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Abstract 

Background  For their 2021–2025 National Malaria Strategic Plan (NMSP), Nigeria’s National Malaria Elimination Pro-
gramme (NMEP), in partnership with the World Health Organization (WHO), developed a targeted approach to inter-
vention deployment at the local government area (LGA) level as part of the High Burden to High Impact response. 
Mathematical models of malaria transmission were used to predict the impact of proposed intervention strategies on 
malaria burden.

Methods  An agent-based model of Plasmodium falciparum transmission was used to simulate malaria morbid-
ity and mortality in Nigeria’s 774 LGAs under four possible intervention strategies from 2020 to 2030. The scenarios 
represented the previously implemented plan (business-as-usual), the NMSP at an 80% or higher coverage level and 
two prioritized plans according to the resources available to Nigeria. LGAs were clustered into 22 epidemiological 
archetypes using monthly rainfall, temperature suitability index, vector abundance, pre-2010 parasite prevalence, and 
pre-2010 vector control coverage. Routine incidence data were used to parameterize seasonality in each archetype. 
Each LGA’s baseline malaria transmission intensity was calibrated to parasite prevalence in children under the age of 
five years measured in the 2010 Malaria Indicator Survey (MIS). Intervention coverage in the 2010–2019 period was 
obtained from the Demographic and Health Survey, MIS, the NMEP, and post-campaign surveys.

Results  Pursuing a business-as-usual strategy was projected to result in a 5% and 9% increase in malaria incidence 
in 2025 and 2030 compared with 2020, while deaths were projected to remain unchanged by 2030. The greatest 
intervention impact was associated with the NMSP scenario with 80% or greater coverage of standard interventions 
coupled with intermittent preventive treatment in infants and extension of seasonal malaria chemoprevention (SMC) 
to 404 LGAs, compared to 80 LGAs in 2019. The budget-prioritized scenario with SMC expansion to 310 LGAs, high 
bed net coverage with new formulations, and increase in effective case management rate at the same pace as histori-
cal levels was adopted as an adequate alternative for the resources available.

Conclusions  Dynamical models can be applied for relative assessment of the impact of intervention scenarios but 
improved subnational data collection systems are required to allow increased confidence in predictions at sub-
national level.
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Background
Although Nigeria has made substantial progress in 
malaria control, it continues to bear a disproportion-
ate share of the global malaria burden, accounting for an 
estimated 27% and 23% of all malaria cases and deaths in 
2019, respectively [1]. Previously accelerated declines in 
incidence and deaths have plateaued, and at the current 
pace of progress, it is unlikely that the Global Technical 
Strategy (GTS) targets of reducing malaria incidence and 
mortality by at least 75% and 90% by 2025 and 2030 will 
be met [1, 2]. Early signals of these concerning trends 
prompted the World Health Organization (WHO) and 
the RBM Partnership to End Malaria to launch the ‘High 
Burden to High Impact’ (HBHI) initiative, a country-led 
approach [3]. In its first phase in 2019–20, HBHI sup-
ported 11 high-burden countries, including Nigeria, to 
accelerate progress towards achieving the GTS mile-
stones. Countries participating in the HBHI initiative 
aim to maximize the impact of malaria control tools by 
deploying them in areas where they will be most effec-
tive. The approach consists of four response elements: 
(1) promotion of political will to reduce malaria deaths, 
(2) the use of strategic information to drive impact, (3) 
the development of better guidance, policies, and strat-
egies, and (4) a coordinated national malaria response. 
As part of the second HBHI response element, Nigeria’s 
National Malaria Elimination Programme (NMEP) devel-
oped a targeted approach for intervention deployment at 
the local government level for the 2021–2025 National 
Malaria Strategic Plan (NMSP). Mathematical modellers 
were recruited to create an analytical framework for pre-
dicting the impact of the NMEP’s proposed intervention 
strategy on malaria morbidity and mortality in each of 
Nigeria’s 774 local government areas (LGAs).

Spatial variation in malaria transmission intensity, sea-
sonality, and other contextual factors associated with 
malaria risk were key factors that motivated tailoring 
of interventions to the LGA-level. Malaria transmission 
intensity in Nigeria varies from areas of hypo-endemicity 
to hyper-holo endemicity [4–8], making a one-size-fits-
all approach to intervention deployment suboptimal. For 
example, geostatistical models of parasite prevalence and 
evidence from the 2018 Demographic and Health Sur-
vey (DHS) show concentration of the childhood malaria 
burden in the north-west, south-west and north-central 
states, and areas of low and medium endemicity within 
the same state boundary [4]. At a finer scale, spatial vari-
ation in malaria risk within and across urban and rural 

areas justified the need for targeting malaria interven-
tions [4, 6, 9]. Moreover, inter- and intra-state variation 
in the start and end of the transmission season should 
be considered in allocating seasonal malaria chemo-
prevention, typically administered in highly seasonal or 
epidemic regions [10]. Access to care and care-seeking 
propensity toward public versus private treatment pro-
viders also varies [11, 12]. Considering these factors, 
the NMEP stratified interventions by LGA, arriving at a 
resource-agnostic intervention mix comprised of effec-
tive case management for malaria, treated bed nets with 
pyrethroid piperonyl butoxide active ingredient, inter-
mittent preventive treatment in pregnancy, seasonal 
malaria chemoprevention, and intermittent preventive 
treatment in infants; with 80% or higher coverage.

Widening shortfalls in funding for malaria programmes 
emphasize the need for optimal allocation of interven-
tions to maximize impact given limited resources [1]. 
Since insufficient funds were available to implement the 
full NMSP, two prioritized plans were developed to fit 
within a specified resource envelope. Comparisons of the 
resource-agnostic plan and prioritized plans in the con-
text of limited resources were crucial to understand each 
plan’s impact on malaria burden and to inform the selec-
tion of the final intervention mix and grant applications 
to the Global Fund to Fight AIDS, TB and Malaria.

Mathematical frameworks can be used to develop 
models of malaria transmission, which integrate his-
torical data on transmission intensity, seasonality, and 
intervention coverage at the desired spatial scale with 
expert opinion. These models can be simulated forward 
to predict the impact of multiple intervention scenarios 
on malaria prevalence, incidence and mortality [13–18]. 
What follows is a description of how EMOD, a well-
elaborated mathematical model of malaria transmission 
[19–21], was applied to support national malaria strate-
gic planning and resource prioritization by the NMEP by 
making LGA-level impact predictions for four interven-
tion scenarios.

Methods
Overview
A three-step process was used to generate LGA-level 
predictions of potential national strategic plans (Fig.  1). 
The first step was to capture the intrinsic potential of 
each LGA to support malaria transmission in a baseline 
period before most interventions were scaled up nation-
wide. Data and geospatial modelled surfaces were used 
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to group LGAs into epidemiological archetypes. For each 
archetype, baseline malaria transmission was calibrated 
to 2014–18 monthly malaria case data and prevalence 
data collected from children under the age of five years 
in the 2010 malaria indicator surveys to capture season-
ality and transmission intensity, respectively. Next, Nige-
ria’s intervention history from 2010 to 2020 at the LGA 
level was imposed on the baseline models to generate 774 
LGA-level models up through 2020. Last, various future 
intervention strategies were applied to the LGA models, 
and the impact of each intervention strategy on preva-
lence, incidence, and mortality was assessed. The follow-
ing sections summarize the study methods. More details 
are provided in Additional file 1.

