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Abstract 

Background Millions of dollars have been spent in fighting malaria in Namibia. However, malaria remains a major 
public health concern in Namibia, mostly in Kavango West and East, Ohangwena and Zambezi region. The primary 
goal of this study was to fit a spatio-temporal model that profiles spatial variation in malaria risk areas and investigate 
possible associations between disease risk and environmental factors at the constituency level in highly risk northern 
regions of Namibia.

Methods Malaria data, climatic data, and population data were merged and Global spatial autocorrelation statistics 
(Moran’s I) was used to detect the spatial autocorrelation of malaria cases while malaria occurrence clusters were iden-
tified using local Moran statistics. A hierarchical Bayesian CAR model (Besag, York and Mollie’s model “BYM”) known 
to be the best model for modelling the spatial and temporal effects was then fitted to examine climatic factors that 
might explain spatial/temporal variation of malaria infection in Namibia.

Results Average rainfall received on an annual basis and maximum temperature were found to have a significant 
spatial and temporal variation on malaria infection. Every mm increase in annual rainfall in a specific constituency in 
each year increases annual mean malaria cases by 0.6%, same to average maximum temperature. The posterior means 
of the time main effect (year t) showed a visible slightly increase in global trend from 2018 to 2020.

Conclusion The study discovered that the spatial temporal model with both random and fixed effects best fit the 
model, which demonstrated a strong spatial and temporal heterogeneity distribution of malaria cases (spatial pattern) 
with high risk in most of the Kavango West and East outskirt constituencies, posterior relative risk (RR: 1.57 to 1.78).

Keywords Spatiotemporal, Heterogeneity, Hierarchical Bayesian CAR model, Posterior mean, Malaria incidence

Background
Malaria transmission remains unstable in most of the 
high and moderate endemic malaria nations where cli-
matic factors are known to be mostly associated with 
malaria incidence from temporal and spatial perceptive 
[1]. This disease kills over 750,000 people each year in 

African and Asian countries, mostly children and preg-
nant women, with 435,000 deaths among children under 
the age of five, particularly in most of the African coun-
tries including Namibia [2–5]. Namibia is one of the 
countries aiming to meet the third Sustainable Devel-
opment Goal (SDG 3), which calls for the end/elimina-
tion of the malaria epidemic by 2030 [6–9]. The Namibia 
Malaria Indicator Survey (MIS) along with a similar 
funded study were carried out in 2009. National malaria 
strategy was also implemented from 2010 to 2016 with 
the goal of reducing malaria cases from 13 to less than 
1 cases per 1000 population by 2016 and be malaria free 
by 2020 [10–12], all these costed millions of dollars. 
Despite this, in 2017 the country needed N$ 1.2 billion 
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to eliminate malaria to zero cases and the government 
was able to commit 65% of the funding [13]. However, the 
country could not reach those targets. Malaria remains 
a major public health challenge in Namibia mostly in 
Kavango West and East, Ohangwena and Zambezi region 
(Fig.  7), despite the fact that it is avoidable and treat-
able. The four regions in Namibia collectively accounted 
96% of the 68 110 and 38 205 malaria cases that were 
recorded by positive Rapid Diagnosis Tests (RDT) in 
2017 and 2018, respectively, were Kavango was topping 
with 81% followed by Zambezi with 10% then Ohang-
wena with 5% [14]. Similarly, the same regions reported 
the greatest number of total reported cases in 2019, and 
2020. We are living in the world of pandemics, and more 
pandemics are still to come. Hence, fighting other dis-
eases it does not mean we have to neglect the fight of 
malaria. The malaria confirmed cases by RDT datasets 
from some years back to date are documented but, to the 
best of our knowledge, no in-depth studies on spatial and 
temporal modelling of malaria incidence have been done 
using 2014 malaria confirmed cases and climatic merged 
dataset after the 2009 research done by [11]. For exam-
ple, considering a bigger sample of population at risk 
of malaria at constituency level in Namibia by looking 
into results and gaps from the previous researches [11, 
15–17].

Disease mapping research has become a common 
application method used to understand the geographi-
cal distribution of a disease, which is typically analysed in 
the formulation of a Bayesian hierarchical models. Some 
researchers, [18–22] have employed different approaches 
and tools such as global and local Moran I statistics, Point 
pattern analysis, SaTScan Techique, Getis Ordi (Gi*) spa-
tial statistics, and Bayesian hierarchical approach using 
the Markov Chain Monte Carlo (MCMC) method when 
they conducted similar studies in other countries and 
most of these researches found climatic variables to be 
mostly associated with malaria from spatial and temporal 
perspectives in their study area.

