
Kojom Foko et al. Malaria Journal          (2023) 22:236  
https://doi.org/10.1186/s12936-023-04651-x

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Malaria Journal

Nationwide spatiotemporal drug 
resistance genetic profiling from over three 
decades in Indian Plasmodium falciparum 
and Plasmodium vivax isolates
Loick P. Kojom Foko1, Geetika Narang1†, Jahnvi Jakhan1†, Suman Tamang1†, Amit Moun1 and Vineeta Singh1*   

Abstract 

Background Drug resistance is a serious impediment to efficient control and elimination of malaria in endemic 
areas.

Methods This study aimed at analysing the genetic profile of molecular drug resistance in Plasmodium falciparum 
and Plasmodium vivax parasites from India over a ~ 30-year period (1993–2019). Blood samples of P. falciparum and/
or P. vivax-infected patients were collected from 14 regions across India. Plasmodial genome was extracted and used 
for PCR amplification and sequencing of drug resistance genes in P. falciparum (crt, dhps, dhfr, mdr1, k13) and P. vivax 
(crt-o, dhps, dhfr, mdr1, k12) field isolates.

Results The double mutant pfcrt SVMNT was highly predominant across the country over three decades, 
with restricted presence of triple mutant CVIET from Maharashtra in 2012. High rates of pfdhfr-pfdhps quadruple 
mutants were observed with marginal presence of “fully resistant” quintuple mutant ACIRNI-ISGEAA. Also, resist-
ant pfdhfr and pfdhps haplotype has significantly increased in Delhi between 1994 and 2010. For pfmdr1, only 86Y 
and 184F mutations were present while no pfk13 mutations associated with artemisinin resistance were observed. 
Regarding P. vivax isolates, the pvcrt-o K10 “AAG” insertion was absent in all samples collected from Delhi in 2017. 
Pvdhps double mutant SGNAV was found only in Goa samples of year 2008 for the first time. The pvmdr1 908L, 958M 
and 1076L mutations were highly prevalent in Delhi and Haryana between 2015 and 2019 at complete fixation. One 
nonsynonymous novel pvk12 polymorphism was identified (K264R) in Goa.

Conclusions These findings support continuous surveillance and characterization of P. falciparum and P. vivax popu-
lations as proxy for effectiveness of anti-malarial drugs in India, especially for independent emergence of artemisinin 
drug resistance as recently seen in Africa.
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Background
The control of malaria still continues to pose a problem 
in endemic countries, especially due to emergence and 
spread of drug resistant Plasmodium parasites across the 
globe [1]. Plasmodium falciparum and Plasmodium vivax 
are responsible for the bulk of global morbidity and mor-
tality statistics [1, 2]. The most dangerous human malaria 
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species is P. falciparum with high risk of severe complica-
tions if not treated promptly [3]. Plasmodium vivax is the 
most geographically distributed species, mainly encoun-
tered in South East Asia (SEA), Latin Americas, and the 
horn of Africa. India accounted for ~ 79% of cases and 
~ 83% of deaths reported in SEA in 2021 [1, 4]. Recently, 
there are increasing reports on the ability of P. vivax 
parasites to induce severe malaria and deaths in some 
patients [5–7].

Plasmodium falciparum parasites have developed resist-
ance phenotypes to all major anti-malarial drugs, such as 
chloroquine (CQ), mefloquine (MQ), sulfamides, arte-
misinin (ART) and its derivatives (Fig. 1) [8, 9]. In contrast, 
some studies evidenced the emergence of P. vivax parasites 
resistant to fewer drugs, such as CQ and MQ [10, 11]. The 
current first-line uncomplicated P. falciparum malaria 
treatment policies rely on artemisinin-based combina-
tion therapy (ACT) which consist of a combination drugs 
(i.e., ART derivatives) with slow-acting drug referred to as 
partner drug [12]. Currently, six artemisinin-based com-
binations are recommended by the World Health Organi-
zation (WHO) for treating uncomplicated P. falciparum 
malaria viz. artesunate + sulfadoxine–pyrimethamine 
(AS + SP), artesunate + amodiaquine (AS + AQ), artesu-
nate + pyronaridine (AS + PY), artemether + lumefantrine 
(AL), dihydroartemisinin + piperaquine (DHA + PPQ), 
and artesunate + mefloquine (AS + MQ) [1, 8]. CQ is com-
monly used for treating clinical P. vivax infections. The 
WHO recommended to associate CQ with primaquine 
(PQ), a hypnozoiticidal drug, given the ability of P. vivax 
parasites to induce relapses due to reactivation of dormant 
liver stages (i.e., hypnozoites). The association CQ + PQ, 
also known as radical cure, guarantees treatment of 

current infection and prevent recurrent infection due to 
relapses by killing blood and liver parasite stages [13, 14].

The emergence and spread of ACT-resistant P. fal-
ciparum parasites in SEA has profoundly thwarted 
malaria control and elimination objectives in the 
region [15, 16]. More recently, independent appear-
ance of ACT-resistant P. falciparum parasites from 
two African countries Rwanda and Uganda [17–19]; 
has given basis to fear the spread of ACT-resistance 
in Africa in future. In this context, anti-malarial drug 
resistance surveillance is a key component to success-
ful malaria control and elimination. Several tools have 
been developed for Plasmodium drug resistance and 
these consist of (i) in  vivo drug efficacy studies, (ii) 
in vitro assessment of drug susceptibility in parasites, 
and (iii) tracking of molecular markers associated with 
drug resistance [20]. The latter tools are largely used 
for drug resistance surveillance given the high cost of 
in  vivo studies and lack of standardization of in  vitro 
studies [20]. Also, molecular tools are much easier to 
implement and/or scale-up, and give prevalence esti-
mates of drug resistant Plasmodium parasites over 
time and space with possibility for within and between 
study comparisons [20].

