionality 
reduction and clustering can identify meaningfully dif-
ferent environmental archetypes, that the mechanistic 
model behaves as expected in relation to intervention 
effect and mosquito bionomics, that the creation of new 
maps showing intervention impact can highlight inter-
ventions and areas of interest, and that the representative 
sites selected can appropriately represent each archetype 
as a whole. The demonstrative analysis used the EMOD 
mechanistic model and malaria risk surfaces from the 
Malaria Atlas Project, but this methodology could just 
as easily be applied with different modeling software or 
malaria risk estimates. The choice of covariates upon 
which to cluster is likewise arbitrarily modifiable, noting 
that the mechanistic model used should have the capacity 
to accurately reflect any covariate variation that distin-
guishes archetypes from one another.

An archetypes-based approach can be useful for any 
project in which there is interest in the differential effects 
of a disease model under a range of initial conditions. 
Historically in malaria, such analyses either used ideal-
ized “characteristic” settings that did not directly repre-
sent real-world locations [18], or tested an extremely wide 
combinatoric collection of possible initial conditions 
[11]. The first approach is simple and straightforward, but 
suffers from arbitrary selection and the inability to claim 
that the sites shown are actually representative of other 
areas. The second approach, while thorough, requires 
an unnecessary computational burden. An archetypes-
based strategy provides a useful middle ground, provid-
ing a relatively streamlined computational infrastructure 

for projects that require national or continental coverage, 
while also offering a useful suite of example settings that 
can easily be used for any type of exploratory simulation 
analysis.

The example configuration shows the utility of an 
archetypes framework for scenario-based analyses 
that are not calibrated to field data, but the framework 
has been extended to more data-rich use cases. In the 
recent High Burden to High Impact (HBHI) initiative, 
ten high-burden countries developed stratified interven-
tion packages to effectively distribute malaria preven-
tion and treatment to their communities. In Burkina 
Faso and Nigeria, researchers utilized a covariate-based 
dimensionality-reduction and clustering strategy to gen-
erate subnational archetypes, which then helped inform 
a rigorous admin-level calibration and stratification pro-
cess to recommend targeted intervention strategies in 
upcoming years in these countries [34, 35]. In addition, 
it has repeatedly proven useful to have a diverse range of 
archetypal models pre-configured when stakeholders ask 
policy questions that are not geographically specific but 
may have different answers in different settings. While 
identifying different malaria seasonality modalities was 
not the primary goal of this work, the archetype selec-
tion process consistently identified spatial groupings with 
similar seasonality to heuristically identified seasonality 
profiles [11, 36]. This observation lends confidence to the 
effectiveness of both the archetypes framework and other 
seasonality detection methods.

An archetypes-based approach to intervention impact 
planning has several limitations. When utilized with-
out fitting to field data, as shown in this document, this 
method is useful as an intuition-building tool, but should 
not be used to inform specific decisions in particular 
geographic locations. While the ability to project results 
from the analysis to an arbitrarily fine spatial scale may 
be useful for highlighting heterogeneities, such results 
might convey an unintended sense of confidence in the 
sensitivity and specificity of results. It is best to consider 
this framework as a strategy for obtaining informative 
priors, rather than as a way of generating quantitiatively 
rigorous model results. However, as described above in 
the HBHI framework, these concerns fade when the 
strategy is utilized as a precursor to more formal model 
fitting.

