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Abstract 

Background  Understanding temporal and spatial dynamics of malaria transmission will help to inform effective 
interventions and strategies in regions approaching elimination. Parasite genomics are increasingly used to monitor 
epidemiologic trends, including assessing residual transmission across seasons and importation of malaria into these 
regions.

Methods  In a low and seasonal transmission setting of southern Zambia, a total of 441 Plasmodium falciparum 
samples collected from 8 neighbouring health centres between 2012 and 2018 were genotyped using molecular 
inversion probes (MIPs n = 1793) targeting a total of 1832 neutral and geographically informative SNPs distributed 
across the parasite genome. After filtering for quality and missingness, 302 samples and 1410 SNPs were retained 
and used for downstream population genomic analyses.

Results  The analyses revealed most (67%, n = 202) infections harboured one clone (monogenomic) with some 
variation at local level suggesting low, but heterogenous malaria transmission. Relatedness identity-by-descent 
(IBD) analysis revealed variable distribution of IBD segments across the genome and 6% of pairs were highly-related 
(IBD ≥ 0.25). Some of the highly-related parasite populations persisted across multiple seasons, suggesting that persis-
tence of malaria in this low-transmission region is fueled by parasites “seeding” across the dry season. For recent years, 
clusters of clonal parasites were identified that were dissimilar to the general parasite population, suggesting parasite 
populations were increasingly fragmented at small spatial scales due to intensified control efforts. Clustering analysis 
using PCA and t-SNE showed a lack of substantial parasite population structure.

Conclusion  Leveraging both genomic and epidemiological data provided comprehensive picture of fluctuations 
in parasite populations in this pre-elimination setting of southern Zambia over 7 years.
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Background
As malaria elimination efforts continue to drive down 
disease burden in parts of Africa, some regions previ-
ously endemic for malaria have seen drastic reductions 
in overall morbidity and mortality [1, 2]. In these areas 
approaching pre-elimination, identification of ongoing 
local transmission and importation events is critical 
for maintaining elimination gains and preventing out-
breaks in increasingly susceptible populations. Identi-
fying reservoirs for continued transmission, which may 
occur in specific geographical locations, temporal peri-
ods, or age groups, would allow targeted elimination 
efforts to interrupt sustained transmission. Identifying 
suspected imported cases (where a genetically distinct 
parasite is introduced to a region) would assist malaria 
control programmes in identifying high-trafficked 
routes of human movement and sources of importation 
[3–5]. Blocking such sources and identifying corridors 
for parasite importation would also be key to protect 
against introductions to populations increasingly more 

susceptible to malaria after successful control efforts [6, 
7].

Parasite genomic epidemiology can be used to track 
transmission patterns in pre-elimination settings and 
help elucidate the mechanisms of persistent transmis-
sion (Fig. 1). Following decreases in pathogen transmis-
sion, it is expected that parasite population sizes will also 
shrink, reflected in reduced genetic variation fueled by 
higher levels of clonal transmission and inbreeding, frac-
turing population structure [8–10]. These genetic pat-
terns should follow reductions in disease burden over 
the long-term but may also be seen in areas with dis-
tinct seasonality with low transmission periods (e.g. dry 
seasons). These expectations of low genetic variation in 
association with low transmission may not hold if an area 
receives high numbers of imported cases [11, 12]. Addi-
tionally, these regions may be more sensitive to temporal 
fluctuations of malaria cases and parasite populations, 
as increased transmission and outbreaks might be more 
common due to decreasing immunity [13].

Fig. 1  Theoretical construct for continued transmission in low transmission settings. Malaria transmission in a low endemicity setting is likely 
the result of a combination of persistence through the dry, low transmission season and importation from other regions. However, the relative 
contribution of these remains unknown (red question marks). Parasite genomics can help understand these relationships. Different parasite lineages 
(colours of circles) may or may not survive through a dry season, shown by the reduction in diversity during the dry season. However, genetic 
diversity may be enhanced through importation through an external source
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These low transmission settings offer a unique oppor-
tunity to observe long-term dynamics of parasites across 
seasons, as the smaller number of parasites may be easier 
to track because of a lack of recombination with geneti-
cally distinct parasites within the mosquito. A small 
number of studies have attempted to observe temporal 
population changes in low transmission settings, and 
even fewer have been able to combine temporal and geo-
spatial data to identify hotspots over space and time [3, 
8, 11, 14–17]. Most of these studies evaluated parasite 
population changes over relatively large geographic dis-
tances. Thus, it remains unknown if and how parasite 
populations change over time in low transmission set-
tings on a small spatial scale, such as a district.