Clustering LGAs with similar baseline transmission 
patterns to generate epidemiological archetypes
Calibrating baseline transmission intensity and comput-
ing intervention coverages for each LGA in the model 
was challenging due to the computational power required 
to simulate 774 LGAs, and the lack of subnational data 
for some LGAs. To address this problem, LGAs with sim-
ilar baseline malaria transmission patterns (climatic pat-
terns, vectors, and baseline transmission intensity) were 
clustered (Fig. 2). The following LGA-level features were 
used for clustering: average monthly rainfall [22], average 
monthly temperature suitability index (TSI) [23], overall 

relative abundance of three vector species [24], annual 
modelled Plasmodium falciparum parasite prevalence 
(PfPR) values from the Malaria Atlas Project (MAP) [25, 
26] for 2000, 2004, 2006, 2008, and 2010, and estimated 
ITN use between 2008 and 2010 from MAP [27]. LGAs 
that shared similar climatic, vector, and transmission 
features were grouped into 60 epidemiological arche-
types using the CLARA algorithm (see Additional file 1) 
[28, 29]. Given that data from the 2010 Malaria Indicator 
Survey (MIS) was used to calibrate parasite prevalence, 
archetypes where the 2010 MIS sample population of 
children under the age of 5 years (U5) was less than 50 
were reassigned to the next closest archetype (see Addi-
tional file 1). This final reassignment resulted in 22 epide-
miological archetypes with between 13 to 92 LGAs per 
archetype. See Additional file 1 for the archetype assign-
ment of each LGA.

EMOD malaria transmission model
Malaria transmission and intervention impact was sim-
ulated using EMOD v2.20, an agent-based model of P. 
falciparum transmission that comprises a model of tem-
perature-dependent vector lifecycle and vector popula-
tion dynamics, coupled to a model of human disease and 
immunity, and intervention effects [21, 30–33]. Parasite 
dynamics, immune acquisition, and clinical incidence 
by age were previously calibrated to field data from nine 

a model for each of 774 LGAs was 
created by capturing seasonality and 
transmission intensity by archetype using 
data from DHIS2 and the 2010 MIS 
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Fig. 1  Methodological overview for this study with illustrations of the approach
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study sites in sub-Saharan Africa [34]. LGA daily air 
temperatures were computed using centroid longitude 
and latitude and data from Global Surface Summary of 
the Day [35]. Three local vector populations were simu-
lated—Anopheles gambiae s.s., Anopheles arabiensis, and 
Anopheles funestus—with species-specific parameters for 
anthropophily [35–38] and probability of feeding indoors 
[39–41]. The number of mosquito bites per person (bit-
ing risk) was modelled with an exponential distribution 
for exposure [42] and surface area dependence by age 
to capture the heterogeneity of exposure between indi-
viduals within an LGA. Population size for each LGA was 
rescaled to 1000 to reduce computational burden, and 
rescaled in the post-simulation analyses. Uniform birth 
and death rates were used for all LGAs [43]. Modelled 
LGAs were not spatially connected, and 10 infections 
were imported into each LGA per year.

Model inputs and scripts used for running simula-
tions and post-processing of results are publicly available 
(see Data Availability section), including instructions for 
downloading dependencies. Scripts were written using 
Python 3.6.0 [44] and R 4.02 [45].

Model calibration
Setting model seasonality: parameterizing monthly larval 
habitat availability
Seasonality of malaria within each archetype was cali-
brated to routine reporting of all-age uncomplicated 
malaria cases collected for a Rapid Impact Assessment 
(RIA) performed in 2019 by the NMEP. The RIA dataset 
contains quality-assured monthly confirmed plus pre-
sumed malaria cases from 917 nationally representative 
public health facilities in 601 LGAs in Nigeria for the 

period of 2014–18. Confirmed cases were diagnosed 
with either a rapid diagnostic test (RDT) or micros-
copy. All cases in each month were summed for each 
LGA and by year. The average number of monthly cases 
and 95% confidence intervals across all years were com-
puted by LGA and summed by archetype. The monthly 
case series were rescaled such that the number of cases 
per month was roughly between 20 and 100 prior to 
attempting the simulation fit, since the model was well-
behaved in this range of monthly treated cases and the 
extent to which the RIA data captured the true clinical 
burden of malaria in the archetype was unknown. For 
each of the 22 archetypes, seasonal variation in trans-
mission intensity was captured in EMOD by selecting 
overall monthly Anopheles larval habitat availabilities 
such that the resulting monthly mean clinical incidence 
matched the shape of the monthly clinical incidence 
in the RIA dataset (Fig. 3A). The same seasonality was 
assumed for all three vector species.

Accounting for non‑malarial fevers
Passive surveillance, such as the RIA dataset, also 
contains individuals who test positive for malaria but 
whose symptoms are caused by a non-malarial illness, 
such as when an individual with an asymptomatic 
malaria infection becomes co-infected with another 
pathogen. These malaria-attributed, but not malaria-
caused, fevers were accounted for in the simulations 
by testing a random 0.38% of the simulated population 
daily with an HRP2-based RDT [46], approximating a 
baseline rate of non-malarial febrile illness. Individu-
als testing positive received antimalarial treatment and 
were added to the daily tally of malaria cases.

group LGAs into 60 epidemiological archetypes 
using LGA-level modeled surfaces from MAP:
 - monthly rainfall
 - monthly temperature suitability index
 - relative abundance of 3 vector species
 - 2000 - 2010 PfPR
 - 2008 - 2010 ITN usage

774 local government areas (LGAs)

total number of U5 surveyed in 2010 MIS
0−6
7−14
15−21

22−29
30−36
37−44

45−51
52−59
>60

original 60 epidemiological archetypes 22 archetypes after reassignment

in archetypes with 
<50 U5, reassign 
LGAs to next-best 
archetype

Fig. 2  Hierarchical clustering of 774 LGAs into 22 epidemiological archetypes using monthly rainfall, monthly temperature suitability index, relative 
abundance of vector species, 2000–2010 PfPR, and 2008–2010 ITN use rates. PfPR and ITN coverage estimates for the initial classification were 
obtained from the Malaria Atlas Project
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Setting baseline transmission intensity
Simulated baseline transmission intensity was evalu-
ated using P. falciparum prevalence detected by micros-
copy with a sensitivity of 50 parasites per microliter 
[47]. Accurately modelling parasite prevalence for each 
archetype in the pre-2010 model required applying a 
scaling factor on the monthly vector larval habitat avail-
ability to reproduce the 2010 MIS PfPR in children U5, 
in the presence of the observed 2010 ITN usage and case 
management (CM) coverage (Fig. 3B, C). PfPR, ITN and 
CM coverage were computed from the MIS by taking a 
cluster-weighted averages across all LGAs within each 
archetype (clusters in the MIS and DHS survey are enu-
meration areas as defined by the census or an existing 
sampling frame). Since MIS data collection spanned a 
2–3 month window, PfPR weighted averages were com-
puted by archetype and month of data collection.