In India, P. falciparum and P. vivax are the two pre-
dominant Plasmodium species with prevalence ratio 
varying between states, but overall ratio close to one 
[21–23]. Clinical spectrum of malaria infections with P. 
falciparum and P. vivax ranges from asymptomatic to 
severe malaria [3, 5]. India has continuously modified 
and adapted national drug policies since 1982 to effi-
ciently and timely control anti-malarial drug resistance 
(Fig. 1). The current treatment policy endorses treatment 

Fig. 1 Timeline of introduction and appearance of resistance to main anti-malarial drugs in the world and India. QN quinine, PPQ piperaquine, 
PQ primaquine, CQ chloroquine, PG proguanil, MQ mefloquine, ART  artemisinin, SP sulfadoxine–pyrimethamine, AQ amodiaquine, ACT  artemisinin 
based combination therapy, AS artesunate, AL artemether–lumefantrine, SLP sulfalene–pyrimethamine, CQR chloroquine-resistant, NE North east 
states (Sources: [15, 25, 27–32])
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of (i) uncomplicated P. falciparum malaria with either 
artesunate + lumefantrine (AL) in North Eastern states 
or artesunate + sulfadoxine + pyrimethamine (AS + SP) 
in rest of states, accompanied by single dose PQ, (ii) 
uncomplicated P. vivax malaria with CQ + PQ, and (iii) 
severe malaria with quinine, artemether, artesunate, or 
artemether for 48 h, followed by quinine or above men-
tioned a state-specific artemisinin-based combination 
[24]. In contrast, data on anti-malarial drug resistance 
in P. falciparum and P. vivax parasites are still insuf-
ficient and fragmented in India [8, 25, 26]. The present 
study describes the spatial and temporal distribution of 
main putative molecular markers associated with drug 
resistance in P. falciparum and P. vivax isolates collected 
between 1993 and 2019 among malarious patients from 
different areas of India.

Methods
Sample and diagnosis
This study has been approved by the institutional review 
board of ICMR-National Institute of Malaria Research 
(NIMR), India. Malaria samples were collected between 
1993 and 2019 from different field sites and health facili-
ties (hospitals and primary health centres) of different 
states  and union territories (Additional file  1). On field 
sites, malaria infection was first detected using rapid diag-
nostic tests (RDT), and confirmed microscopically and by 
PCR assay. Two RDTs namely SD Bioline Pf/Pv® (Stand-
ard Diagnostics, Inc., South Korea) and FalciVax™ (Pf/Pv) 
(Zephyr Biomedical, Verna, Goa, India) were used in this 
study. SD Bioline Pf/Pv® is a P. falciparum and P. vivax 
detecting RDT which targets PfLDH + PvLDH antigens. 
It has a panel detection score of 99.0% and 97.1% at 200 
parasites/µL for P. falciparum and P. vivax, respectively. 
FalciVax™ (Pf/Pv) is a P. falciparum and Pv/Pvom detect-
ing RDT which targets PfHRP2 + PvLDH antigens, with a 
panel detection score of 95.0% and 100% at 200 parasites/
µL for P. falciparum and P. vivax, respectively [33].

The study samples comprised of both; clinically asymp-
tomatic and symptomatic individuals of all age living in 
rural, semi-urban and urban areas of India. A total of 16 
areas belonging to 14 states and union territories were 
study sites in the present study (Fig. 2). Details on urbani-
zation level and malaria endemicity of study areas are 
presented in Additional file  2. The plasmodial DNA was 
extracted using QIAamp® DNA Mini Kit (Qiagen, Valen-
cia, California, USA) as per manufacturer’s instructions 
in a final elution volume of 70  µL buffer (10  mM Tris–
HCl; 0.5 mM EDTA; pH 9.0), and then stored at − 20  °C 
until needed. Plasmodial speciation was performed using 
polymerase chain reaction (PCR) protocols targeting the 
18S subunit ribosomal unit gene of P. falciparum and 
P. vivax (Table 1) [34]. DNA sample was mixed in 25 µL 

PCR reaction containing 12.5  µL of 2X Go Taq green 
master mix (Promega Corporation, USA), 1  µL of each 
primer (10 µM), 1–2 µL DNA template, and free-nuclease 
water Q.S. PCR amplicons were loaded on 2% agarose gel 
pre-stained with ethidium bromide at 72  V for 1  h, and 
then  visualized using an ultraviolet trans-illuminator. P. 
falciparum and P. vivax infections were confirmed by 
the presence of PCR bands of 205 bp and 120 bp, respec-
tively [34]. 

Amplification of P. falciparum and P. vivax drug resistance 
genes
Single-step and nested PCR protocols were used to 
amplify five genes associated with drug resistance in P. 
falciparum parasites viz. chloroquine resistance trans-
porter (pfcrt), dihydrofolate reductase (pfdhfr), dihydrop-
teroate synthase (pfhdps), multidrug resistance protein 
1 (pfmdr1), and Kelch protein (pfk13) [8]. Also, ortho-
logues of these genes in P. vivax isolates were analysed 
viz  pvcrt-o, pvdhfr, pvdhps, pvmdr1 and pvk12, using 
published and developed singe-step and nested PCR pro-
tocols (Additional file 3).

Sequencing and SNP analysis
The amplicons were purified using GeneJet purification 
kit (Thermofisher) and sequenced in both directions 
based on Sanger dideoxy method. Sequencing were per-
formed on in-house ABI 3730XL DNA analyzer (Applied 
Biosystem) with BigDye Terminator v3.1 sequencing kit 
(Applied Biosystem). Nucleotide and deduced amino acid 
of gene sequences were aligned and compared with refer-
ences by using CLUSTALW program of MEGA X [35].