There were limited number of studies conducted on 
malaria in Namibia [11, 15–17]. However, none of these 
studies have considered data of more than 2 years or 
a larger sample size of the population at risk, and there 
are no current in depths studies on spatial-temporal 
using some the latest malaria data since 2016. Therefore, 
this paper intended fitting a spatial-temporal regression 
model to profile spatial variation in malaria risk, and 
investigate possible associations between disease risk and 
environmental factors at the constituencies level. The 
2018–2020 malaria data of all confirmed malaria cases 
of the current highly malaria known northern regions 
of Namibia incorporating climatic variables thought to 
influence malaria distribution from previous studies as 

well as structured and unstructured random effects was 
then considered for this study.

Methods
The analysis in this study was done using the routine sur-
veillance malaria case detection secondary data of people 
living in high malaria risk Northern regions (Kavango E 
and W, Zambezi and Ohangwena region) who have vis-
ited any of the health facility from 2018 to 2020 report-
ing fever/suspected to have malaria and tested for malaria 
using RDT. All recorded malaria positive cases in the 3  
years: 34 952 for 2018, 2 990 for 2019, and 10 678 for 2020 
from these four regions was then considered.

In this study, several datasets were combined and 
merged. This includes 2018–2020 malaria weekly surveil-
lance recorded cases (aggregated) dataset obtained from 
the Ministry of Health and Social Services (MoHSS), 
2018–2020 climatic dataset obtained from Southern 
African Science Service Centre for Climate Change and 
Adaptive Land Management (SASSCAL), and popula-
tion dataset for 2018–2020 projected using population 
estimates of Namibia shape files obtained from Namibia 
Statistics Agency (NSA).

Malaria is recognized to show regional as well as tem-
poral variation in its distribution, and the target toward 
eliminating malaria in Namibia can only be easily 
achieved through conducting in depth researches (spa-
tio-temporal) frequently and the inclusion of environ-
mental covariates improves the model estimates [11, 15, 
23]. The function of local factors impacting malaria vari-
ability in space and time is better understood in the con-
text of native meteorological conditions [24]. Previously, 
the Bayesian Conditional Autoregressive (CAR) model 
was employed to represent geographic heterogeneity in 
the separate research areas in terms of illness risk. The 
Bayesian approach provides samples of the entire pos-
terior distribution of incidence rates or relative rates 
for each area by providing more information than a sin-
gle point estimate where all parameters are allocated to 
cope with their likely volatility prior to distribution and 
this can be achieved through Markov Chain Monte Carlo 
(MCMC) or Integrated Nested Laplace approximation 
(INLA). Thus, we fitted a common hierarchical Bayes-
ian CAR model (Besag, York and Mollie’s model) the best 
model to model the spatio-temporal effect when working 
with area/lattice data on the 3 years’ combined annual 
mean (aggregated) data. These data assume different spa-
tial structures to estimate spatial variation in malaria risk 
and investigate possible associations between disease risk 
as well as environmental factors at the constituency level, 
second level administrative unit (see Fig. 8), in Namibia’s 
highly malaria-infected northern regions, by including 
fixed effects along with their random effects.
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After data cleaning, a neighbourhood structure at the 
constituency level was created in R software, along with 
an adjacency matrix and a weight matrix through queens 
contiguity, but one could also consider comparing differ-
ent neighbourhood matrix structure e.g., a queen with 
rook neighbourhood structure. Several measures of spa-
tial correlation were performed, this includes global and 
local measures of spatial autocorrelation to detect global 
spatial autocorrelation as well identify constituencies that 
are spatial clustering. Moran’s I statistics is defined as:

where S0 is the sum of the elements of the weight matrix: 
S0 =

∑

i

∑

j wij ,wij are the weight matrix entries, and X̄ 
is the mean of the x variable. Positive spatial autocorre-
lation is indicated by Moran’s I coefficient greater than 
−1/(n− 1), whereas negative spatial autocorrelation is 
indicated by Moran’s I coefficient less than −1/(n− 1) . 
This means that Moran’s I = 1 value close to 0 indicates 
perfect positive spatial autocorrelation, whereas Moran’s 
I value close to 0 indicates no spatial autocorrelation. 
Local Moran’s I statistics is defined as:

where xi and xj denote the number of count cases at con-
stituency i and j, respectively, and wij denotes the spatial 
weight matrix based on the defined distance lags between 
constituency i and j (most of the time lags are in kilome-
tres). If the distance between constituency i and constitu-
ency j is less than d, wij(d) = 1 ; otherwise, wij(d) = 0.