Fifty larval habitat scale factors were sampled for each 
of the 22 archetypes, resulting in 1100 unique scale fac-
tor archetype combinations. For each of these combina-
tions, a 50-year initialization phase was run to establish 
population immunity in the absence of interventions. For 
each archetype, an ITN distribution with archetype-spe-
cific coverage as observed in MIS was applied to each of 
the partially immune populations generated under each 
of the larval habitat scale factors. The U5 PfPR during 
the months corresponding to the 2010 MIS sampling in 
the archetype was measured in each simulation, gener-
ating for each archetype a series of PfPR measurements 
for each larval habitat scale factor. The simulated PfPR 
measurements were compared to measured PfPR for the 
2010 MIS using a beta binomial likelihood function and 

the scale factor resulting in the highest log-likelihood 
was chosen. Each LGA was assigned the seasonality pro-
file and larval habitat scale factor of its archetype, upon 
which an LGA-specific set of interventions covering the 
period 2010–19 was imposed.

Parameterizing historical interventions (2010–2019)
Historical interventions were parameterized for the 
intense intervention period from 2010 to 2019 when many 
interventions were scaled up in Nigeria (Fig. 4). Key his-
torical intervention characteristics captured in the model 
were intervention type, timing, coverage, and effect size. 
Simulated intervention types were CM for uncompli-
cated and severe malaria, ITNs through household mass 
distribution and antenatal distributions, seasonal malaria 
chemoprevention (SMC), and intermittent preventive 
treatment in pregnancy (IPTp). Indoor residual spraying 
(IRS) was not included in the model since spraying activi-
ties were mostly trials or pilots covering a small subset of 
households [5, 48–50].

Case management (CM)
The 2010, 2013, 2015, and 2018 DHS/MIS were used to 
estimate time-varying effective CM coverage for uncom-
plicated malaria by LGA (Fig.  5A). CM coverage was 
calculated as the fraction of children under 5 with fever 
in the 2-week period prior to the survey treated with an 
artemisinin-based combination therapy (ACT). Since the 
DHS does not collect CM coverage data for adults, the 
same CM coverage was assumed for adults as for children 
based on a 2013 study where patent medicine vendors 
were roughly equally as likely to treat adults and children 
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Fig. 3  Example calibration of transmission seasonality and intensity in the Akinyele archetype. A Simulated seasonality of clinical malaria within 
the Akinyele archetype compared with rescaled RIA health facility confirmed malaria case data for years 2014–2018. Red: 50 individual stochastic 
realizations (thin lines) and mean (thick line) incidence of the same modelled seasonality and scaling. Blue: RIA data with 95% confidence intervals. 
B Larval habitat scale factor sampling used to match simulated PfPR in the Akinyele archetype baseline model to PfPR in the 2010 MIS. Red dot: best 
match scale factor. C Red: simulated U5 PfPR in the Akinyele archetype. The thick red line indicates the best match while thin red lines show PfPR 
under other larval habitat scale factors. Each line (thick and thin) is the mean of 10 stochastic realizations. Black: archetype U5 PfPR from the 2010 
MIS, with 95% confidence intervals
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exhibiting malaria symptoms with an ACT [27]. CM cov-
erage estimates at the LGA level were weighted using the 
cluster level weights, provided within the DHS dataset. 
Missing CM data per LGA were replaced with the arche-
type-level estimate, and CM during years between DHS/
MIS surveys or after 2018 used values from the most 
recent survey. Effective CM coverage for severe malaria 
was held constant at 49% for all LGAs, based on reports 
that injectable artesunate is insufficiently prescribed [51], 
not readily available in health facilities [52], and may 
not be sufficient in the absence of additional supportive 
care [53]. For almost all modelled LGAs, CM for uncom-
plicated malaria was lower than for severe malaria with 
the exception of 33 LGAs in 2018. Treated malaria cases 
in the model received artemether-lumefantrine with 
an exponential treatment delay distribution averaging 
3.3  days for uncomplicated cases and 2  days for severe 
cases.

Insecticide‑treated nets (ITNs)
ITN coverages by age for simulated mass distributions 
were estimated from the 2010, 2013, 2015 and 2018 
DHS/MIS surveys for the age groups 0–5, 6–9, 10–18, 
and > 18  years. ITN usage from the DHS/MIS is the 
fraction of individuals who slept under a treated bednet 
the night before the survey (Fig.  5B). Seasonal varia-
tion in ITN use was computed by aggregating DHS data 
between 2003 and 2018 and estimating monthly net use 
fractions. Among net users, a random 10% each night 
were assumed to not use their nets. ITN coverage from 
surveys was inflated using retention time estimates 
from MAP to obtain the initial ITN coverage at mass 
distribution, and net loss was also modelled according 
to half-life estimated by MAP [27]. The yearly mass dis-
tribution schedule at the LGA level was obtained from 
the NMEP and implemented in the simulation. How-
ever, the actual campaigns dates were assumed. LGA-
level ITN coverage among pregnant women attending 

antenatal care in 2018 was calculated from program 
data shared by the NMEP and used within the simula-
tion to distribute nets to newborns.

Nigeria’s mass campaigns have historically distrib-
uted pyrethroid ITNs. An ITN blocking rate of 0.53 was 
estimated from published experimental hut trials [54–
56] and assumed to be uniform for these nets. ITN kill-
ing efficacy was estimated by analyzing the relationship 
between permethrin mortality and killing efficacy [57], 
which allowed parameterization by LGA and year with 
modelled maps of permethrin mortality for years 2005, 
2010 and 2017 obtained from MAP [58] (see Additional 
file 1).

Intermittent preventive treatment in pregnancy (IPTp)
Dose-specific IPTp coverage in each LGA was esti-
mated from self-reported receipt of one, two, or three 
or more doses of sulfadoxine-pyrimethamine (SP) in 
the DHS/MIS for years 2010, 2013, 2015, and 2018 
(Fig. 5C). Coverage for years between surveys and up to 
2020 was constructed using a monotone Hermite spline 
[59] (See Additional file 1).