Southern Zambia has had a drastic reduction in the 
number of malaria cases over the past two decades [1]. 
Despite this reduction, Choma District in Southern 
Province, Zambia consistently has had a low number of 
malaria cases every year that occur seasonally [18]. How-
ever, it is not understood how the parasites driving this 
low-level transmission are maintained between seasons. 
The transmission dynamics that connect falciparum 
malaria infections across space and time in Choma Dis-
trict, Southern Province, Zambia from 2012 to 2018 were 
characterized using a high-throughput genomic tool, 
molecular inversion probes (MIPs). This approach allows 
us to develop a more refined understanding of trans-
mission dynamics and parasite population connectivity 
than previous studies using low resolution genotyping 
as identity-by-descent (IBD) approaches can be used to 
track relatedness between parasite isolates. IBD has been 
shown to be superior for understanding the relatedness 
and interconnectivity of parasite populations [19–21]. 
The results showed that highly related parasites are con-
nected across multiple seasons, suggesting that cases are 
at least in part fueled by parasites persisting through the 
dry season. In addition, two different clusters of clonal 
parasites that are distinct from the general parasite pop-
ulation were identified, suggesting intensified control 
efforts have led to fracturing the parasite population at 
the local level and the success of malaria control at the 
subnational level.

Methods
Sample collection and MIP sequencing
Samples were collected through passive case detection 
from eight health centres in and around the catchment 
area of Macha Hospital in Choma District, Southern 
Province, Zambia in an area of approximately 2000 km2. 
This work was approved as part of Southern and Cen-
tral Africa International Center of Excellence for Malaria 
Research by the Tropical Diseases Research Center, 
Ndola, Zambia (Ref No: TDRC/ERC/2010/14/11) and 

the Johns Hopkins Bloomberg School of Public Health 
(IRB #3467). Analyses utilizing parasite genomes from 
de-identified samples were deemed nonhuman subjects 
of research at the University of North Carolina at Chapel 
Hill (NC, USA) and Brown University (RI, USA).

From 2012 to 2018, dried blood spots (DBS) were col-
lected from 441 symptomatic individuals presenting to 
the health centres who were positive for Plasmodium 
falciparum infection by rapid diagnostic test. DNA was 
extracted from each DBS with a Chelex-Tween proto-
col [22]. Parasitaemia was assessed using quantitative 
PCR with probes targeting the pfldh gene [23]. Samples 
were then genotyped using molecular inversion probes 
(MIPs) targeting 1834 neutral and geographical informa-
tive SNPs distributed across the P. falciparum nuclear 
genome [24, 25]. MIP capture and library preparation 
were done as previously described [24]. The MIP library 
was sequenced in two sequencing runs using an Illumina 
NextSeq 550 instrument (150  bp paired-end reads) at 
Brown University (RI, USA).

Bioinformatic analysis
Processing of sequencing data and variant calling was 
done using MIPtools (v0.19.12.13; https://​github.​com/​
bailey-​lab/​MIPTo​ols), a suite of computational tools 
designed to process sequencing data from MIPs. Raw 
reads from each MIP, identifiable using unique molecular 
identifiers (UMIs), were used to reconstruct sequences 
using MIPWrangler, and variant calling was performed 
on these samples using freebayes [26]. To reduce false 
positives due to PCR and alignment errors, the alterna-
tive allele (SNP) must have been supported by more than 
one UMI within a sample, and the allele must have been 
represented by at least 10 UMIs across the entire popu-
lation. Biallelic, variant SNP positions were retained for 
downstream analyses. Moreover, individual variant calls 
within each sample were set to be missing if the site was 
not supported by at least four UMIs. After these steps, 
genome positions (SNPs) with more than 50% missing 
data, followed by samples with less than 50% data, were 
removed from all downstream analyses. Variants were 
annotated using the 3D7 v3 reference genome.

Population genetic analyses
Using the final variant set (n = 1410 SNPs) distributed 
across the genome (Additional file  1: Fig. S1), the com-
plexity of infection (COI) for each sample was deter-
mined using THE REAL McCOIL categorical method 
[27] which turns heterozygous SNP data into robust esti-
mates of allele frequency, via Markov chain Monte Carlo 
(MCMC) methods.