Malaria incidence rate per 1000 population ( (IRit) = 
[number of cases (yit) / population at risk (Pit) ] × 1000), 
relative risk (RR), and expected cases (Eit) of each constit-
uency were computed. Let yit be the count of observed 
malaria case in each constituency i(i = 1, 2, 3, ..., 34) and 
year t(t = 1, 2, and 3), the expected cases of malaria (Eit) 
can be estimated as the provincial overall mean rate 
(meanratet) × constituency population (popit) and RR 
(θit) can be computed as yitEit

 . Then, yit could be treated as 
one realization of poison random variables with means 
µit , i.e., yit |Eit , θ it ∼ Poisson(Eitθit) , where µit = Eit×θ it 
is a function of the effects of k covariates (xkit) as well as 
spatial and temporal random effects. Then we contracted 
four Bayesian models using climatic variables.

The data failed the premise of equidispersion assumption, 
as a result, Negative binomial regression a variant of Pois-
son regression that lowers the Poisson model’s restrictive 

I =
n

S0

∑

i

∑

j wij

(

xi − X̄
)(

xj − X̄
)

∑

i

(

xi − X̄
)2

,

Ii(d) = (xi − x̄)

n
∑

j=1

wij(d)
(

xj − x̄
)

, j �= i,

constraint that variance equals mean was utilised [25–27]. 
Negative Binomial regression, a special case of Poisson-
gamma mixture, assesses the significance of variability in 
the incidence ratio by modeling Poisson heterogeneity with 
a gamma distribution and log link function. In this study, 
the number of observations (yit) was assumed to follow a 
Poisson distribution in the negative binomial model, while 
the mean (µit) follows a Gamma distribution [28–31].

The negative binomial distribution is denoted as follows:

where µ > 0 is the mean incidence rate of Y per unit of 
exposure (e.g., population size area, distance, or time) 
and α > 0 is the heterogeneity parameter.

 

I Spatial model

To provide more information on spatial effects on the data, 
it is preferable to estimate disease risk by using models that 
enable to borrow information from neighbouring areas, 
and incorporate covariates information resulting in the 
smoothing or shrinking of extreme values based on small 
sample sizes [32]. The negative binomial model is then 
expanded to negative binomial Besag-York-Mollie (BYM) 
spatial model:

where µi is the expected annual malaria mean rate, β0 is 
an intercept that explain overall malaria mean rate, β1,β2, 
...,βk are estimated parameters (regression coefficients) 
and xi1, xi2, xi3 . . . xik are the explanatory/independent 
climatic variables with corresponding estimated param-
eters βk , Eit is the added offset, and σǫit is the disturbance 
model error that is independent of all covariates, where 
exp(ǫit) is assumed to have a gamma distribution with a 
mean equal to 1 and a smaller variance. The added ui is 
the spatial structured random effects while vi is the spa-
tially unstructured random effects that account for spa-
tial dependence.

Model parameters α and β were estimated using maxi-
mum likelihood. Let yi , i = 1, 2, 3, ..., n be a random vari-
able with probability density function f (yi|θ) , where 

(1)

p
(

y
)

= p
(

Y = y
)

=
Ŵ
(

y+ α−1
)

Ŵ
(

y+ 1
)

Ŵ
(

α−1
)

(

1

1+ αµ

)α−1(

αµ

1+ αµ

)y

,

(2)

ln(E(yit |Eit , θit)) = ln(µi)

= β0 + β1xit1 + β2xit2 + β3xit3 + · · ·

+ βkxitk + σǫit + off set(Eit)+ ui + vi,
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θ = (θ1, θ2, ..., θp ) is a p is a vector of p parameters, then the 
likelihood function is denoted as follows:

The value of α and β that maximize lnL(α,β) is the maxi-
mum likelihood estimate.

The expectation is E(yi) = µi = Eiθi , where Ei is the 
expected rate for the i area and θi is the relative risk for 
the ith area.

In (Eq.  2), ui is assigned a CAR distribution which 
smoothes the data according to a certain neighbourhood 
structure that specifies that the two areas are neighbours 
if they share common boundary: ui|u−i ∼ N

(

µ̄δi,
σu

2

nδi

)

 , 
where µ̄δi = nδi

−1
∑

j∈δi
µj , δi and nδi represent, respec-

tively, the set of neighbours and the number of neigh-
bours for a specific constituency i, while vi is modelled 
through a Gaussian process as independent and identi-
cally distributed normal variables: vi ∼ N

(

0, σu
2
)

 to 
accommodate extra heterogeneity in the counts due to 
unobserved risk factors. Priors for the spatial random 
effects were set to follow log gamma distribution with 
mean = 0, precision = 0.001 (since it’s a Negative Bino-
mial model), while the default prior assigned to the asso-
ciated coefficients (and the intercept) was a Gaussian 
distribution.

 

II   Spatio-temporal model

The Negative Binomial Besag-York-Mollie (BYM) spa-
tial model (Eq.  2) was extended to allow for a temporal 
component:

where (β + δi)× t is the added main linear trend. In this 
equation, β represent the global time effect and δi is the 
differential trend that identifies the interaction between 
time and space.