Parasite prevalence outputs from the simulation were 
adjusted for the direct effect of IPTp among pregnant 
women, accounting for dose dependencies. Based on 
Menéndez et  al. [60], one IPTp dose was estimated 
to provide complete protection against infection for 
10 weeks, and each subsequent dose, up to three doses, 
added an additional 4 weeks of protection. Using these 
parameters, and assuming a 36-week pregnancy, the 
fraction of pregnancy that is unprotected for indi-
viduals who take one, two and three IPTp doses was 
estimated and used to compute adjusted prevalence 
estimates for pregnant women in LGA and for each 
simulation month. Final parasite prevalence estimates 
were calculated as the weighted average of the preva-
lence estimates in all groups, including pregnant and 
non-pregnant individuals (See Additional file 1).
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Fig. 4  Timeline of interventions in Nigeria 2000–2020 used to inform model inputs
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Fig. 5  Intervention coverage levels used to parameterize the malaria transmission model from 2010–2019. A Effective CM rate for uncomplicated 
malaria. B ITN usage. C Coverage of one or more doses of IPTp. D SMC coverage per cycle, averaged across all four cycles. CM, ITN and IPTp were 
parameterized using data from the DHS while SMC was parametrized using programme data. The latest DHS survey was conducted in 2018
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Seasonal malaria chemoprevention (SMC)
Nigeria follows WHO recommendations to target SMC 
in seasonal areas where more than 60% of transmission 
occurs within 4 months and annual PfPR is greater than 
5% [61]. Although the LGAs receiving SMC from 2013–
2017 and the number of SMC doses distributed were 
known, reported coverage of at least one dose exceeded 
100% and the lack of a reliable population denomina-
tor made it challenging to re-estimate coverage from 
dose data. Post-campaign surveys were instead used to 
parameterize SMC coverage [62, 63]. SMC coverage was 
assumed to be semi-correlated between rounds, as has 
been observed in post-SMC surveys where the fraction of 
children who receive all rounds of SMC is greater than 
would be expected from random selection per round [8, 
62]. “High access” children in the model were assumed 
to be more likely to receive SMC doses than “low access” 
children. In the simulations, children were randomly 
assigned to access groups at birth.

For 2013–17, 50% of U5 children were assumed to be 
high access and the remaining 50% low access. To capture 
the national SMC coverage values of between 50 and 80% 
observed in post-campaign surveys [8] (Fig. 5D), the high 
access group received 80–100% SMC coverage per round 
and the low access group received 20–60% coverage per 
round. Coverages in a subset of LGAs in Zamfara state 
was set at 100% for the high access group and 60% in the 
low access group based on findings from a preliminary 
survey [64].

For 2018–19, survey data on overall state-level SMC 
coverage and fraction of children U5 in the high access 
group, defined as those who received all four SMC 
rounds [62, 63], for four states in 2018 and five states in 
2019 was used to compute LGA-level coverage. However, 
some LGAs did not have low and high access children 
because survey data suggested that all children received 
the full course of SMC drugs. In those cases, children in 
the low access group had a coverage of 100%. The frac-
tion in the high access group ranged from a low of 24% 
in Sokoto to a maximum of 53% in Zamfara. The fraction 
in the low access group was computed by subtracting the 
fraction in the high access group from the overall frac-
tion of children (1 – fraction in high access group). LGA-
level SMC coverage in the low access group did not vary 
within states and ranged from 20% to a high of 100%. For 
LGAs without survey data from 2018 to 19, SMC cover-
age from 2013 to 17 was used.

The pharmacokinetic parameters for the SMC drugs—
sulfadoxine-pyrimethamine +  amodiaquine—were 
obtained from the research literature [65–67] while phar-
macodynamics properties were inferred through calibra-
tions of simulated trials to clinical trial data from Ghana 
[68] and Tanzania [69]. Effect size of SMC on clinical 

incidence was validated using SMC rollout data from 
Mali [70]. All children were assumed to fully adhere to 
the 3-day treatment course.

Parameterizing effect sizes for new interventions in future 
scenarios (2020–2030)
New net formulations
The NMEP considered pyrethroid piperonyl butoxide 
(PBO) and Interceptor® G2 (IG2, α-cypermethrin and 
chlorfenapyr) nets for future deployment. PBO effect 
sizes were assumed to increase with increasing suscepti-
bility to pyrethroids [57] and were LGA-specific, but IG2 
effect was modelled as uniformly high. See Supplement 
for details on parameterization of kill rates and blocking 
rates for new nets.

Intermittent preventive treatment in infants (IPTi)
IPTi (now known as PMC, perennial malaria chemopre-
vention), historically not implemented in Nigeria, was 
considered in 374 eligible LGAs as part of the national 
strategic planning exercise for 2021–2025. Eligibility was 
assessed by identifying LGAs not meeting WHO recom-
mendations for SMC and with PfPR > 10% in the absence 
of interventions [internal communication from WHO]. 
A modelled surface from MAP was used to assess PfPR 
eligibility. IPTi effects were applied to simulation outputs 
rather than incorporated dynamically. Protective efficacy 
parameters for IPTi were extracted from a recent system-
atic review [71] and multiplied by LGA-specific coverage 
in each scenario to generate IPTi effects on prevalence, 
uncomplicated cases, severe cases, and deaths. LGA-spe-
cific expected coverage for IPTi was computed by taking 
the mean coverage of the first, second and third doses 
of pentavalent diphtheria, tetanus and pertussis vaccine 
from the 2018 DHS survey, in anticipation of IPTi admin-
istration coupled to the expanded program on immuni-
zation for children. IPTi coverage was further increased 
above the expected coverage as appropriate for each 
intervention scenario. See Additional file 1 for additional 
details.

Model validation
After setting model seasonality with the archetype 
aggregate of confirmed cases from the 2014–2018 RIA, 
and recapturing baseline transmission intensity in the 
pre-2010 model with archetype-level U5 PfPR from the 
2010 DHS, simulations were run with historical inter-
ventions from the 2010–2018 period and the resulting 
U5 PfPR and all-age incidence outputs were validated by 
comparing with the DHS and health facility data at the 
state level. Model calibrations to capture transmission 
intensity were executed with only the 2010 DHS data to 
avoid confounding baseline transmission potential with 
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intervention effects, as by 2015 interventions had been 
scaled up in many parts of Nigeria.

To validate the model, simulated U5 PfPR was aggre-
gated to the state level and compared to state-level U5 
PfPR data from the 2010 (calibration data), 2015 and 
2018 DHS (out of sample data). The 2014–2018 RIA all-
age monthly routine confirmed cases were aggregated 
to the state level and compared to the simulated malaria 
cases for individual states. Prevalence comparisons were 
done at the state level because the DHS is powered to be 
representative at the state level.

Prevalence comparisons were made with the Pearson 
correlation coefficient. For incidence, state-level compar-
isons were made between treated uncomplicated cases, 
including treated cases of non-malarial fevers in the sim-
ulation, and RIA health facility data (confirmed and sus-
pected cases) using a cross-correlation function (CCF). 
The CCF at time lag zero is a measure of the contempora-
neous correlation or the linear relationship between the 
two timeseries. Since the RIA data was constructed from 
a subset of facilities of unknown catchment size, inci-
dence values were computed using the state population 
as denominator and rescaled to the simulation-observed 
range for visual comparison. Scale factors were com-
puted by dividing the estimated LGA monthly incidence 
in the simulation by the corresponding LGA incidence 
estimated from the simulation. The median scale factor 
by state and year was used to adjust monthly incidence 
data from the RIA. Confidence intervals were computed 
from a non-parametric bootstrap with 10,000 replicates 
using the BCa method [72, 73].