Genetic relatedness of sample -pairs was assessed using 
the major allele at each position to estimate inbreeding 

https://github.com/bailey-lab/MIPTools
https://github.com/bailey-lab/MIPTools
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coefficients, calculated using a maximum-likelihood 
approach that estimates the probability that any posi-
tion is identical-by-descent between two samples using 
MIP analyzer [24]. Networks of highly-related parasites 
were created using only monoclonal samples using the R 
igraph package [28]. Moreover, IBD distribution across 
the genome a was calculated using isoRelate R package 
as described by Henden et al. [20]. Then the proportion 
of pairs IBD (XiR,s), where XiR,s is the chi square distri-
bution IBD at each SNP was estimated as described by 
Henden et  al. [20]. P-values were calculated and a 5% 
genome-wide significance threshold was used to differen-
tiate loci with selection signals. Spatial distance between 
sample pairs was measured both with greater circle dis-
tance and road distance to measure isolation by distance 
using the Mantel test. To assess temporal changes in 
parasite clustering due to control pressure and identify 
genetic outliers that are possible imported cases, prin-
cipal component analysis (PCA) was conducted using 
within-sample allele frequencies. PCA results with other 
inputs, including major alleles, did not differ. To further 
investigate parasite population clustering, t-distributed 
Stochastic Neighbor Embedding (t-SNE) was calculated 

using the R package Rtsne. The same loci were extracted 
from publically available data (n = 909, from the Demo-
cratic Republic of the Congo (DRC), Malawi, Tanzania 
and other regions of Zambia) for PCA analysis to assess 
the possibility of parasite importation.

Statistical analysis
All references to an analysis in a ‘package’ indicate the 
analysis was performed in R software [29]. Where appro-
priate, all outputs were visualized using the ggplot2 pack-
age in R. The Mann–Whitney U test was used to measure 
differences among two groups and the Kruskal–Wallis 
test was used to measure differences between more than 
two groups. A confidence interval for IBD values was 
calculated as mean IBD ± 1.96 X standard error of IBD, 
where standard error IBD = standard deviation of IBD/
square root of (n) where n = sample size. A P-value of 
≤ 0.05 was considered statistically significant.

Results
The epidemiology of malaria in the Macha Hospital 
catchment area within Choma District from 2012 to 2018 
was seasonal (Fig.  2A). The rainy season occurs from 

Fig. 2  Malaria trends and complexity of infections. A Trends of RDT positive cases at the 8 health centres over the course of the study (blue 
dotted line) and the number of dried blood spot (DBS) samples collected by month over the course of the study (gray bars). Dark green bars 
show dry seasons (June to August). B Spatial heterogeneity of complexity of infections. C Seasonal variation of multiplicity of infections. The 
box- and whisker-plots were generated from the median number clones determined per sample. Boxes indicate the interquartile range, the line 
indicates the median, and the whiskers show the 95% confidence intervals. Dots indicate any outlier values and colours indicate seasons
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November to May. Malaria cases start to increase around 
December of each calendar year, peaking around April 
or May the following year. Cases then decline during the 
dry season (June to August) with few cases reported from 
July through November. A total of 441 DBS samples were 
collected from eight rural health centres and Macha Hos-
pital (Additional file  1: Fig. S1) during the study period 
and 302 (68%) were successfully genotyped at 1410 posi-
tions across the genome (Additional file 1: Fig. S2, Addi-
tional file 2: Table S1). These samples are representative 
of almost all time periods from which the original sam-
ple set was collected (Additional file  1: Fig. S3). A total 
of 84% of samples (n = 255) had less than 10% missing 
genotype calls across all positions (Additional file 1: Fig. 
S4). Most successfully genotyped samples were collected 
from 2016 and 2017, but samples representing all years 
between 2013 and 2018 were successfully genotyped and 
reflect the epidemiologic case data (Fig.  2A, Additional 
file 2: Table S2).

Genetic data generated through MIPs showed signs 
of both increased transmission in the high transmis-
sion season and parasite population connectivity across 
seasons, both expected in regions that have seasonal 
trends. Complexity of infection (COI) (Fig.  2B) often 
tracks with transmission intensity [24, 30, 31] and COI 

varied at health facilities suggesting spatial heterogene-
ity of malaria transmission at local scales. Most (67%, 
n = 202) infections were monogenomic (COI = 1) (Addi-
tional file 1: Fig. S5A), as expected in an area with overall 
low transmission. Median COI estimates were relatively 
higher during the rainy season, and the lowest average 
COI estimates were during the dry season, though the 
difference was not statistically significant (Kruskal–Wal-
lis test, p = 0.12). Overall COI was relatively stable over 
the study period, with no significant declines in recent 
years despite overall reduced transmission (Additional 
file  1: Fig. S5B). This suggests there is ongoing asymp-
tomatic transmission outside the symptomatic cases 
presenting to health centres sampled in this study. This 
asymptomatic transmission likely contributes to recom-
bination of different distinct clones and maintenance of a 
diverse genetic pool despite low transmission.