 

III Full Spatio-temporal model (linear predictor of non-
parametric trend: model with interaction)

This is the model with interactions, for example, nonspa-
tially or temporally structured interaction and temporally 
structured interaction. The nonspatially or temporally 

L(α,β) =

n
∏

i=1

p
(

yi
)

=

n
∏

i=1

Ŵ
(

yi + α−1
)

Ŵ
(

y+ 1
)

Ŵ
(

α−1
)

(

1

1+ αexiβ

)α−1(

αexiβ

1+ αexiβ

)yi

,

(3)

ln(E(yit |Eit , θit)) = ln(µit) = β0 + β1xit1 + β2xit2 + β3xit3 + . . .+ βkxitk + σ ∈it

+ offset(Eit)+ ui + vi + (β + δi)× t,

structured interaction assumes that the unstructured 
spatial effects (vi) is interacting with the unstructured 
temporal effect (φt) and the structure matrix is denoted 
as follows:

Since we assumed not spatial neither temporal structure 
on this interaction, then:

This means that the unstructured interaction can be 
viewed as unobserved independent factors for each con-
stituency and year combination, resulting in no structure 
[33]. However, if the model includes spatial and temporal 
main effects, this interaction effect simply suggests inde-
pendence in deviations from them [33]. Due to the main 
effects, contributions to malaria risk in neighbouring 
constituencies or in subsequent years (e.g., 2018, 2019, 
and 2020) can still be highly connected. As a result, this 
is a global space-time heterogeneity effect that is typically 
modelled as white noise.

The temporally structured interaction assumes that 
the unstructured spatial effect (vi) is interacting with the 
structured temporal effect (γt) and the structure matrix is 
denoted as follows:

where Rv = I and Rγ is the neighbouring structure 
defined through random walk of order two (RW2). This 
results in the assumption that for the ith constituency, 
the parameter vector {δ1i, . . . , δni} has a time-dependent 
autoregressive structure component which does not 
depend from the ones of the other constituencies [34].

In this interaction, each zone (constituency) has its 
own structure that is distinct/independent from nearby 
constituencies, and the evolution structure for each 
constituency can take on as many forms as the tempo-
ral main impact itself. However, this does not imply that 
each constituency evolves independently of the others, as 
they may have a similar temporal main effect. Independ-
ence has little effect on deviations from the global trend 
[33].

Full spatio-temporal model (model with interaction) is 
then denoted as follows:

Rδ = Ru

⊗

Rφ = I
⊗

I = I .

δit ∼ N

(

0,
1

τδ

)

.

Rδ = Rv

⊗

Rγ
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where γt represent the structured temporal effect mod-
elled dynamically using RW of order 2 to allow for extra 
heterogeneity in the counts due to unobserved (and spa-
tially unstructured) defined as: γt |γt−1, γt−2 ∼ N

(2γt−1 + γt−2, σ
2) , and was assumed to be an autoregres-

sive process while φt represent the unstructured tempo-
ral effect and was specified by means of Gaussian 
exchangeable prior, defined as: φt ∼ N

(

0,
1
τφt

)

 . To allow 
for interaction between space and time, which explain 
differences in the time trend of malaria risk for different 
constituencies. The parameter δit follow a Gaussian dis-
tribution with a precision matrix given by τδRδ where τδ is 
unknown scalar, while Rδ is the structure matrix, identi-
fying the type of temporal and/or spatial dependence 
between the elements of τδRδ can be factorized as the 
Kronecker product of the structure matrix of corre-
sponding main effects which interact.

Results
Descriptive analysis were performed and model param-
eters were estimated using Integrated Nested Laplace 
approximation (INLA) in R software since Bayesian 
estimation using INLA takes less time as compared to 
Markov Chain Monte Carlo Methods (MCMC). The best 
model was selected using the deviance information crite-
rion (DIC) given by: DIC = D + 2p , where D is the devi-
ance that is evaluated at the posterior mean and p is the 
effective number of parameters where model with small-
est DIC value was considered as the best model that fit 
the data.

Descriptive statistics
It is highly known that there is correlation between 
malaria and rainfall in most countries.  The observed 
number of malaria from 2018–2020 in Namibia was 
also found to be directly proportional to the amount of 
rainfall received, the high the rainfall the more cases of 
malaria were observed (see Fig. 1).

Results presented in Table  1 show that the three-year 
average incidence rate (2018–2020) was found to be 6 
cases per 1000 population, with the incidence rate being 
very high in 2018, 12 cases per 1000 population, and 
decreasing to 1 case in 2019, but unfortunately increasing 
again in 2020 from 1 case to 4 cases per 1000 population. 
Mpungu constituency had the highest annual average 
malaria incidence, 137 cases per 1000 people, for a 3 year 
period (2018–2020), followed by Tondoro, Rundu urban, 

(4)

ln(E(yit |θit)) = ln(µit)

= β0 + β1x1it + β2x2it + β3x3it

+ . . .+ βkxkit + σǫit

+ ui + vi + γt + φt + δit ,

and Rundu rural, with 79 and 78 cases per 1000 popula-
tion, respectively, highlighted in dark red and red (Fig. 2).