Plasmodium falciparum and P. vivax sequences of 
drug resistance genes were analysed in comparison with 
those of reference strains. The reference P. falciparum 
strains accession numbers were PF3D7_0709000 for 
pfcrt, PF3D7_0417200 for pfdhfr, PF3D7_0810800 for 
pfdhps, PF3D7_0523000 for pfmdr1, and PF3D7_1343700 
for pfk13. The reference P. vivax strains used were 
PVX_087980 for Pvcrt-o, PVX_089950 for pvdhfr, 
PVX_123230 for pvdhps, PVX_080100 for pvmdr-1, 
and PVX_083080 for pvkelch12. The phylogenetic relat-
edness of P.  falciparum and P. vivax isolates was done 
through BLAST of drug resistance sequences. After 
sequence alignment nucleotide positions which dis-
played two peaks at one locus in chromatogram were 
noted as ‘‘mixed’’ and excluded from further analysis. 
Known point mutations in P. falciparum genes associated 
with anti-malarial drug resistance (CQ, SP, ART and its 
derivatives), and novel mutations were identified using 
their corresponding amino acids and haplotypes [8, 36]. 
Regarding P. vivax isolates, putative drug resistance-asso-
ciated mutations were also investigated [37–40] (Table 1). 
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Fig. 2 Map of India showing study areas where Plasmodium isolates were collected. Each pie chart represents the total number of isolates analysed. 
P. falciparum (blue) and P. vivax (red). The size of pie chart is proportional to sample size. The map depicted here is taken from official website 
of Ministry of External Affairs, Government of India (https:// mea. gov. in/ india- at- glance. htm, accessed 15/11/2021)

Table 1 Main mutations in Pf and Pv drug resistance genes analyzed in the study

ART: artemisinin; AQ: amodiaquine; CQ: chloroquine; L: lumefantrine; MEF: mefloquine; Pf: P. falciparum; Pv: P. vivax; crt: chloroquine resistant transporter gene; crt-o: 
chloroquine resistant transporter orthologue gene; dhfr: dihydrofolate reductase gene; dhps: dihydropteroate synthase gene; mdr1: multidrug resistance protein 1 
gene; k12: Kelch12 gene; k13: Kelch13 gene

Genes Chromosome Validated/candidate 
or putative markers

Main mutations investigated Antimalarial drugs/classes

pfcrt 7 Validated 72S, 73K, 74I, 75E, 76T CQ, AQ

pfdhfr 4 Validated 16V, 50R, 51I, 59R, 108N, 164L Pyrimethamine, cycloguanil

pfdhps 8 Validated 431V, 436A/F, 437G, 540E, 581G, 613S/T Sulfonamide, sulfadoxine, 
sulfone, dapsone

pfmdr1 5 Validated 86Y, 124F, 1034C, 1042D, 1246Y CQ, AQ, L, MEF

pfk13 13 Validated F446I, N458Y, C469Y, M476I, Y493H, R539T, I543T, P553L, R561H, P574L, 
C580Y, R622I and A675V

ART and its derivatives

Candidate P441L, G449A, C469F, A481V, R515K, P527H, N537I/D, G538V 
and V568G

pvcrt-o 1 Putative K10 (AAG insertion) –

pvdhfr 5 Putative 57L/I, 58R, 61M, 117T/N, 173F –

pvdhps 14 Putative 382F/A/C, 383G, 399I, 512M, 525G, 553G, 555R, 585G, 661V –

pvmdr1 10 Putative 845F, 861E, 898E, 908L, 958M, 976F/V, 1076L/I/T –

pvk12 12 Putative 88S, 124I, 552I, 581R, 697S –

https://mea.gov.in/india-at-glance.htm
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The proportions of each validated mutation and puta-
tively associated with anti-malarial drug resistance in P. 
falciparum and P. vivax isolates were calculated by areas 
and year of collection. Similar analysis was made for drug 
resistance genotypes and haplotypes.

Statistical analysis
Data were keyed, coded and verified for consistency in 
an Excel spreadsheet (Microsoft Office, USA), and then 
exported to GraphPad v8.0.2 for Windows (GraphPad 
PRISM, Inc., San Diego, CA, USA) and StatView v5.0 for 
Windows (SAS Institute, Inc., Chicago, USA) for statis-
tical analysis. Data were summarized as percentages in 
tables and graphics. Changes in the prevalence of alleles 
and haplotypes over time were evaluated for statistical 

significance using Pearson’s independence χ2 statistics for 
trend. Statistical significance was set at p < 0.05.

Results
Plasmodium samples
A total of 593 samples were positive for 18S genes, and 
infections with P. falciparum and P. vivax were found 
as either mono-infection or mixed infection (Fig.  3a 
and Additional file  4). The highest proportion of mixed 
infections were seen in Karnataka (64.7%) and Madhya 
Pradesh (44.4%) (Fig.  3b). Only mono-infections with P. 
falciparum or P. vivax were included in the study. The 
final number of samples included for each drug resist-
ance gene varied from 30 to 318 based exclusion criteria 

Fig. 3 Electrophoresis gel depicting P. falciparum mono-infection, P. vivax mono-infection and mixed infection (a), and proportion of types 
of infections with P. falciparum and/or P. vivax (b). In a, the gel image is showing the 18S RNA PCR amplification of Plasmodium species. Lane 1: 
Plasmodium falciparum (205 bp). Lane 2: Plasmodium vivax (120 bp). Lane 3: mixed infection (Both P. falciparum and P. vivax). Lane L: 100 bp Ladder. 
In b, the international codes of areas were used. AS Assam, CG Chhattisgarh, DL Delhi, GA Goa, HR Haryana, JH Jharkhand, KA Karnataka, MH 
Maharashtra, ML Meghalaya, MP Madhya Pradesh, MZ Mizoram, OR Orissa, RJ Rajasthan, UP Uttar Pradesh
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(positive PCRs, good PCR bands, successful purification, 
successful sequencing, good quality sequencing) (Addi-
tional file 4). Additional file 5 depicts gel electrophoresis 
of P. falciparum and P. vivax drug resistance gene PCR 
results.