The example configuration specifically has additional 
limitations. While the selected covariates cover many 
environmental model sensitivities, no human-centered 
or malaria intervention history covariates were included. 
While some covariate standardization was performed, a 

https://institutefordiseasemodeling.github.io/archetypes-intervention-impact-idmtools/
https://institutefordiseasemodeling.github.io/archetypes-intervention-impact-idmtools/
https://institutefordiseasemodeling.github.io/archetypes-intervention-impact-idmtools/
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limited number of rescaling or standardizing approaches 
were conducted. Similarly, while common heuristics were 
utilized to select singular vector and cluster counts in SVD 
and k-means, a full and formal sensitivity analysis of these 
heuristics has yet to be conducted. These would include 
running k-means with more or fewer singular vectors, and 
repeating the clustering analysis with k-fold data holdouts. 
Both of these tests would check how cluster membership 
changes in response to these varied initial conditions, espe-
cially for pixels on the borders between archetypes. How-
ever, the robustness of cluster assignment between different 
k-values provides some confidence that such sensitivity 
checks would support the choices made in this analysis. 
While the EMOD modeling software has been extensively 
vetted and tested, it has not undergone a parameter-by-
parameter sensitivity analysis to conclusively determine 
which variables are most robust to model changes. Because 
the example configuration focused on hypothetical sce-
narios rather than prediction or projection, uncertainty 
was not considered. A full uncertainty propagation strategy 
would begin with covariate uncertainty and reflect both 
mechanistic model parameter uncertainty and uncertainty 
in the prevalence maps used as baseline metrics.

The example configuration additionally does not con-
sider a number of important malaria-related factors, but 
could easily be extended to take them into account. These 
include insecticide resistance, human migration, historical 
interventions, and site-specific population demographics. 
Future work will also include model comparison exercises 
between the archetypes framework and models that have 
been finely calibrated to specific locations to assess what 
improvements can be made in archetype-level predictions 
(while continuing to acknowledge that superseding site-
specific analysis is not and will not be the goal). The exam-
ples shown here are in Africa, but this framework can also 
be extended to malaria-endemic regions of Asia and the 
Americas.

This paper presents a novel archetypes-based strategy 
for high-resolution, large-area malaria intervention impact 
assessment. Compared to similar approaches, it adds 
speed, computational efficiency, and interpretability to 
results, lends itself well to more detailed calibration-based 
approaches, and guides intuition in data-sparse settings. 
It has already proved a useful tool in the malaria modeling 
repertoire, and the authors look forward to further expand-
ing its utility to new use cases and stakeholder needs.

Appendix
Details on the EMOD software
EMOD: an overview
EMOD (https:// idmod. org/ docum entat ion) is an indi-
vidual-based stochastic mechanistic modeling software 
developed by the Institute for Disease Modeling. While 
EMOD is capable of modeling a number of infectious 
diseases, only the malaria framework is described in 
detail here.

Operating on a daily time step, EMOD simultaneously 
tracks multiple simulation layers, including but not lim-
ited to: mosquito habitat and life cycle, mosquito behav-
ior and movement, human population demographics, 
human movement, human immune responses to malaria, 
and malaria interventions that disrupt any of the afore-
mentioned layers. Typically, humans are modeled as 
individuals while mosquitoes are modeled as cohorts, 
though there are options to model mosquitoes individu-
ally for extremely small-scale simulations. As an indi-
vidual-based model, most input parameters are defined 
via probability distributions which are sampled at the 
appropriate points. Spatially distinct communities can be 
defined, with or without movement between them. While 
some heterogeneity in risk and behavior can be imposed 
within communities, under most circumstances a com-
munity behaves as a well-mixed population.

Mosquito habitat, life cycle, behavior, and movement 
In EMOD, species-specific mosquito population size 
is driven by the size of larval habitat available. In the 
absence of interventions, mosquito abundance in turn 
drives community-level malaria prevalence. Larval habi-
tat size over time can be specified manually, if entomo-
logical data is available to inform this estimate, or can be 
driven by climate files indicating daily air temperature, 
rainfall, and relative humidity in the site being modeled. 
If the climate-driven option is selected, a decision must 
also be made about the types of larval habitat available 
in the model, allowing for hydrology-based conversions 
between climate and mosquito emergence and mortal-
ity. For more detail see Eckhoff [14]. Species-specific 
anthropophily and endophily values can also be speci-
fied. In the cohort-based model, mosquitoes do not travel 
from one community to another. See Table 1 for a list of 
vector parameters utilized in the example configuration.