Using the spatial approach, several measures of spatial 
correlation were performed. The Global Moran’s I sta-
tistics value was found to be positive: 0.1863 (p - value 
= 0.0429) with a variance of 0.0159. This indicates that 
there was spatial autocorrelation in the data at the con-
stituency level, indicating that malaria was clustered in 
these 3 Northern regions of Namibia. Comparing these 
results to previous similar studies conducted in Namibia, 
the clustering area were now quite very small in some 
Northern parts compared to result found by [11, 17] and 
this can help the MoHSS and NVDCP team to effort-
lessly convey out intervention using the available partial 
resources in these small areas.

Model results
After fitting different models, for both analysis (spatial 
and spatial- temporal), the models with added climatic 
factors revealed the smallest DIC values. The results of 
the best spatial and temporal model (models with small-
est DIC values for both analysis) using malaria aggre-
gated data (2018–2020) are presented in Tables 1 and 2.

From the spatial Negative Binomial BYM model resuts, 
annual monthly average temperature (mean), annual 
monthly maximum temperature (mean), annual monthly 
total rainfall (mean), and annual monthly average wind 
speed (mean) all had a significant positive effect on 

Fig. 1 Trend analysis of malaria (2018–2020)
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annual mean malaria incidence, whereas annual monthly 
average humidity (mean) and annual average leaf wetness 
(mean) had a significant negative effect (Table 2). How-
ever, annual monthly soil temperature (mean) and annual 
monthly minimum temperature (mean) were both found 
to be positively related to malaria annual mean incidence 
rate, but this was not significant, and human population 
density was found to have no effect on malaria incidence 
rate in North Namibia (Table 2).

From Table  3, only total rainfall and maximum tem-
perature were found to have a significant effect on malaria 
through space and time. For every one ◦C and mm 
increase in annual temperature as well as rainfall in a cer-
tain constituency, it will increase the annual mean cases 
of malaria by 0.6%. The remaining variables did not show 
a significant relationship with malaria cases from spatial 
and temporal perspectives at 95% confidence intervals.

The plot of the posterior mean of the main time effect 
in years (Fig.  3) clearly indicates a slight increase in 
global trend as time passes, for example, a high estimate 
of malaria was observed from 2018 to 2020. However, 
ξ = ui + vi , the posterior mean of the spatial (structured 

and unstructured) obtained using a random walk of order 
2 effects revealed a greater spatial effect in constituencies 
located on the outskirts of Kavango East and Kavango 
West with relative risk ranged from 1.57 to 1.78 (Fig. 4). 
Regrettably, the two regions on the east and west sides of 
the Kavango, two in the middle of the Kavango, and two 
in the Ohangwena region showed a higher differential 
trend than the average (Fig. 4).

In 2018 and 2020, a pattern of positive significant 
unstructured random effects (spatial and temporal) was 
observed, primarily in the west of Kavango and constit-
uencies bordering Kavango East with Zambezi region. 
Furthermore, an increase in the number of constituen-
cies having turned black (high risk/positively significant) 
was observed between 2018 and 2020. However, in some 
of the Kavango and Ohangwena constituencies, a nega-
tive significant unstructured random effect was detected 
(negative posterior mean in light grey), see Fig.  5. Also, 
a pattern of temporal structured random effects was 
observed in both years and there were no changes in 
the constituencies at high malaria risk in 2019 and 2020 
(Fig. 6).

Fig. 2 Malaria Incidence rate per 1000 population at constituency level (descriptive analysis)
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Discussion
The four regions Kavango East and West, Ohangwena, 
and Zambezi reported a total of 44 644 malaria cases over 
a three-year period, with 31 619 instances reported in 
2018, 2 990 in 2019, and 10 035 in 2020. This accounted 
for an average of approximately 90% of all reported 
malaria cases in Namibia throughout the last 3 years 
(2018–2020). Namibia was indeed expected to have 0 

cases per 1000 population in 2020. A 92% incidence rate 
decrease was achieved in 2019 as the incidence decreased 
from 12 cases per 1000 population in 2018 to 1 case in 
2019, but unfortunately, the incidence rate has increased 
again from 1 case in 2019 to 4 cases per 1000 popula-
tion in 2020 (Table  1) with a high malaria transmission 
still in Kavango West and East, Ohangwena and Zambezi 
constituencies.