To examine genetic relatedness, we calculated IBD 
using the inbreeding coefficient F between all 45,150 
pairs of genomic regions across 1410 loci for 302 samples 
[24]. Most comparisons had little to no IBD sharing; how-
ever, 6% of comparisons had an IBD ≥ 0.25 (half siblings) 
(Fig. 3A). There was also uneven distribution of IBD seg-
ments across the genome (Additional file  1: Fig. S6A) 
suggesting variation recombination at different genomic 
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regions of parasites due to different selection pressures. 
Using a 5% cutoff threshold, four chromosomes (1, 5, 
11, and 13) were identified to be under selection (Addi-
tional file 1: Fig. S6B). We looked at genomic regions near 
(± 1 kb) loci under selection and found 45 genes includ-
ing kelch13 (an artemisinin resistance marker) (Addi-
tional file  2: Table  S3), suggesting parasites are under 
drug pressure that warrants close monitoring to prevent 
the emergence and spread anti-malarials resistance in 
this low malaria transmission setting.

Parasite pairs from the same health centre were more 
likely to have higher IBD values (Fig. 3B), with an approx-
imate isolation-by-distance trend observed between 
different health centres (Fig.  3C). To identify whether 
transmission hotspots of highly-related infection pairs 
occurred between health centres, the number of highly-
related (IBD ≥ 0.25) infection pairs occurring between 
two health centres was shown as a proportion of the total 
number of highly related pairs (Fig. 3D). Health centres 
connected by major roads (Additional file  1: Fig. S7A) 
have significantly higher (Mann–Whitney p < 0.001) 
related parasites than those not connected by major 
roadways (such as Kamwanu) (Additional file 1: Fig. S7B), 
although geographic proximity could override this pat-
tern (i.e., Nalube). However, all health centres, even those 
geographically distant or not connected by major road-
ways, had some highly-related parasite pairs.

Similar to the observed spatial trends, parasites col-
lected on the same day had higher IBD values than 
parasites collected further apart in time (Fig.  3B). To 
investigate temporal patterns of genetic relatedness, net-
works were built using only monogenomic infections. 
Interestingly, these networks showed patterns of highly-
related (IBD ≥ 0.25) infection pairs across months of the 
same malaria season and even between malaria seasons 
using lower IBD threshold (Additional file  1: Fig. S8). 
Using a cut off of IBD ≥ 0.25, the equivalent of half-sib-
lings or closer relationships, networks of monogenomic 
infections were identified involving 38 isolates across 
multiple seasons that also contained parasites sampled 
during the dry season (n = 5) (Fig. 4), providing evidence 
that a proportion of the parasite population is maintained 
through the dry season and contributes to malaria cases 
the following transmission season.

The largest cluster traverses multiple dry seasons, 
indicative of long-term propagation with minimal out-
crossing in a proportion of parasites. Among clonal sam-
ples (IBD ≥ 0.95, n = 104), multi-season networks or those 
spanning multiple months occurred (Fig.  5A), includ-
ing three clusters comprising more than seven samples 
each. These clusters all represent parasites collected 
from the 2015–2016 and 2016–2017 seasons, the seasons 
for which most samples were successfully genotyped. 

Interestingly, these clonal networks showed little spatial 
clustering with clones appearing across different health 
centres (Fig. 5B).

While these findings provide evidence that parasites 
are connected between health centres and are main-
tained through the dry season, they do not address the 
potential contribution of imported parasites. To inves-
tigate if genetic outliers existed among the sampled 
parasites, a possible proxy for importation of genetically 
distinct parasites, a principal component analysis (PCA) 
was conducted using all parasites (Additional file 1: Fig. 
S9A). Overall, the first two components explained little of 
the variation (PC1: 4%, PC2: 3%). However, PC1 and PC2 
separated some parasites from all others. Interestingly, 
these parasites were two of the large IBD ≥ 0.95 clusters 
described above (Additional file 1: Fig. S9A).