Human population demographics Humans are modeled 
individually in EMOD, with each person assigned an age, 

https://idmod.org/documentation


Page 19 of 22Bertozzi‑Villa et al. Malaria Journal          (2023) 22:138  

sex, and “home” community at model initialization. Age 
distributions and birth and death rates can be specified at 
model initiation. In addition, individuals can be assigned 
custom properties related to disease risk or exposure to 
better capture heterogeneity within communities. In the 
example configuration, 10% of individuals were assigned 
to a custom “No Nets” category, to indicate that they 
would always be skipped during insecticide-treated 
bednet campaigns, and each individual was assigned a 
unique biting risk such that the distribution of biting risk 
in the community overall was exponential [32]. While 
various types of human movement between communi-
ties can be specified in the model, this analysis did not 
allow for human movement to keep the effects of any one 
archetypal site clear.

Human immune responses to malaria and accounting 
for malaria population immunity Every time a person is 
infected with malaria in EMOD, they trigger a full intra-
host infection cascade. Among the variables tracked are 
parasitemia, gametocytemia, and var-gene expression. 
After infection, waning immunity is also tracked and 
taken into account upon reinfection [37]. Individuals 
may remain asymptomatic, or develop a mild, clinical, 
or severe case of malaria. Due to the uncertain pathway 
from severe malaria to death, malaria-specific mortality 
was not enabled in this anlaysis.

Upon model initiation, all individuals are immunologi-
cally naive to malaria (though a few individuals are initial-
ized as having an active infection). To generate a realistic 
immune profile, EMOD is typically run with no interven-
tions for several decades, at which point the simulation 
state can be “frozen”. From this starting point, a range of 
different intervention scenarios can be initialized.

Malaria interventions EMOD offers a wide range of 
malaria interventions, in which the user can specify 
intervention timing, coverage, targeting, efficacy, and 
waning, among many other variables. Interventions func-
tion by altering default model probabilities– for exam-
ple, giving an individual an insecticide-treated net would 
reduce their probability of being bitten by a mosquito 
indoors, while receiving antimalarial drugs after infec-
tion would alter intrahost immune parameters which, in 
turn, would lower the likelihood of a mosquito acquiring 
gametocytes and increase the rate of recovery from clini-
cal disease.

Table 3 presents brief descriptions of the malaria interven-
tions used in this analysis. See the EMOD documentation for 
more.

Table of tested interventions
See Table 4. 

Table 4 Intervention descriptions and populations at risk (PAR) 
across sub‑Saharan Africa after three years of each intervention 
package

Intervention descriptions and population at risk

Int # Description PAR (Millions)