Fig. 3 Global linear temporal trend for malaria (spatio temporal model with added covariates)

Fig. 4 Spatial main effect and differential temporal maps of the spatiotemporal
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Fig. 5 The maps for the posterior mean relative risk of unstructured interaction (spatio-temporal model)

Fig. 6 The maps for the posterior mean relative risk of temporally structured interaction (spatio-temporal model)

Fig. 7 Map of the 4 regions (Kavango West and East, Zambezi and Ohangwena)
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Malaria risk predicted from spatio-temporal mod-
els (Fig.  5) observed an increase in the number of con-
stituencies having turned black (high malaria risk) in 
the east of Kavango in 2020 compared to 2018 and 2019. 
Results from the spatio-temporal unstructured interac-
tive model presented in Fig. 6 has predicted high malaria 
risk in some of the Zambezi constituencies eg., Kon-
gola, Katima-mulio urban, Katima-mulio rural, and Sib-
binda in 2020 that could not be detected by the incidence 
map in Fig.  2 because of high rainfall and temperature 
together with some unstructured spatial and random 
interactions in those constituencies that were added 
to the model to improve the fit. The spatio-temporal 
structured interactive model (Fig. 6) also predicted high 
malaria risk in some of the Kavango and Zambezi con-
stituencies including Ongenga, Engela, Ondobe, Omu-
longa, and Epembe constituency in Ohangwena region 
in 2019 and 2020 although unstructured interactive risk 
map (Fig. 5) explains the malaria risk better than the tem-
poral structured interactive risk map (Fig. 6).

Moreover, similar studies on malaria spatial model-
ling conducted earlier in African and Asian countries e.g 

[18, 20–22] have found malaria distribution to have high 
peak during rainy season. Results of this study also evi-
denced that rainfall has an effect on the distribution of 
malaria through space and time with high malaria cases 
being reported during Summer and Autumn (December 
to May) as compared to other season and the country 
record high annual rainfall the same period (December 
to May). Furthermore, the study found spatial and tem-
poral variation of malaria risk to be due to a combina-
tion of climatic factors both observed and unobserved 
where, average annual total rainfall and annual average 
maximum temperature were found to explain spatial and 
temporal variation of malaria infection in Namibia from 
both temporal and spatial perspectives and this was simi-
lar to the results obtained by [20] in Malawi. In addition, 
previous studies conducted before e.g [11] using the 2009 
malaria data revealed that high populated areas were 
more at risk of Malaria. However the model fitted for this 
study [11] found population density to have no effect on 
malaria cases and this could be due to different period 
(2018–2020), different dataset used, the model employed, 
and variety of variables that were added to improve the 

Fig. 8 Map of all constituencies in the 4 regions

Table 1 Summary of computed malaria incidence per year

IR Incidence rate per 1000 population

Year Estimated 
population

Number of cases Mean rate IR/1000 population 
(Namibia)

IR/1000 
population in 4 
regions

2018 - 2020 2494579 14881 0.00597 6 23

2018 2448301 31619 0.01291 12 49

2019 2494530 2990 0.00120 1 5

2020 2540905 10035 0.00395 4 15
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model fit (Table 1). The population living in the far East 
and West of Kavango, and Zambezi region constituencies 
were predicted to be more at malaria risk as compared to 
others (Fig.  4, 5, and 6). This confirmed that the occur-
rence of malaria cases in constituencies might be high 
closely related to the two ecological factors maximum 
temperature and amount of rainfall received as those 
were the constituencies that annually receive high rainfall 
and annual record high temperature.

The current study aimed at spatial-temporal regres-
sion model to characterize geographical variation in 
malaria risk and evaluate possible connections between 
disease risk and environmental factors at the constitu-
ency level in Northern Namibia highly malaria-endemic 
areas. Through the whole posterior inference approach, 
a detailed examination of the uncertainty in the unob-
served random factors that also contribute to the vola-
tility of malaria mean rate was done. The procedure was 
accomplished by adding the observed and unobservable 
random effects of fascinating into the whole hierarchi-
cal Bayesian model. The random effects that were evalu-
ated included structured space-time heterogeneity, which 
measured the effect of constituencies clustering, unstruc-
tured heterogeneity, time trend effect, which represented 
the three respective periods 2018–2020, interaction 
between space and time, and the covariates effect of cli-
matic variable, as well as some other possible variables 
that were found to have a significant effect on malaria in 
other countries according to literature. R-INLA was used 
to perform the analysis, which included prior and hyper-
prior distribution specifications for the parameter and 
hyper parameters.