These two outlier clusters of clonal parasites were 
derived mainly from 2016 and 2017, and were distrib-
uted across health centres (Additional file 1: Fig. S10). 
Moreover, t-SNE analysis also confirmed the lack of 
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Fig. 4  IBD network of monoclonal samples with IBD ≥ 0.25 shows 
transmission across multiple seasons and through the dry season. 
Networks spanning multiple seasons are circled in blue. The samples 
are coloured by the season of collection and only monogenomic 
samples (COI = 1) are included. Thirty-eight samples were contained 
in networks spanning multiple seasons, with five representing 
samples collected in the low transmission dry season. Values indicate 
IBD cutoff and number of samples (n) above the IBD cutoff
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substantial population structure by season (Fig.  6B), 
suggesting the P. falciparum population in south-
ern Zambia is ‘panmictic’ with no definitive evidence 
of importation determined in this study. All results 
from PCA, t-SNE and IBD analyses suggest high para-
site movement and mixing between and within health 
centres at the district level, with large interconnected 
clusters of isolates more common across nearby health 

centres compared to distant health centres—a pattern 
is consistent with isolation-by-distance. Overall, the 
result gives some insight into the district or local para-
site movement. Connectivity is a key challenge as set-
tings approach pre-elimination and as it helps maintain 
a diverse genetic pool of parasites and potentially facili-
tates greater resilience to control pressures.
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Fig. 5  IBD networks of clonal samples (IBD ≥ 0.95) show transmission across seasons and across the study site. A Shows networks across seasons 
using only monoclonal samples. B Shows the geographic locations of samples from one of these clusters. These locations are connected by lines 
coloured to correspond to the season of collection. Arrows on these lines correspond to the order in which the samples were collected. The insert 
represents the cluster from A that is circled in blue and displayed on the map
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Discussion
Genomic analysis using a novel high-density genome-
wide genotyping platform showed a detailed snapshot 
of the transmission dynamics that connect falciparum 
malaria infections across space and time in the Choma 
District of southern Zambia from 2012 to 2018, an area of 
low transmission. Despite the relatively small geographic 
study region (2000 sq km), IBD analysis was able to cap-
ture different genomic signals that reflects low malaria 
transmission intensity in southern Zambia. Overall, most 
infections were monogenomic (COI = 1) and networks of 
identical or highly related parasites persisted across space 
and time. These were detected in the dry low transmis-
sion season followed by “seeding” the parasite popula-
tion in the next high transmission season (Figs. 4 and 5). 
These parasites were then transmitted widely across the 
district, likely due to the relatively small geographic scale. 
These transmission networks of highly related parasites 
are consistent with outbreaks that appear to overlay a 
background parasite population that maintains an over-
all weak signal of isolation by distance (Fig. 3). Interest-
ingly, two of the clonal networks were among clonal 
parasites that were more related within the network 
than the general parasite population, but did not cluster 
with parasite populations in the northern part of Zam-
bia or other countries sharing the border with Zambia. 
This fracturing of the parasite population suggests that 
as countries move to pre-elimination, increasing spatial 
heterogeneity of malaria transmission is expected with 
more focal clustering of clonal or highly related para-
sites. The data also do not suggest importation as a major 
driver of parasite diversity in the samples analysed, and 
importation with resultant local spread likely did not lead 
to these clusters. However, to fully define parasite impor-
tation genomic information from contemporary parasite 
populations outside Choma District, denser sampling 
of parasites (including asymptomatic parasitaemia), as 
well as information on human movement patterns are 
required. Moreover, asymptomatic cases, which are invis-
ible to current surveillance approaches, could also con-
tribute to ongoing endemic transmission and increase 
diverse parasite pools in the population, leading to par-
asite recombination in the mosquito which ultimately 
increases COI within the host. These findings suggest 
that some genomic metrics (i.e., COI, genetic diversity) 
have limitations for measuring transmission intensity 
for samples collected through passive cases detection at 
health facilities. Thus, active case detection, which cap-
tures both asymptomatic and low parasitaemia cases, are 
recommended to identify correlations between COI and 
malaria transmission at the community level, although 
low level parasitaemia can be challenging for parasite 
genotyping.