0 Baseline (pre‑intervention) 1374

1 0/0/0% ITN/IRS/AL CM 1372

2 20/0/0% ITN/IRS/AL CM 1306

3 40/0/0% ITN/IRS/AL CM 1236

4 60/0/0% ITN/IRS/AL CM 1014

5 80/0/0% ITN/IRS/AL CM 831

6 0/20/0% ITN/IRS/AL CM 1308

7 20/20/0% ITN/IRS/AL CM 1183

8 40/20/0% ITN/IRS/AL CM 964

9 60/20/0% ITN/IRS/AL CM 826

10 80/20/0% ITN/IRS/AL CM 654

11 0/40/0% ITN/IRS/AL CM 1093

12 20/40/0% ITN/IRS/AL CM 915

13 40/40/0% ITN/IRS/AL CM 771

14 60/40/0% ITN/IRS/AL CM 606

15 80/40/0% ITN/IRS/AL CM 479

16 0/60/0% ITN/IRS/AL CM 870

17 20/60/0% ITN/IRS/AL CM 713

18 40/60/0% ITN/IRS/AL CM 619

19 60/60/0% ITN/IRS/AL CM 472

20 80/60/0% ITN/IRS/AL CM 334

21 0/80/0% ITN/IRS/AL CM 600

22 20/80/0% ITN/IRS/AL CM 504

23 40/80/0% ITN/IRS/AL CM 436

24 60/80/0% ITN/IRS/AL CM 326

25 80/80/0% ITN/IRS/AL CM 234

26 0/0/20% ITN/IRS/AL CM 1316

27 20/0/20% ITN/IRS/AL CM 1253

28 40/0/20% ITN/IRS/AL CM 1065

29 60/0/20% ITN/IRS/AL CM 943

30 80/0/20% ITN/IRS/AL CM 695

31 0/20/20% ITN/IRS/AL CM 1212

32 20/20/20% ITN/IRS/AL CM 995

33 40/20/20% ITN/IRS/AL CM 834

34 60/20/20% ITN/IRS/AL CM 691

35 80/20/20% ITN/IRS/AL CM 558

36 0/40/20% ITN/IRS/AL CM 928

37 20/40/20% ITN/IRS/AL CM 823

38 40/40/20% ITN/IRS/AL CM 635

39 60/40/20% ITN/IRS/AL CM 492

40 80/40/20% ITN/IRS/AL CM 403

41 0/60/20% ITN/IRS/AL CM 692

42 20/60/20% ITN/IRS/AL CM 584

43 40/60/20% ITN/IRS/AL CM 471

44 60/60/20% ITN/IRS/AL CM 367

45 80/60/20% ITN/IRS/AL CM 259
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Table 4 (continued)

Intervention descriptions and population at risk

Int # Description PAR (Millions)

46 0/80/20% ITN/IRS/AL CM 506

47 20/80/20% ITN/IRS/AL CM 386

48 40/80/20% ITN/IRS/AL CM 299

49 60/80/20% ITN/IRS/AL CM 240

50 80/80/20% ITN/IRS/AL CM 206

51 0/0/40% ITN/IRS/AL CM 1243

52 20/0/40% ITN/IRS/AL CM 1096

53 40/0/40% ITN/IRS/AL CM 905

54 60/0/40% ITN/IRS/AL CM 770

55 80/0/40% ITN/IRS/AL CM 566

56 0/20/40% ITN/IRS/AL CM 1052

57 20/20/40% ITN/IRS/AL CM 891

58 40/20/40% ITN/IRS/AL CM 733

59 60/20/40% ITN/IRS/AL CM 591

60 80/20/40% ITN/IRS/AL CM 416

61 0/40/40% ITN/IRS/AL CM 823

62 20/40/40% ITN/IRS/AL CM 655

63 40/40/40% ITN/IRS/AL CM 536

64 60/40/40% ITN/IRS/AL CM 396

65 80/40/40% ITN/IRS/AL CM 274

66 0/60/40% ITN/IRS/AL CM 592

67 20/60/40% ITN/IRS/AL CM 480

68 40/60/40% ITN/IRS/AL CM 348

69 60/60/40% ITN/IRS/AL CM 296

70 80/60/40% ITN/IRS/AL CM 228

71 0/80/40% ITN/IRS/AL CM 394

72 20/80/40% ITN/IRS/AL CM 280

73 40/80/40% ITN/IRS/AL CM 259

74 60/80/40% ITN/IRS/AL CM 241

75 80/80/40% ITN/IRS/AL CM 196

76 0/0/60% ITN/IRS/AL CM 1103

77 20/0/60% ITN/IRS/AL CM 932

78 40/0/60% ITN/IRS/AL CM 795

79 60/0/60% ITN/IRS/AL CM 650

81 0/20/60% ITN/IRS/AL CM 896

82 20/20/60% ITN/IRS/AL CM 718

83 40/20/60% ITN/IRS/AL CM 575

84 60/20/60% ITN/IRS/AL CM 432

85 80/20/60% ITN/IRS/AL CM 335

86 0/40/60% ITN/IRS/AL CM 684

87 20/40/60% ITN/IRS/AL CM 549

88 40/40/60% ITN/IRS/AL CM 405

89 60/40/60% ITN/IRS/AL CM 297

90 80/40/60% ITN/IRS/AL CM 234

91 0/60/60% ITN/IRS/AL CM 449

92 20/60/60% ITN/IRS/AL CM 377

93 40/60/60% ITN/IRS/AL CM 275

94 60/60/60% ITN/IRS/AL CM 216

Table 4 (continued)