Profiling of P. falciparum anti‑malarial drug resistance 
genes
Pfcrt
A total of 47 samples from Delhi, Haryana, Madhya 
Pradesh, Maharashtra, Goa, and Uttar Pradesh regions 
were analysed for the pfcrt gene. The analysis revealed 
high proportions of 72S and 76T mutations and absence 

of 73K mutation in samples from different parts of 
the country. All parasites from Delhi, Uttar Pradesh, 
and Goa were carrying these two mutations. The 
pfcrt 74I and 75E mutations were only reported from 
Maharashtra in equal proportion (50% each) (Fig.  4a). 
Three types of pfcrt genotypes viz.  C72V73M74N75T76 
(single mutant), S72V73M74N75T76 (double), and 
 C72V73I74E75T76 (triple mutant) linked to anti-malarial 
resistance were reported (Fig.  3b). The double mutant 
SVMNT was predominant in most of the areas with 
proportions ranging from 75 to 100% between 1994 and 
2019, with the exception of Maharashtra where 50% 
of isolates collected in 2012 had triple mutations (i.e., 

Fig. 4 Pfcrt genotypes by year and area. a Proportion of 72S, 73K, 74I, 75E and 76T mutations in pfcrt gene, b proportion of pfcrt haplotypes. Pf: P. 
falciparum; crt: chloroquine resistant transporter gene. The international codes of areas were used. DL Delhi, GA Goa, HR Haryana, MH Maharashtra, 
MP Madhya Pradesh, UP Uttar Pradesh. In a, sample size was different for each area. DL (n = 3), GA (n = 4), HR (n = 18), MH (n = 10), MP (n = 4), 
UP (n = 8). In b the wild type is depicted in green while mutants are depicted in red and pink. The map depicted here is taken from official website 
of Ministry of External Affairs, Government of India (https:// mea. gov. in/ india- at- glance. htm, accessed 15/11/2021)

https://mea.gov.in/india-at-glance.htm
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CVIET) (Fig. 4b). No novel mutation and synonymous 
mutations were found in pfcrt analysed sequences.

Pfdhfr and pfdhps
In total, 239 and 318 samples were successfully sequenced 
for pfdhfr and pfdhps genes (Additional file  5). Samples 
were collected from different regions of the country viz: 
Assam, Chhattisgarh, Delhi, Goa, Haryana, Jharkhand, 
Karnataka, Maharashtra, Meghalaya, Mizoram, Orissa, 
Rajasthan, and Uttar Pradesh.

On analysis of  the pfdhfr gene, four of the six validated 
SNPs (i.e., 51I, 59R, 108N and 164L) were found in most 
areas. The mutations 59R and 108N were more frequently 
found at high proportions as compared to 51I and 164L. 
The proportions of these mutations ranged from 0 to 65.4% 
for 59R, 8.3–72.7% for 108N, 0–23.1% for 51I, and 0–21.1% 
for 164L (Fig.  5a). A total of 15 pfdhfr resistance geno-
types were found across the areas as single (16.3%), double 
(25.5%), and triple mutants (7.9%). Genotype richness was 
seen in Delhi (10 genotypes) and Haryana (12 genotypes) 
even though a high proportion of P. falciparum isolates were 
wild type (Fig. 5b). The single mutant  A16C50N51C59N108I164 
was mainly found in Uttar Pradesh at a proportion of 55.6%, 
while the double mutant  A16C50N51R59N108I164 was mostly 
reported seen Raipur (57.8%) and Goa (60%). The triple 
mutant  A16C50I51R59S108L164 was reported only in Hary-
ana (1.9%) while the double mutant  A16C50N51C59N108L164 
was seen only in Jharkhand (4.5%) (Fig.  4b). Interestingly, 
the richness in resistance genotypes increased over years 
in Delhi with two, seven and eight genotypes in 1994, 
2000 and 2008–2010, respectively. A specific distribu-
tion of pfdhfr haplotypes between two areas of Orissa 
(i.e., Rourkela and Bissam Cuttack—BCK) was noted. The 
mutants  A16C50I51C59S108I164,  A16C50N51C59N108I164 and 
 A16C50N51R59N108I164 were found only in Rourkela while 
 A16C50I51C59N108I164 and  A16C50I51C59N108 L164 were found 
only in BCK (Fig. 5b). No novel mutation and synonymous 
mutations were found in pfdhfr and pfdhps sequences 
analysed.

For pfdhps, the mutations 436A/F, 437G and 540E were 
most frequently seen across areas as  compared to 431V, 
581G and 613S. The proportion of 436A/F mutation var-
ied from 0% (in Goa, Madhya Pradesh, Rajasthan, Uttar 
Pradesh, and Mizoram) to 81.8% (in Chhattisgarh). All P. 
falciparum isolates from Goa, Karnataka, and Mizoram 
were carrying the 437G mutation while highest rates of 