As one of many preventive measures, MoHSS has been 
using indoor residual house spraying (IRS) for a long time 
to lower the number of malaria mosquitoes that transmit 
the disease. Yet, the usage of IRS could harm the envi-
ronment and result in pesticide resistance [35]. A non-
spatial model using individual data considering some 
of these measures variable was fitted. The variable gen-
der, age group, place of residence, type of health facility, 
occupation, employment status, sleeping under mosquito 
bed nets, and district were all found to be significantly 
associated with malaria incidence. Specifically, The log 
expected count of males were found to be 1.089 times 
more likely to be infected than females after controlling 
other variables at (95% CI, and p- value < 0.001). Unlike 
in other countries where less than 5 years old Children 
are more likely to be on malaria risk, the log expected 
count of Individuals aged 5 to 19 years in Namibia were 
found to be 1.236 times more likely than individuals aged 
less than 5 years, and this was significant at 5% level of 
significance. The rate of testing positive for malaria in a 
villager was found to be 3% higher than in a town dweller, 
but there was insufficient evidence to conclude this at 5% 
level of significance (Table 4). Results also revealed that 
uses of mosquito nets and practising of residual house 
spraying does not lower malaria incidence as much 
(Table 4).

Malaria transmission is unstable, seasonal, charac-
terized by outbreaks and concentrated in 7 endemic 

Table 2 log scale parameter for the best negative binomial BYM 
spatial model

P mean (Posterior mean )

SD (standard deviation )

PoNB (Parameter of Negative binomial)

ui (structured random effect)

vi (unstructured random effect)

Parameter Spatial model with covariates

Quantiles

P mean SD 25 50 75

Intercept −53.3 11.8 −78.47 −52.61 −31.98

HPD 0.000 0.001 −0.002 0.000 0.003

ST (avg) 0.011 0.014 −0.017 0.012  0.038

T (avg) 0.982 0.491 0.040 0.972 1.978

T (min.) 0.053 0.187 −0.299 0.047 0.438

T (max.) 0.840 0.198 0.524 0.812 1.296

RF 0.058 0.026 0.011 0.057 0.113

WS (avg) 1.068 0.253 0.658 1.037 1.645

H −0.089 0.036 −0.162 −0.088 −0.020

LW (avg) −0.015 0.006 −0.028 −0.015 −0.004

PoNB 0.782 0.166 0.498 0.768 1.15

ui 828.0 753.8 61.3 614.6 2857.2

vi 931.5 859.6 76.0 688.2 3182.4

Table 3 log scale parameter for the Bayesian negative binomial 
(BYM) unstructured interactive spatio-temporal model

 Full Spatio-temporal model

Quantiles

Parameters P mean SD 25 50 75

Intercept 0.436 0.661 −0.826 0.423 1.77

T (avg) 0.000 0.000 0.000 0.000 0.000

T (max.) 0.006 0.006 0.005 0.005 0.017

RF 0.006 0.003 0.000 0.005 0.011

WS (avg) −0.003 0.003 −0.009 −0.003 0.004

H 0.002 0.004 −0.006 0.002 0.009

LW (avg) −0.001 0.001 −0.002 −0.001 0.001
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northern Namibia regions [35] mostly the four regions 
considered in this study. Alternative interventions such 
as the use of biological agents which are more friendly 
to the environment to treat the mosquito breeding sites 
were explored as a way to malaria elimination target. A 
demonstration larviciding project aiming to increase 
the involvement of the community in malaria mosquito 
control interventions was recently implemented in five 
malarious districts selected from 4 regions namely Omu-
sati, Oshikoto, Ohangwena and Kavango East through 
[35]. Field team implements the adult mosquito collec-
tion and larviciding technique in their respective villages 
and treat the active mosquito breeding sites and continue 
monitoring them until they are mosquito larvae free [35]. 
The team is also collecting adult mosquitoes from 20 ran-
domly selected households in the respective five villages 
to monitor the mosquito population density and to assess 
the impact of both the larviciding and IRS. Therefore, the 
MoHSS with the help of the National Vector Borne Dis-
ease Control Programme (NVBDCP) and the government 
should extend this project to the identified new malaria 
risk constituencies (hotspots) from both analyses of this 
study. Some full interventions malaria package must 
also first prioritized to individuals living in the identified 
malaria hot spots constituencies mostly constituencies 
with average/high temperature, and low humidity at the 
appropriate time (January - May “rainy season”) more 
specifically individuals aged 5 to 19, the youth e.g., chil-
dren, learners, and students, and individuals that are not 
employed or working in Small Business (e.g., small mar-
ket sales, traders, and other manual labourers, specifically 
males as these are the people that were found to be more 
exposed to the malaria risk (Table 4).

Moreover, the current study was a non-funded study 
that only focused on the available malaria secondary data. 
Hence, in addition to the above recommended interven-
tions, MoHSS with the help of NVBDCP and the gov-
ernment must come through with some funds that will 
enable researchers to team up or join the larviciding pro-
ject members and conduct deep survey in those identi-
fied hotspot constituencies capturing all primly reverend 
information on all possible putative sources of malaria 
transmission that was missed in the current study due to 
lack of data on key variables such as potential anopheles 
mosquito habitat, residual transmission foci, exports or 
imports malaria infections, and many more. These infor-
mation can be merged to obtain a monthly or weekly 
spatio-temporal mapping at village/town level every one 
year or quarterly in order to help MoHSS achieve malaria 
SDG 3 that aims to have zero malaria cases by 2030.