LGA intervention allocation scenarios (2020–2030)
Predictions of the impact of intervention mixes on 
malaria prevalence, incidence, and mortality, within 
each of 774 LGAs, were simulated for four scenarios 
(Table 1) and for 5 stochastic realizations per scenario. 
The NMEP directed the type, coverage, and timing of 

interventions to be simulated. All scenarios deployed 
CM, IPTp, and ITNs in every LGA, but the distribution 
of SMC, IPTi, and ITN type varied by scenario, as did 
the effective coverage of each intervention. ITN distri-
bution schedules were every three years from the last 
distribution year according to NMEP data. Here, “cov-
erage” for ITNs refers to simulated usage. See Avail-
ability of data and materials for link to web app with 
scenario maps by LGA, intervention, and year. The sce-
narios were:

	 i.	 Business-as-usual (BAU, Scenario 1). SMC dis-
tribution and coverage of all interventions (CM, 
standard ITNs, SMC and IPTp) remained in the 
same LGAs and at the same coverage levels as in 
2019. All LGAs received pyrethroid ITNs.

	 ii.	 National malaria strategic plan (NMSP) ramping 
up to 80% coverage (Scenario 2). PBO nets were 
distributed in all LGAs. All 404 LGAs that were 
eligible for SMC and 365 LGAs that were eligible 
for IPTi received SMC and IPTi, respectively. CM 
and IPTp were available in all LGAs. In Scenario 2, 
coverage of all interventions met or exceeded the 
program target of 80%. To simulate gradual inter-
vention coverage improvement, coverage levels of 
CM and IPTp that were below the target of 80% 
in 2019 were increased over time to hit 80%, after 
which they were kept constant. Parameters from a 
beta regression model, used to estimate the aver-
age increase in CM coverage by archetype between 
2013 and 2018, were scaled and added to the 
LGA-level 2019 coverage, until the 80% target was 
achieved. IPTp coverage increase was estimated 
with a linear regression model fitted to 2015–18 
coverage data, except in LGAs where IPTp cov-
erage had decreased in recent years, where IPTp 
coverage was held constant for 2018–30. Coverage 
of ITNs, SMC, and IPTi was set to 80% for LGAs 

Table 1  Intervention scenarios chosen by the NMEP for simulation modelling

Numbers indicate number of LGAs receiving the intervention

CM case management, Pyr ITN Standard insecticide-treated nets/pyrethroid-only nets, PBO Pyrethroid + piperonyl butoxide nets, IG2 (α-cypermethrin and 
chlorfenapyr) nets, IPTp intermittent treatment in pregnancy, SMC seasonal malaria chemotherapy, IPTi intermittent preventive treatment in infants, PAAR​ priority 
above allocation request

Scenario Number of LGAs targeted for each intervention

CM Pyr ITN PBO ITN IG2 ITN IPTp SMC IPTi

1: Business-as-usual (BAU) 774 774 774 80

2: NMSP ramping up to 80% coverage 774 774 774 404 365

3: Budget-prioritized plan with coverage increases at historical rate 774 136 605 33 774 235

4: Budget-prioritized plan with coverage increases at historical rate 
and expanded SMC in the PAAR​

774 136 605 33 774 310
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where baseline coverage (or expected coverage for 
IPTi) was under 80%.

	iii.	 Budget-prioritized plans submitted to the Global 
Fund (Scenarios 3, 4). Scenario 3 prioritized the 
implementation of SMC in 235 LGAs within the 
allocated budget, while scenario 4 included an 
additional 75 LGAs targeted for SMC in the prior-
ity above allocation request (PAAR) on top of the 
235 LGAs in scenario 3. Other than SMC, inter-
ventions were the same in scenarios 3 and 4. CM 
and IPTp coverages were assumed to increase at 
historical rates without exceeding 80%. Rates of 
increase were parameterized using the same beta 
regression model parameters referenced in #ii 
above.. SMC and ITN coverages were simulated at 
80%. Three net types were distributed in these sce-
narios: pyrethroid-only ITNs in 136 LGAs, PBO in 
605 LGAs, and IG2 in 33 LGAs.

For each scenario, average trends in prevalence by 
microscopy, clinical incidence of uncomplicated malaria 
including both treated and untreated cases, and malaria-
attributable mortality across all stochastic realizations 
were generated for U5 children and for all ages for years 
2020–30. Case fatality rates were based on a review of 
published studies [74–77] and account for mortality due 
to severe malaria, maternal mortality from severe anemia 
in pregnancy, and mortality from malaria-attributable 
low birth weight (see Additional file  1). The 2020–30 
projections for each scenario were compared against the 
simulated results for 2015 and against the 2020 BAU sce-
nario to report projected relative difference in prevalence, 
uncomplicated malaria incidence, and malaria mortality 
among all ages and U5s for years 2025 and 2030.

Results
To predict how each of the intervention scenarios would 
affect parasite prevalence, uncomplicated incidence, and 
malaria-attributable mortality between 2020 and 2030, 
a model was constructed for each LGA that captured 
observed seasonality and intensity of transmission, inter-
vention history, and vector susceptibility to vector con-
trol. State- and national-level predictions were produced 
by aggregating LGA results.

Model validation
Overall, the correlation between the observed and 
simulated prevalence and incidence data was weak. 
Although comparison of state-level U5 PfPR from the 
2010, 2015 and 2018 DHS to simulated measures from 
the same month and year of data collection indicated a 
strong positive correlation (R = 0.64, 95% CI, 0.51–0.74) 
(Fig.  6A), this was due to the 2010 data, which was 

used in fitting the simulated U5 PfPR at the archetype 
level, which is the grouping of LGAs by epidemiological 
similarity, hence the higher magnitude of the Pearson 
correlation coefficient between 2010 values (R = 0.76, 
95% CI, 0.58–0.87). The correlation between data and 
simulated values was substantially diminished in 2015 
(R = 0.49, 95% CI 0.20–0.70) and 2018 (R = 0.21, 95% CI 
− 0.13–0.50).

Seasonality trends (Fig. 6B) and cross-correlation func-
tions (Fig. 6C) of all-age monthly treated uncomplicated 
cases for Abia and Adamawa in 2018, states located in 
the South East and North East with differences in ecol-
ogy, health-seeking and health system infrastructure [4, 
78], showed a weak negative contemporaneous correla-
tion between point estimates of observed and simulated 
cases in Abia (CCF = − 0.02) and a weak positive corre-
lation in Adamawa (CCF = 0.06) at time lag zero. How-
ever, there was substantial uncertainty in the RIA data 
(Fig. 6B). Cross-correlations for all 37 states are shown in 
the Additional file 1.

National‑level predictions of scenario impact
The NMSP at high effective coverage (Scenario 2 in 
Table  1) resulted in the greatest reductions in parasite 
prevalence, malaria incidence and mortality by 2030 
(Fig.  7). Model predictions indicated that continued 
intervention deployment with a business-as-usual (BAU) 
strategy (Scenario 1) may lead to increases in all out-
comes by 2030. The budget-prioritized plans in Scenarios 
3 and 4 had an intermediate impact between Scenarios 
1 and 2. Interactive visualizations of national, state and 
LGA-level predictions of scenario impact can be viewed 
and downloaded via a web app (see Availability of data 
and materials).

Parasite prevalence
Overall, small yearly increases in all-age PfPR were 
observed in the BAU scenario (Scenario 1) after 2022 
(Fig.  7A). National-level annual average all-age parasite 
prevalence was estimated at 0.24 for 2019 and predicted 
to decline by a relative 3% in 2025 and 0.1% by 2030 in 
Scenario 1.