540E mutation were seen in Jharkhand (81.8%), Chhattis-
garh (65.4%) and Meghalaya (50%) (Fig. 6a). Wild type-like 
haplotype accounted for 59.1% of all isolates, while the rest 
consisted of single mutants (11.9%), double mutants (22%) 
and triple mutants (6.9%). A higher genotype richness was 
found on analysis of pfdhps gene compared to pfhdfr gene, 
with 17 resistance genotypes. The highest number of gen-
otypes were found in Delhi in 2000 (7 genotypes), Delhi in 
2008/10 (10 genotypes), and Haryana in 2015/16 (11 geno-
types) (Fig. 6b). The double mutant  I431A436A437E540A581A613 
was most spread as found in five areas at proportion of 
14.2–21.6% (Delhi), 9.4% (Haryana), 72.8% (Jharkhand), 
61.5% (Chhattisgarh), and 7.4–15.4% (Orissa). The wild type 
haplotype was found in 100% of P. falciparum isolates from 
Rajasthan, Madhya Pradesh, and Uttar Pradesh, while the 
double mutant  I431S436G437K540G581A613 was found in 100% 
of isolates from Goa, Karnataka, and Mizoram (Fig. 5b). The 
double mutant  I431S436A437E540G581A613 was found only in 
Delhi (4.8%) while triple mutants  I431A436A437E540G581A613 
and  I431A436G437N540A581A613 were found only in Chhattis-
garh (3.9%) and Assam (8.3%), respectively. Five of the nine 
isolates with triple mutant  I431A436G437E540A581A613 were 
found in Meghalaya.

By combining SP resistance related pfhdfr and pfdhps 
mutations, we found 56 pfhdfr-pfhdps haplotypes repre-
sented by single mutants (six types), double mutants (15 
types), triple mutants (12 types), quadruple mutants (14 
types), quintuple mutants (6 types), and sextuple mutants 
(3 types) (Additional file  6). The quadruple mutant ACN-
RNI–IAAEAA accounted for 62.8% (27/43) of all quadru-
ple mutants reported in the study, and was mainly seen in 
Chhattisgarh (Raipur). Two types of quintuple mutants viz. 
ACNRNL–IAAEAA and ACNRNI–IAAEAS accounted for 
42.9% (6/14) and 28.6% (4/14) of all quintuple mutants, and 
were reported in Delhi, Orissa, and Jharkhand. To be noted, 
one isolate with quintuple mutant genotype (ACIRNI–
ISGEAA) was found in Delhi. The sextuple mutants 
consisted of ACNRNL–IAAEAS (two isolates), ACICNL–
IAAEAS (one isolate) and ACIRNI–IAAEAS (one isolate); 
and were found in Delhi, Orissa, and Haryana (Additional 
file 6).

Pfmdr1
Two of the five resistance pfmdr1 mutations (i.e., 86Y 
and 184F) were found in 135 samples from seven 
regions (Chhattisgarh, Delhi, Goa, Haryana, Jharkhand, 

Fig. 5 Pfdhfr genotypes by year and area. a Proportion of pfdhfr 16 V, 50R, 51I, 59R, 108N and 164L mutations, b proportion of pfdhfr haplotypes. 
Pf: P. falciparum; dhfr: dihydrofolate reductase gene; wt: wild type. The international codes of areas were used. CG Chhattisgarh, DL Delhi, GA Goa, 
HR Haryana, JH Jharkhand, MH Maharashtra, MP Madhya Pradesh, OR Orissa, UP Uttar Pradesh. In a, sample size was different for each area. CG 
(n = 13 and 26), DL (n = 12, 17, and 37), GA (n = 5), HR (n = 53), JH (n = 22), MH (n = 9), OR (n = 17 and 19), UP (n = 9). In b wild alleles are in lower case 
and mutant alleles are in upper case. The map depicted here is taken from official website of Ministry of External Affairs, Government of India 
(https:// mea. gov. in/ india- at- glance. htm, accessed 15/11/2021)

(See figure on next page.)

https://mea.gov.in/india-at-glance.htm
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Fig. 5 (See legend on previous page.)
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Fig. 6 Pfdhps genotypes by year and area. Pf: P. falciparum; dhps: dihydropteroate synthase gene; wt: wild type. The international codes of areas 
were used. AS Assam, CG Chhattisgarh, DL Delhi, GA Goa, HR Haryana, JH Jharkhand, KA Karnataka, MH Maharashtra, ML Meghalaya, MP Madhya 
Pradesh, MZ Mizoram, OR Orissa, RJ Rajasthan, UP Uttar Pradesh. In a, sample size was different for each area. AS (n = 12), CG (n = 13 and 26), DL 
(n = 27, 21, and 37), GA (n = 8), HR (n = 53), JH (n = 22), KA (n = 5), MH (n = 10), ML (n = 12), MP (n = 6), MZ (n = 3), OR (n = 27 and 19), RJ (n = 10), 
UP (n = 6). a Proportion of pfdhps 431V, 436A/F, 437G, 540E/N, 581G and 613S mutations, b proportion of pfdhps haplotypes. In b wild alleles 
are in lower case and mutant alleles are in upper case. Samples from Gautaum Budh Nagar (UP) was excluded from percentage calculation 
because of low sample size (n = 1). The map depicted here is taken from official website of Ministry of External Affairs, Government of India (https:// 
mea. gov. in/ india- at- glance. htm, accessed 15/11/2021)

(See figure on next page.)

Maharashtra, and Uttar Pradesh). The proportion of 
86Y and 184F mutations ranged from 0 to 90.9% and 0 
to 100%, respectively (Fig.  7a). Three types of mutants 
were found in this study, and were represented by Y86Y
184S1034N1042D1246,  N86F184S1034N1042D1246,  and Y86F184S1

034N1042D1246. The double mutant Y86F184S1034N1042D1246 
was found only in Delhi (18.2%) and Uttar Pradesh (40%). 
Wild type-like pfmdr1 isolates were found only in Maha-
rashtra (50%) (Fig.  7b). One synonymous pfmdr1 muta-
tion (G182G) was found in 25 isolates from Goa (n = 4), 
Maharashtra (n = 2), Uttar Pradesh (n = 5), and Delhi 
(n = 14).