Table 4 Negative binomial regression non-spatial model 
(Individual malaria data)

Results of the individual dataset

Parameters β̂ P-value 95% CI

Intercept 0.032 <0.001 −3.577, −3.298

Gender

 Male 1.089 0.001 0.035, 0.136

 Female (Ref ) 1.000

Age group

  5 to 19 1.236 <0.001 0.136, 0.289

  20 to 39 1.112 0.018 0.018, 0.195

 40 to 59 1.027 0.636 −0.083, 0.135

 60 and above 0.881 0.056 −0.258, 0.002

 0 < 5 years (REF) 1.000

Place of residence

 Village 1.030 0.307 −0.027, 0.088

 Town (Ref ) 1.000

Type of health facility

 Health centre 1.088 0.029 0.008, 0.160

 Hospital 1.130 <0.001 0.063, 0.182

 Clinic (Ref ) 1.000

Occupation

 Mosquito-infested 
employees

0.705 <0.001 −0.476, -0.225

 Professionals 0.689 <0.001 −0.571, -0.182

 Small business 0.898 0.004 −0.181, -0.035

 Unemployed 0.894 0.001 −0.181, -0.043

 Youth (REF) 1.000

Slept under mosquito bed net in the last 3 night

 Yes 1.404 <0.001 0.266, 0.414

 No (Ref ) 1.000

 Home sprayed in past 12 months 

 Yes 0.990 0.718 −0.062, 0.043

 No (Ref ) 1.000

District

 Eenhana 1.132 0.115 −0.033, 0.276

 Engela 0.847 0.087 −0.361, 0.020

 Katima - Mulilo 1.010 0.931 −0.215, 0.223

 Nankudu 2.083 <0.001 0.646, 0.821

 Nyangana 2.055 <0.001 0.629, 0.811

 Okongo 1.106 0.356 −0.120, 0.309

 Rundu 1.383 <0.001 0.246, 0.403

 Andara (Ref ) 1.000

Season

 Spring 0.808 0.046 −0.428, -0.010

 Summer 0.998 0.946 −0.058, 0.054

 Winter 0.829 <0.001 −0.269, -0.107

 Autumn (Ref ) 1.000
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Conclusions
The current study discovered that the spatial temporal 
model with both random and fixed effects best fit the 
model which demonstrated a strong spatial and tempo-
ral heterogeneity distribution of malaria cases (spatial 
pattern) with high risk in most of the Kavango West and 
East outskirt constituencies where high malaria peak 
was discovered to occur during Autumn and Summer 
(January to May). Annual average rainfall, annual average 
maximum temperature together with some unobserved 
random effects were found to be significantly associated 
with malaria cases distribution through space and time. 
Furthermore, the findings of the best BYM model’s pos-
terior mean estimations of the parameters revealed that 
unstructured random effects contributed to most of the 
malaria variation in Namibia.

The use of a Bayesian approach to estimate the con-
tributions of environmental indicators on the spa-
tial-temporal pattern of pandemic diseases should be 
encouraged in statistics since it consider sensitivity 
data errors as a way to guide appropriate actions and 
better allocation of limited healthcare resources.

Finally, future research should take into results and 
lessons from the larviciding experiment currently 
implemented in few villages mostly focusing on dis-
covering and mapping probable anopheles mosquito 
habitat using geographical and temporal survival analy-
ses while also examining all other suspected causes of 
malaria transmission. In order to ensure high accuracy 
of the verified/confirmed cases, future research should 
also utilize Polymerase Chain Reaction (PCR) test of 
malaria. Additionally, to ensure malaria data qual-
ity with all key variables, high-quality malaria projects 
and programs should be implemented in these desig-
nated malaria hotspot constituencies and MoHSS must 
engage closely with NVBDCP Officers and other Con-
sultants at various levels.

Limitation
The aggregated data indicated that the four regions 
(Kavango West and East, Ohangwena, and Zambezi) 
account for more than 80% of all malaria cases recorded 
since 2017 to 2020. According to statistics from the Min-
istry of Health and Social Services, of the 38 204 cases 
reported in Namibia in 2018, the four Northern regions 
contributed 96% of the total cases reported, with the two 
Kavango West and East leading with 81%, followed by 
Zambezi with 10%, and Ohangwena with 5%, with the 
remaining regions accounting for only 4% of the total 
cases reported. Therefore, this study was restricted to 
those areas. Also, mosquito breeding sites could not be 

mapped due to lack of additional key variables in the 
available data.
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