Comparing the projected 2020 prevalence estimates in 
Scenario 1 to estimates in the same scenario and other 
scenarios in 2025 and 2030 (GTS target years), parasite 
prevalence among all ages and in U5s was projected to 
decline the most if the NMSP were implemented at high 
effective coverage (Scenario 2). Among U5 children, mar-
ginally greater reductions in prevalence were observed 
in Scenario 4 compared to Scenario 3 at national level 
(Table 2).
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Uncomplicated malaria incidence
Total modelled uncomplicated malaria incidence was 
the sum of simulated treated and untreated uncompli-
cated cases. The GTS reduction targets for global malaria 
case incidence are a minimum of a 40%, 75% and 90% 
declines in 2020, 2025 and 2030 relative to a 2015 base-
line [2]. Overall, simulation results suggested that none of 
the scenarios were likely to meet these targets (Fig. 7B). 
Comparison of projected all-age incidence for the GTS 
target years with the estimated 2015 baseline of 1025 
cases per 1000 showed that the greatest reductions may 
occur in Scenario 2, where incidence decreased by 44% 
in 2030.

All-age incidence in Scenario 1 increased by 5% and 
9% in 2025 and 2030, respectively, relative to its 2020 
estimated value (Table  3). Relative to Scenario 1 in 

2020, Scenario 2 delivered the greatest reductions in 
all-age and U5 incidence in 2025 and 2030. Very small 
relative differences in incidence were observed between 
Scenario 3 and 4 among all ages and among U5 in 2025 
and 2030.

Malaria mortality
The GTS has reduction targets of a minimum of 40%, 
75% and 90% decline in mortality in 2020, 2025 and 
2030 relative to a 2015 baseline [2]. Scenario 2 was 
projected to deliver the greatest reductions in all-age 
mortality relative to the 2015 baseline and would likely 
meet the GTS 2025 targets, as mortality declines of 65% 
were predicted for that year. Projected all-age mortality 
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rates were highest in Scenario 1, where mortality rates 
increased by 15% in 2020, 13% in 2025, and 17% in 2030 
compared to 2015 (Fig. 7C).

Relative to the projected mortality rate in Scenario 1 in 
2020, mortality rates in 2025 and 2030 declined the most 
in Scenario 2 for all ages and U5 (Table 4). Mortality rates 
declined by a smaller but still substantial amount in Sce-
narios 3 and 4.

Highlights from the state‑level predictions
Scenario 2, which was projected to result in the great-
est reductions in malaria outcomes for all years at the 
national level, also performed best in 2025 for all indica-
tors in 36 of the 37 states. Anambra state in the South-
East of Nigeria was the only state where Scenario 3 or 
4 (equivalent scenarios in this state since SMC was not 
part of the intervention mix) performed best in 2025. 
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areas represent impact prediction ranges based on five stochastic realizations

Table 2  Percent change in PfPR in 2025 and 2030 relative to the BAU 2020 projected PfPR

Projected ranges based on five stochastic realizations

Scenario All age PfPR percent change in 
2025 relative to BAU 2020 (%)

U5 PfPR percent change in 
2025 relative to BAU 2020 (%)

All age PfPR percent change in 
2030 relative to BAU 2020 (%)

U5 PfPR percent change in 
2030 relative to BAU 2020 
(%)

1 2.8 (2.4, 3.1) 0.8 (0.2, 1.3) 5.8 (5.5, 6.2) 2.4 (2, 2.7)

2 − 57.4 (− 57, − 57.8) − 73.6 (− 73.4, − 73.8) − 72.1 (− 71.8, − 72.3) − 85.6 (− 85.4, − 85.9)

3 − 29.3 (− 28.8, − 29.8) − 40.8 (− 40.3, − 41.5) − 38.6 (− 38.1, − 38.9) − 54.9 (− 54.8, − 55.2)

4 − 30.0 (− 29.6, − 30.2) − 43.6 (− 43.2, − 44.2) − 39.1 (− 38.7, − 39.4) − 57.9 (− 57.7, − 58.1)
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Outcomes in 2030 were similar. Scenario 2 performed 
best for all indicators in 34 states. In Anambra and Kwara 
states, Scenario 3 and Scenario 2, respectively, was the 
best performing scenario for five of the six indicators 
whereas, Scenario 4 was the optimal scenario for four of 
the six indicators in Kebbi state.

Impact of SMC expansion in the budget‑prioritized 
scenarios
To highlight the impact of expansion in the budget-
prioritized scenarios, U5 incidence and mortality in the 
310 SMC-eligible LGAs in Scenario 3 (235/310 LGAs 
received SMC) and Scenario 4 (310/310 LGAs received 
SMC) were compared to Scenario 1 (80/310 LGAs 
received SMC).

Whereas both Scenarios 3 and 4 were projected to 
show greater improvements in U5 malaria burden than 
Scenario 1, Scenario 4 outperformed Scenario 3 in pro-
jected declines in indicators in 2025 and 2030 relative to 
2020 BAU (Table  5). Relative comparison of incidence 
and mortality outcomes in 2030 between Scenario 3 and 

4 suggested that Scenario 4 may result in an additional 
9% and 8% decline in U5 incidence and mortality in 
SMC-eligible areas, respectively.

Discussion
In partnership with WHO, Nigeria developed subna-
tionally-tailored intervention plans for their NMSP and 
Global Fund requests finalized in the fourth quarter of 
2020. A suite of 774 LGA-level models of malaria trans-
mission was developed to predict the impact of the 
NMSP and budget-prioritized intervention packages on 
malaria prevalence, incidence, and mortality. This is the 
first application of mathematical models to inform sub-
national strategy in Nigeria during NMSP development. 
With the support of Scenario 3 and 4 predictions, Nigeria 
obtained funds for the expansion of SMC from 80 to 310 
LGAs, covering over 36 million children in all four SMC 
rounds in 2021, and for the distribution of PBO nets to 
cover over 160 million people between 2021 and 2025 [1] 
(email communication from WHO).

Table 3  Percent change in incidence in 2025 and 2030 relative to the BAU 2020 projected incidence

Projected ranges based on five stochastic realizations

Scenario All age incidence percent 
change in 2025 relative to BAU 
2020 (%)

U5 incidence percent change 
in 2025 relative to BAU 2020 
(%)

All age incidence percent 
change in 2030 relative to BAU 
2020 (%)

U5 incidence percent change in 
2030 relative to BAU 2020 (%)

1 4.7 (3.8, 5.3) 0.9 (0.3, 1.5) 8.7 (8.4, 9.1) 3.0 (2.6, 3.3)

2 − 43.9 (− 43.3, − 44.3) − 56.6 (− 56.2, − 56.8) − 51.9 (− 51.4, − 52.4) − 69.3 (− 69, − 69.6)

3 − 21.1 (− 20.6, − 21.8) − 30 (− 29.4, − 30.5) − 21.8 (− 21.3, − 22.3) − 38.2 (− 38, − 38.4)

4 − 22.1 (− 21.6, − 22.6) − 33.1 (− 32.7, − 33.4) − 22.8 (− 22.2, − 23.5) − 42.2 (− 41.8, − 42.6)

Table 4  Percent change in mortality in 2025 and 2030 relative to the BAU 2020 projected incidence