Pfk13
In this study, pfk13 sequences of 90 samples from Hary-
ana (n = 53), Orissa (n = 8), Uttar Pradesh (n = 3), Karna-
taka (n = 4), Madhya Pradesh (n = 4) and Delhi (n = 18) 
were analysed. All isolates analysed for mutations in 
pfk13 gene were wild type, and no synonymous or non-
synonymous mutations for validated point mutations 
were observed. No novel mutation and synonymous 
mutations were found in pfk13 sequences analysed.

Profile of P. vivax drug resistance genes
Pvcrt‑o
Thirty-two samples from Delhi were analysed in this sec-
tion. Genetic profiling of Pvcrt sequences was available 
only for samples collected from Delhi in 2017. On analysis, 
the K10 “AAG” insertion was not detected in any sample.

Pvdhfr and pvdhps
In total, 117 and 126 samples from Delhi, Mewat, and 
Goa regions were analysed for drug resistance muta-
tions in pvdhfr and pvdhps, respectively. Of the six pvd-
hfr point mutations analysed in sequences, amino acid 
changes were detected only in codons 58 and 117, with 
proportions ranging from 0 to 50% and 0 to 45%, respec-
tively. The proportions of these two mutations were 
lower in Haryana compared to Delhi, and Goa (Fig. 8a). 
Similarly, amino changes were detected only in two of the 
nine pvdhps codons analysed namely 383 and 512. Also, 
all pvdhps mutations were found in P. vivax isolates from 

Goa, and were represented by 383G (59.1%) and 512N 
(13.6%) (Fig. 8b).

The genotype analysis revealed three and two 
mutated genotypes for pvdhfr  (F57R58T61S117I173, 
 F57S58T61N117I173 and  F57R58T61N117I173) and 
pvdhps  (S382G383M399K512R525A553K555V585A661 and 
 S382G383M399N512R525A553K555V585A661), respectively 
(Fig. 8c). Wild type isolates accounted for 89.6% of all pvdhps 
genotypes.

The combination of pvdhfr–pvdhps genotypes revealed 
nine haplotypes where most were represented by wild 
type. No mutant pvdhfr–pvdhps haplotypes were found 
in P. vivax isolates from Delhi collected in 2017, but single 
mutant FSTNI–SAMKRAKVA (28.6%) and double mutant 
FRTNI-SAMKRAKVA (21.4%) were found in P. vivax 
isolates collected in 2018. In Goa, mutants were mainly 
represented by FSTSI–SGMKRAKVA (16.7%), FSTNI–
SAMKRAKVA (13.3%) and FRTSI–SAMKRAKVA (10%) 
(Fig.  7c). No novel mutation and synonymous mutations 
were found in pvdhfr and pvdhps sequences analysed.

Pvmdr1
On analysis of 90 nucleotide sequences for pvmdr1 gene, 
amino acid changes were detected at all codons analysed 
with the exception of codon 976. The 845F, 861E and 
898E were least frequently found mutations in P. vivax 
isolates with proportions of 0–13.3%, 0–3%, and 0–3%, 
respectively. The 908L mutation were at proportion of 
39.4–100% in Delhi and 100% in Haryana. All P. vivax 
isolates carried 958M and 1076L mutations (Fig. 9a). No 
novel mutation and synonymous mutations were found 
in pvmdr1 sequences analysed.

The genotype analysis pointed out the absence of wild 
type  L845A861T898M908T958Y976F1076 in all areas. Five 
pvmdr1 genotypes were reported in this study, and were 
predominantly represented by triple mutant LATLMYL 
in isolates from Haryana (86.7%) and isolates from Delhi 
collected in 2018 (88.9%) and 2019 (100%). In contrast, 
double mutant LATMMYL accounted for 54.5% of all 
mutants found in isolates from Delhi collected in 2017. 
One quadruple mutant FATLMYL was found in Delhi—
2018 (11.1%) and Haryana (13.3%) (Fig. 9b).

https://mea.gov.in/india-at-glance.htm
https://mea.gov.in/india-at-glance.htm
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Fig. 6 (See legend on previous page.)
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Fig. 6 continued

Pvk12
The analysis of 30 pvk12 sequences from Delhi and Goa 
regions revealed no mutations at codons 88, 124, 552, 581 
and 697. Two novel mutations K264R (nonsynonymous) 
and L617L (synonymous) were found in Goa samples at 
proportions of in 27.3% (6/22) and 4.5% (1/22), respectively.

Discussion
The present study aimed at delineating genetic profile of 
main genes associated with drug resistance in P. falcipa-
rum and P. vivax malaria over 30 years in India.

Profile of anti‑malarial drug resistance P. falciparum genes
Pfcrt
Most of pfcrt genotypes in study areas were dou-
ble mutant SVMNT due to high rates of single muta-
tions 72S and 76T, and this finding corroborates with 
previous  reports [41–43]. In contrast, other studies 
reported lower rates of this double mutant in Odisha, 
and Arunachal Pradesh [44, 45]. A detailed analysis 

of the nucleotide codon at position 72 revealed that 
all SVMNT mutants from this study were of type 
 S(agt)VMNT reported to have originated from Papua 
New Guinea [46]. The triple mutant CVIET was pre-
dominantly observed only in Maharashtra, which is not 
in line with previous reports from the same state [41]. 
The triple mutant was also reported from other states 
such as Odisha, Arunachal Pradesh, Chhattisgarh, and 
Assam [41, 43–45]. Area and time related drug policy 
changes could explain these between-study differences 
of SVMNT and CVIET proportions. The epidemio-
logical profile of pfcrt genotypes hugely varies outside 
India, where triple mutant CVIET is predominant in 
countries, such as Cameroon and Saudi Arabia [47, 48], 
while wild type CVMNK is predominant in Ethiopia, 
Malawi, and Tanzania [49–51].