Intervention descriptions and population at risk

Int # Description PAR (Millions)

95 80/60/60% ITN/IRS/AL CM 182

96 0/80/60% ITN/IRS/AL CM 306

97 20/80/60% ITN/IRS/AL CM 276

98 40/80/60% ITN/IRS/AL CM 224

99 60/80/60% ITN/IRS/AL CM 201

100 80/80/60% ITN/IRS/AL CM 160

101 0/0/80% ITN/IRS/AL CM 925

102 20/0/80% ITN/IRS/AL CM 813

103 40/0/80% ITN/IRS/AL CM 613

104 60/0/80% ITN/IRS/AL CM 470

105 80/0/80% ITN/IRS/AL CM 332

106 0/20/80% ITN/IRS/AL CM 727

107 20/20/80% ITN/IRS/AL CM 567

108 40/20/80% ITN/IRS/AL CM 464

109 60/20/80% ITN/IRS/AL CM 314

110 80/20/80% ITN/IRS/AL CM 237

111 0/40/80% ITN/IRS/AL CM 522

112 20/40/80% ITN/IRS/AL CM 403

113 40/40/80% ITN/IRS/AL CM 320

114 60/40/80% ITN/IRS/AL CM 242

115 80/40/80% ITN/IRS/AL CM 204

116 0/60/80% ITN/IRS/AL CM 331

117 20/60/80% ITN/IRS/AL CM 263

118 40/60/80% ITN/IRS/AL CM 250

119 60/60/80% ITN/IRS/AL CM 183

120 80/60/80% ITN/IRS/AL CM 160

121 0/80/80% ITN/IRS/AL CM 227

122 20/80/80% ITN/IRS/AL CM 227

123 40/80/80% ITN/IRS/AL CM 178

124 60/80/80% ITN/IRS/AL CM 167

125 80/80/80% ITN/IRS/AL CM 118

126 80/80/80% ITN/IRS/AL CM + 40% mAb 131

127 80/80/80% ITN/IRS/AL CM + 40% TBV 117

128 80/80/80% ITN/IRS/AL CM + 40% PEV 120

129 80/80/80% ITN/IRS/AL CM + 80% mAb 103

130 80/80/80% ITN/IRS/AL CM + 80% TBV 98

131 80/80/80% ITN/IRS/AL CM + 80% PEV 146

132 80/80/80% ITN/IRS/DP CM 131

133 0/0/0% ITN/IRS/AL CM + 0.15% ATSB Kill Rate 1332

134 0/0/0% ITN/IRS/AL CM + 3% ATSB Kill Rate 767

135 0/0/0% ITN/IRS/AL CM + 15% ATSB Kill Rate 56

136 0/0/0% ITN/IRS/AL CM + 25% ATSB Kill Rate 11

137 20/20/20% ITN/IRS/AL CM + 0.15% ATSB Kill Rate 999

138 20/20/20% ITN/IRS/AL CM + 3% ATSB Kill Rate 343

139 20/20/20% ITN/IRS/AL CM + 15% ATSB Kill Rate 38

140 20/20/20% ITN/IRS/AL CM + 25% ATSB Kill Rate 0

141 40/40/40% ITN/IRS/AL CM + 0.15% ATSB Kill Rate 470

142 40/40/40% ITN/IRS/AL CM + 3% ATSB Kill Rate 165
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