Projected ranges based on five stochastic realizations

Scenario All age mortality percent 
change in 2025 relative to BAU 
2020 (%)

U5 mortality percent change 
in 2025 relative to BAU 2020 
(%)

All age mortality percent 
change in 2030 relative to BAU 
2020 (%)

U5 mortality percent change in 
2030 relative to BAU 2020 (%)

1 − 2.2 (0.5, − 5.9) − 3.8 (0.3, − 9.1) 1.2 (4.1, − 4.6) − 1.7 (2.4, − 9.5)

2 − 69.6 (− 68.8, − 70.3) − 79.0 (− 78.2, − 79.9) − 75.6 (− 74.1, − 76.6) − 86.1 (− 84.6, − 87.5)

3 − 43.4 (− 40.6, − 45.7) − 51.4 (− 50.3, − 54.2) − 53.8 (− 52.6, − 54.3) − 63.4 (− 61.1, − 65)

4 − 45.1 (− 41.9, − 46.0) − 53.8 (− 51.9, − 55.1) − 56.1 (− 54.1, − 57) − 67.2 (− 65.3, − 68.9)

Table 5  Percent change in indicators in 2025 and 2030 relative to the BAU 2020 scenario in 310 SMC-eligible areas

Scenario U5 incidence percent change 
in 2025 relative to BAU 2020 
(%)

U5 mortality percent change 
in 2025 relative to BAU 2020 
(%)

U5 incidence percent change in 
2030 relative to BAU in 2020 (%)

U5 mortality percent change 
in 2030 relative to BAU 2020 
(%)

1 − 4.4 (− 3.8, − 5.3) − 12.7 (− 7.1, − 18.5) 0.5 (1.1, − 0.2) − 6.5 (1.9, − 12.7)

3 − 35.7 (− 34.8, − 36.3) − 54.3 (− 51.7, − 57.7) − 34.7 (− 34.1, − 35.5) − 61.2 (− 58.3, − 63.4)

4 − 42.4 (− 42.2, − 42.7) − 59 (− 55.6, − 63.2) − 43.4 (− 42.9, − 43.7) − 68.9 (− 67.1, − 70.8)
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Scenario 2 was projected to likely meet the 2025 GTS 
mortality target, but Scenarios 3 and 4 were not pro-
jected to meet any of the GTS 2025 and 2030 targets. 
The modelled ITNs had only limited impact due to insec-
ticide resistance, outdoor biting, imperfect individual 
usage, and short retention time. There is considerable 
uncertainty regarding each of these quantities, and the 
actual impact of ITN distribution could well be greater 
than model predictions. Additional strategies, such as 
community engagement to increase intervention accept-
ability and adherence, improved access to drug-based 
prevention and treatment, or different approaches to vec-
tor control are needed in areas with high vectorial capac-
ity or substantial biting when people are unprotected by 
ITNs. The current mix and coverage of programmatic 
interventions in malaria-endemic countries may not 
interrupt P. falciparum transmission, necessitating new 
strategies [13, 79].

Major limitations to this project fall in a few broad cat-
egories: model structure, uncertain intervention effect 
sizes, insufficient LGA-level data, and the absence of 
meaningful uncertainty metrics. The impact of these lim-
itations is evident in the poor fit between model predic-
tions and DHS data of U5 PfPR after 2010, as well as the 
discrepancy between the malaria seasonality from rou-
tine data and predicted seasonality at the state level. Sev-
eral simplifying assumptions were made to increase the 
tractability of model development. Modeled agents were 
assumed to mix within the LGAs, but not between LGAs, 
and a uniform importation rate was assumed for all LGAs 
and all years of simulation. These assumptions may hold 
for higher-transmission LGAs but likely do not for lower-
transmission LGAs [80]. The model did not account for 
long-term trends in economic development, urbaniza-
tion, housing improvements, or environmental man-
agement, which may well reduce malaria risk for many 
Nigerians over the next decade. The modeling framework 
did not include effects of climate change, year-to-year 
variation in climate, intervention-delivery dynamics, or 
service disruption due to COVID-19 or insecurity. With 
regards to children under the age of five, the timing and 
duration of infection was assumed to vary minimally, 
which affects the predicted effects of SMC for this group. 
Model predictions of malaria deaths depend on the treat-
ment rate of severe malaria and mortality rates of treated 
and untreated severe cases, all of which were based on 
very limited or scattered data [74, 81–83]. Finally, emerg-
ing data on the infectivity of chronic asymptomatic infec-
tions suggests that the model’s case management effect 
size may be too large [84].

Estimates of the efficacy of SMC and ITNs were based 
on data from clinical trial sites rather than field data from 
Nigeria. Pyrethroid and PBO ITN effect sizes depended 

on pyrethroid mortality rates from a geospatial model 
rather than from local field data, and experimental hut 
data underlying the relationship between mortality rate 
and ITN effect size was extremely noisy. Model param-
eters were also limited by insufficient literature on vec-
tor bionomics, spatial variation in species composition, 
and the seasonality of individual species in Nigeria and 
across the region. These key entomological parameters 
also influence ITN effect size.

The estimates of effective CM coverage from the DHS/
MIS may not adequately reflect ground truth. The cross-
sectional nature of the survey only captures ACT use 
among those with fever within the 2-week period that the 
survey is conducted. Survey reports of fevers may include 
non-malarial fevers for which ACT use is not relevant. 
State-level estimates from the 2018 DHS, Nigeria’s most 
recent survey at the time of this study, suggest very low 
CM rates, in contrast with the view of the NMEP after 
consultation, and with 2015 ACTwatch data showing 
good availability of ACT [85, 86]. Very low effective CM 
coverage in the model will skew prevalence and mortality 
levels higher and increase the potential impact of raising 
CM coverage to target levels.

The lack of LGA-level prevalence measurements, reli-
able incidence data, and intervention coverage data lim-
ited this study’s ability to develop accurate LGA-level 
models and validate them. Because it was impossible to 
estimate baseline transmission intensity at the LGA level, 
geospatial model estimates were used to group LGAs into 
epidemiological archetypes. The use of routine incidence 
data to depict seasonality patterns at the LGA and arche-
type level was challenged by data quality and represent-
ability, likely affected by data entry and reporting errors, 
preferential care-seeking in the private sector, or facility 
accessibility issues [87]. The probability sampling meth-
ods used by the DHS makes it an improved data source 
for estimating transmission intensity over routine data 
but since it is insufficiently representative at the LGA-
level [86], archetype-level estimates was a reasonable 
alternative. However, archetype-level calibrations would 
not fully capture between-LGA variations in transmission 
indicators. The lack of reliable LGA-level data on effec-
tive CM coverage, ITN usage, and SMC coverage meant 
that heterogeneous coverage within states or archetypes 
often could not be captured, or coverage may have been 
mischaracterized by using an LGA-level estimate from 
DHS when DHS is not powered at the LGA level.