Pfdhfr and pfdhps
SP has been adopted and implemented in India for 
treating malaria cases in 1995. The frequent pfd-
hfr and pfdhps mutants were reported in Delhi in 
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Fig. 7 Pfmdr1 genotypes by year and area. a Proportion of pfmdr1 86Y, 184F, 1034C, 1042D and 1246Y mutations, b proportion of pfmdr1 
haplotypes. Pf: P. falciparum; mdr1: multidrug resistance protein 1 gene; wt: wild type. The international codes of areas were used. CG Chhattisgarh, 
DL Delhi, GA Goa, HR Haryana, JH Jharkhand, MH Maharashtra, UP Uttar Pradesh. In a, sample size was different for each area. CG (n = 26), DL (n = 16), 
GA (n = 4), HR (n = 53), JH (n = 22), MH (n = 9), UP (n = 5). In b wild alleles are in lower case and mutant alleles are in upper case. The map depicted 
here is taken from official website of Ministry of External Affairs, Government of India (https:// mea. gov. in/ india- at- glance. htm, accessed 15/11/2021)

1994 (e.g.  A16C50I51C59N108I164) and Odisha in 1995 
 (I431A436A437E540A581A613,  I431S436G437E540A581A613 and 
 I431A436A437K540A581A613). These findings indicate that 
these current validated mutations associated with SP 
resistance were already present before 1995. This result 
could be likely due to drug pressure exerted by SLP drug 
which was prescribed in country till 1995 (Fig. 1).

Double mutations in pfdhfr were predominant in this 
study, and this finding is consistent with that of previous 
systematic review that double pfdhfr mutations are domi-
nant in India with overall proportion of 57% [25]. Also, we 
found that  R59N108 double mutation was most frequently 
seen in all pfdhfr double and triple mutants reported in 
present study. Only  R59N108L164 and  I51R59N108 triple 
mutants were reported in India so far [52]. Two new 

https://mea.gov.in/india-at-glance.htm
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Fig. 8 Pvdhfr and Pvdhps genotypes by year and area. a Proportion of pvdhfr 57L/I, 58R, 61M, 117N/T and 173F mutations, b proportion of pvdhps 
382F/A/C, 383G, 399I, 512N, 585G, 553G, 555R, 585G, and 661V mutations, c proportion of the pvdhfr and pvdhps haplotypes. Pv: P. vivax; dhfr: 
dihydrofolate reductase; dhps: dihydropteroate synthase; wt: wild type. The international codes of areas were used. DL Delhi, GA Goa, HR Haryana. 
In a, sample size was different for each area. DL (n = 8, 32, 22, and 20 in years 2008, 2017, 2018 and 2019), GA (n = 22), HR (n = 13). In b, sample size 
was different for each area. DL (n = 28, 42, 22, and 12 in years 2008, 2017, 2018 and 2019), GA (n = 22). In c wild alleles are in lower case and mutant 
alleles are in upper case. The map depicted here is taken from official website of Ministry of External Affairs, Government of India (https:// mea. gov. 
in/ india- at- glance. htm, accessed 15/11/2021)

triple mutants (i.e.,  I51N108L164 and  I51R59L164) were found 
in P. falciparum isolates from Mewat (Haryana).

Regarding pfdhps, double mutations were most fre-
quently seen in contrast to other reports that found a 
predominance of triple mutations in India [25]. Due to 
high circulation of SP-resistant P. falciparum populations 
in NE states (Assam, Mizoram, Meghalaya, Manipur, 
Nagaland, Tripura, Arunachal Pradesh), AS + SP has 
been replaced by AL as current malaria treatment [53–
55]. The pfdhps  A436G437E540 triple mutations are highly 

prevalent in these states, and the findings from the study 
support this fact as 55.6% of isolates carrying these three 
mutations were seen in Meghalaya samples. It is note-
worthy that another triple mutation  (A436G437N540) was 
found in P. falciparum isolates collected from Assam in 
the year 1999. The first description of this triple mutant 
in India was documented in 2005 in isolates from The 
Nicobar Islands [56]. Thus, the present study confirms 
that this  A436G437N540 triple mutant was circulating in 
India before 2005.

https://mea.gov.in/india-at-glance.htm
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Fig. 8 continued

Finally, this study reports high rates (34.7%) of pfdhfr-
pfdhps quadruple mutants but quintuple and sextuple 
mutants at fewer rates (11.3% and 3.2%). One isolate 
from Delhi showed quintuple mutations,  I51R59N108–
G437E540, associated with fully resistance to SP, and 
strong predictor of clinical SP treatment failure [57, 58]. 
Imported malaria and SLP/SP drug pressure could likely 
explain such high rates of drug resistance mutants in 
pfdhfr/pfdhps. SLP, a sulfamide analogue is used 1982 in 
India for treatment of CQ-resistant P. falciparum malaria 
based on satisfactory evidence from clinical studies [59], 
while SP was implemented 13  years later. Also, most 
pfdhfr/pfdhps samples (70.3%) analysed were collected 
in 1994 and 1995, and drug pressure exerted by SLP 
through cross-resistance mechanism could explain drug 
resistance mutations found in these samples collected 
before official implementation of SP. Finally, SP pressure 
and human migration are also additional determinants of 
drug resistance in pfdhfr/pfdhps samples by exerting drug 
pressure and bringing mutant alleles from other coun-
tries, respectively.