Genomic studies of local transmission and patterns 
of parasite connectivity in low and medium endemic-
ity countries are becoming more common and starting 
to shed light on the dynamics of malaria parasite move-
ment [3, 15–17]. However, relatively few studies have 
used genomic approaches to study malaria transmission 
dynamics and parasite clustering on smaller geographic 
scales, such as a single district [32]. Detailed work in Sen-
egal has shown similar findings, including persistence of 
clonal parasites across multiple seasons and evidence of 
highly related parasites as transmission declines due to 
control interventions [8, 33, 34]. However, the approaches 
used in these studies consisted of lower density genotyp-
ing, primarily with a 24 single nucleotide polymorphism 
(SNP) barcode. This study adds to the existing literature 
as the high-density genotyping allows for the use of IBD 
to help resolve finer scale parasite clustering and related-
ness within the population.

Unlike previous work in this setting [32], IBD was able 
to evaluate networks of parasites based on the number 
of outcrossings, showing that networks of half-siblings 
or more highly related parasites are extensive and persist 
for longer than networks of clonal parasites (Figs. 4 and 
5). In addition, this metric, in combination with epide-
miological data, provided insight to define the underly-
ing isolation-by-distance relationship seen in the general 
parasite population in Choma District as well as the per-
sistence of clonal parasites that escaped control interven-
tion and persisted across seasons. Signals of isolation by 
distance and parasite population fracturing at finer geo-
graphic scales suggest different processes, such as the 
distribution and variation in utilization of malaria control 
intervention, topography, road networks, uneven sam-
pling, and sample size variation, that could contribute to 
this variation. Moreover, in low transmission settings the 
variability of malaria vectors in local adaptation [35] and 
vector–parasite compatibility [36] could contribute to the 
observed genomic signal variation (i.e. from genetically 
diverse parasite to clonal and related parasite cluster-
ing). In addition, as noted previously [37], MIPs provide 
a cost-effective means of high resolution genotyping of 
large numbers of parasites compared to whole genome 
sequencing and is therefore a scalable tool to provide 
detailed studies of transmission and importation with 
large numbers of samples. Lastly, within the study region, 
fluctuations in transmission intensity were detected, as 
measured by COI, between seasons, suggesting a ramp-
up and expansion of parasite populations with each sea-
son. COI has previously been shown to be correlated 
with local transmission intensity [24, 30, 31].

This work demonstrates maintenance of parasite 
clones through the dry season and increasing parasite 
clonal transmission leading to population fragmentation 
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in recent years supporting the effectiveness of recent 
control efforts. Moreover, our findings did not show a 
significant contribution of imported malaria cases for 
sustainable malaria transmission in the area. However, 
there are multiple limitations to identifying imported 
cases. First, the sampling of only acute cases will limit 
the ability to define local transmission dynamics and 
identify importations. The asymptomatic reservoir likely 
contributes significantly to sustained low level transmis-
sion [38]. However, given the low density parasitaemias 
of asymptomatic infections, genotyping these parasites 
remain a challenge with any platform. Second, a lack of 
detailed travel histories from the malaria cases, making it 
impossible to determine if the genetically unrelated par-
asites were imported. Lastly, the relatively small sample 
size prevents us from quantifying the relative burden of 
importation versus persistent transmission over the dry 
season on the parasites that dominate in the following 
high transmission season. This will require further stud-
ies with dense sampling of symptomatic and asympto-
matic cases with travel histories to address how parasite 
importation contributes to sustained malaria transmis-
sion in areas approaching pre-elimination.

The success of malaria elimination in low transmission 
regions in Africa will depend on a deeper understand-
ing of transmission dynamics and importation. However, 
there was evidence of parasite movement and connec-
tivity at small spatial scales at the health facilities level, 
which helps parasites maintain a diverse genetic pool in 
low transmission areas, potentially creating a challenge 
for malaria elimination. As recommended by the WHO, 
defining imported vs. locally acquired cases is critical 
for designing and stratifying targeted interventions [39, 
40]. This work demonstrates the feasibility of genome-
wide approaches to help define the relationships between 
infections in settings approaching malaria elimination. 
The genotyping tools and analytical methods for these 
studies are continually advancing. Although the IBD 
analysis largely focused on monoclonal samples, signifi-
cant information likely can be gathered from addressing 
polygenomic infections.

Preliminary work suggests that these tools will still be 
effective in studying parasite populations in high trans-
mission settings and patterns of parasite connectivity 
[24]. In addition, combining human mobility data with 
these genomic tools will help to better understand both 
local transmission and source of importation.

Conclusion
This study leveraged state of the art genomic tools and 
analytical methods to provide a detailed snapshot of 
the transmission dynamics of malaria in a region on the 
cusp of elimination and highlights the feasibility of these 

methods to inform targeted interventions to achieve and 
sustain malaria elimination.
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