Due to the need to develop the technical frame-
work from scratch and meet the NMEP’s deadlines, it 
was not feasible to quantify the impact of uncertainty 
in model parameters or model structure on scenario 
outcomes. Predicted estimates have high uncertainty 
and should not be taken as exact future prediction. 
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Relative estimates are more robust and appropriate 
to consider for decision-making. Future iterations of 
NMSP modelling will build on the work presented here 
and incorporate uncertainty propagation and sensitiv-
ity analyses. Irrespective of data limitations, national 
malaria programs need to make intervention alloca-
tion decisions. These models combine the best available 
information into a testable framework where assump-
tions could be examined and corrected. Despite its 
limitations, this model was able to quantitatively assess 
the impact of proposed plans relative to GTS targets, 
allow relative comparison of candidate plans, provide 
evidence to advocate for additional resources, and set 
feasible expectations of outcomes. Overall, the model 
predicts that improving coverage of existing interven-
tions would have considerable impact on malaria mor-
bidity and mortality. The readily available calibrated 
model can be used to test new scenarios and extended 
to answer additional questions to inform resource real-
location decisions during annual progress reviews 
and national strategic planning cycles. The modelling 
framework has been adapted for use in other malaria-
endemic countries.

By being transparent about the model’s shortcomings, 
this project highlights the need for increased invest-
ments in the collection of subnational surveillance data 
and in research to enhance understanding of spatial vari-
ance in malaria transmission, intervention coverages and 
effects, and entomology. High-quality data is required 
for evidence-driven and appropriately targeted national 
plans, and modelling cannot compensate for insufficient 
data. Subnational monitoring and evaluation of burden 
and intervention impact are in process for additional 
countries in the next cycles of planning, and data gath-
ered during these processes will also be crucial for vali-
dating and improving models. High-quality models could 
be used to attribute intervention impact during progress 
reviews, quantify the effectiveness of new interventions, 
and potentially contribute to program evaluation. Qual-
ity standards, rigorous model validation, and stakeholder 
buy-in are necessary before models should be applied 
for evaluation. Even if data limitations are overcome, the 
utility of fine-scale malaria transmission models in pro-
grammatic decision-making will not be fully realized if 
there is no consensus on requirements for a high-qual-
ity and appropriate model, or if models are too rigid to 
adapt for new questions. Multiple models generating 
qualitatively different predictions for the same question 
will diminish the credibility of modelers and program-
matic trust in model outputs. Sustaining and expanding 
the use of models to inform decision-making in malaria 
programmes will require flexible and user-friendly mod-
els capable of answering a broad range of questions and 

building the capacity of local staff and researchers to 
develop models for their specific questions.

Conclusions
Mathematical modelling provides a framework for quan-
titative assessment of the impact of future intervention 
scenarios. As part of the HBHI response implemented 
in Nigeria, LGA-specific malaria transmission models 
were developed and used by the Nigeria NMEP to inform 
decisions on the optimal and financially feasible interven-
tion mix from four alternatives. Investment into subna-
tional data on malaria burden and intervention effects is 
urgently needed to allow data-driven impact modelling 
at a finer scale and improve decision-making on optimal 
malaria intervention mixes at the subnational level.
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The red dot is maximum likelihood estimate of LHM. The right plot is the 
simulated U5 PfPR within each archetype compared with monthly U5 PfPR 
from the 2010 MIS. The thick red line indicates the best match while thin 
red lines show PfPR under other larval habitat scale factors. Each line is the 
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here, remainder are shown in Fig S3b. Figure S4. ITN coverage among 
pregnant women attending ANC in 2018. Figure S5. Estimated ITN kill 
rate for a 12% reduction in annual malaria incidence among children 
under the age of five years. Figure S6. The relationship between perme-
thrin bioassay mortality and ITN killing rate in the Churcher et al. model 
and EMOD. Scale factors was calculated by dividing the EMOD kill rateby 
the kill rate from the Churcher et al. model. Figure S7. Fitted splines 
showing estimated IPTp coverage through time for a random subset of 
LGAs. Points show DHS/MIS data and lines show the fitted splines, with 
each color indicating a different LGA. Figure S8. Fraction of IPTp-receiving 
individuals who reported receiving one, two, or three or more doses in 
each DHSor MIS. Figure S9. LGAs designated as eligible to receive IPTi. 
Figure S10. Mean DTP1-3 vaccine coverage per LGA in the 2018 DHS sur-
vey. Figure S11. Archetype level scatterplot highlighting beta-regression 
model equations used to compute predicted average yearly change CM 
coverages per archetype. Annual case management is the proportion of 
children with fever in the 2 weeks period prior to the survey that received 
an ACT. Figure S12. Malaria seasonality in routine health facility data and 
simulation for 37 Nigerian states in 2014. Incidence values in the health 
facility data were scaled by the median relative difference between the 
simulation and RIA data by state. Vertical purple horizontal lines are 95% 
confidence intervals for the RIA data. Vertical blue lines are the ranges of 
the simulations from 5 seed runs. Figure S13. Comparison of DHIS2 and 
simulation seasonality trends in 2014 with a cross-correlation function. 
CCF at the time lag zero is a measure of the contemporaneous correlation 
or the linear relationship between the two time series. Figure S14. Malaria 
seasonality in routine health facility data and simulation for 37 Nigerian 
states in 2015. Incidence values in the health facility data were scaled 
by the median relative difference between the simulation and RIA data 
by state. Vertical purple horizontal lines are 95% confidence intervals for 
the RIA data. Vertical blue lines are the ranges of the simulations from 5 
seed runs. Figure S15. Comparison of DHIS2 and simulation seasonality 
trends in 2015 with a cross-correlation function. CCF at the time lag zero 
is a measure of the contemporaneous correlation or the linear relation-
ship between the two time series. Figure S16. Malaria seasonality in 
routine health facility data and simulation for 37 Nigerian states in 2016. 
Incidence values in the health facility data were scaled by the median 
relative difference between the simulation and RIA data by state. Vertical 
purple horizontal lines are 95% confidence intervals for the RIA data. Verti-
cal blue lines are the ranges of the simulations from 5 seed runs. Figure 
S17. Comparison of DHIS2 and simulation seasonality trends in 2016 
with a cross-correlation function. CCF at the time lag zero is a measure of 
the contemporaneous correlation or the linear relationship between the 
two time series. Figure S18. Malaria seasonality in routine health facility 
data and simulation for 37 Nigerian states in 2017. Incidence values in the 
health facility data were scaled by the median relative difference between 
the simulation and RIA data by state. Vertical purple horizontal lines 
are 95% confidence intervals for the RIA data. Vertical blue lines are the 
ranges of the simulations from 5 seed runs. Figure S19. Comparison of 
DHIS2 and simulation seasonality trends in 2017 with a cross-correlation 
function. CCF at the time lag zero is a measure of the contemporaneous 
correlation or the linear relationship between the two time series. Figure 
S20. Malaria seasonality in routine health facility data and simulation for 
37 Nigerian states in 2018. Incidence values in the health facility data were 
scaled by the median relative difference between the simulation and RIA 
data by state. Vertical purple horizontal lines are 95% confidence intervals 
for the RIA data. Vertical blue lines are the ranges of the simulations from 
5 seed runs. Figure S21. Comparison of DHIS2 and simulation seasonality 
trends in 2018 with a cross-correlation function. CCF at the time lag zero is 
a measure of the contemporaneous correlation or the linear relationship 
between the two time series.
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