Pfmdr1
The pfmdr1 SNPs at 86Y and 184F were  found in the 
isolates at varying  proportions in study sites  consistent 
with previous studies that reported high proportions of 
pfmdr1 86Y mutation in West Bengal, Chhattisgarh, and 
Odisha [42–44], but contradicting findings were reported 
from Mizoram, Meghalaya, and Tripura [60]. In general, 
the 86Y and 184F mutations are more commonly seen in 
Asian and African settings, while the 1034C, 1042D and 
1246Y mutations are more frequent in South America 
settings [61]. There is strong link between pfmdr1 86Y 
mutation and acquisition of resistance phenotype to CQ 
and AQ, while sensitivity phenotype to DHA, MEF and 
L [61]. Evidence for involvement of 184F mutation is still 
limited [61, 62].

Pfk13
No mutations associated with ART-resistance were found 
in this study. This is in line with previous studies, even 
though four ART-resistance validated mutations (i.e., 446I, 
539T, 561H, 625R) have been reported at very marginal 
proportions in two areas of India (Arunanchal Pradesh, 
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West Bengal) [63–65]. Other pfk13 polymorphisms 
(189T, 481V, 533A, 549Y, 578S, 579T, 657H, 672S, 675V, 
and 702N) have been also reported in these two regions 
and elsewhere (Mizoram, Tripura, Madhya Pradesh, and 
Assam) [63, 64, 66–68]. This implies that ART-resistance 
has not yet emerged, but molecular surveillance should be 
continuously carried out in malarious regions in India.

Profile of anti‑malarial drug resistance P. vivax genes
Pvcrt‑o
Previous in vitro studies reported link between the pvcrt-
o K10 insertion and decreased susceptibility of P. vivax 
parasites to CQ [38], thereby suggesting possible role of 
this mutation in modulating P. vivax susceptibility. In the 
present study, all isolates were wild type consistent with 

Fig. 9 Pvmdr1 genotypes by year and area. a Proportion of pvmdr1 845F, 861E, 898E, 908L, 958M, 976F and 1076L mutations, b proportion 
of pvmdr1 haplotypes. Pv: P. vivax; mdr1: multidrug resistance protein 1, wt: wild type. The international codes of areas were used. DL Delhi, HR 
Haryana. In a, sample size was different for each area. DL (n = 33, 18 and 24 in years 2017, 2018 and 2019), HR (n = 15). In b wild alleles are in lower 
case and mutant alleles are in upper case. The map depicted here is taken from official website of Ministry of External Affairs, Government of India 
(https:// mea. gov. in/ india- at- glance. htm, accessed 15/11/2021)

https://mea.gov.in/india-at-glance.htm
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previous reports from Thai–Cambodian border, Thailand 
and China–Myanmar border [69–71]. However, this find-
ing is not consistent with that of other studies conducted 
in India which reported K10 proportion of ~ 9.5–17.5% 
and 5.6% in Chandigarh (North India) and Mangalore 
(South India), respectively [72, 73]. Likewise, higher pro-
portions were reported in other endemic regions such as 
Myanmar (~ 28.2–72.7%) and China–Myanmar border 
(33.2%) [74–76]. All these findings indicate a spatiotem-
poral variation of K10 proportion in P. vivax areas.

Pvdhfr and pvdhps
Double and triple/single mutants in pvdhps accounted 
for ~ 33% and ~ 60% of all mutants across India [25]. In 
this study, double and single mutants were found at over-
all proportion of 11.9% and 17%, respectively. Double 
mutants  R58N117 were predominant in this study, espe-
cially in Delhi, as also previously reported from southern 
and western parts of India (i.e., Tamil Nadu, Karnataka, 
and West Bengal) [77–79]. This finding is also con-
sistent with other P. vivax endemic countries such as 
China–Myanmar border, Ethiopia, and Sudan [75, 80, 
81]. Imwong and colleagues showed the pvdhfr  R58 and 
 N117 mutations are the first to appear when drug pres-
sure is applied [82], and this could likely explain high 
rates of these mutations in India where SP pressure is 
high due to utilization of the ACT AS + SP as nationwide 
first-line treatment of uncomplicated malaria with the 
exception of NE states. No triple and quadruple mutants 
were found in this study, which is consistent with previ-
ous studies in India that indicates probably a focused 
geographical distribution of these mutants in NE states 
of the country [25]. On analysis of the pvdhps gene, the 
wild type  S382A383M399K512R525A553K555V585A661 was pre-
dominantly seen in P. vivax isolates, and this is line with 
the  current situation on pvdhps genetic profile in India 
[25]. Only two types of pvdhps mutants were reported in 
the present study (SGKAV and SGNAV), and these were 
also reported in earlier reports from Delhi, West Bengal, 
Karnataka, Rajasthan, and Tamil Nadu [25]. For the first 
time this study reports  the presence of double mutant 
SGNAV in Goa samples  from India.

Pvmdr1
The pvmdr1 908L, 958M and 1076L mutations were 
highly prevalent in P. vivax samples with proportion 
of 100% in most study areas. Such findings were also 
reported previously in India, Ethiopia, Pakistan, and 
China–Myanmar border, but much lower proportions 
were reported from Thailand [69, 70, 72, 73, 76, 83, 84]. 
The 976F mutation, found associated with CQ resist-
ance in vitro [38], was not found among P. vivax isolates 

and this supports earlier findings of low prevalence 
of this mutation from settings, such as India (7%) and 
China–Myanmar border (~ 0–2.7%) [70, 72, 73, 75], but 
contrasting with those from Thailand (~ 1.7–26.7%) and 
Indonesia (~ 66.7–96.1%) [69, 74, 85].

Pvk12
To the best knowledge of authors, this is first study 
on pvk12 polymorphism from India. A limited poly-
morphism was found in pvk12, the P. vivax orthologue 
gene of pfk13, with one novel nonsynonymous poly-
morphism (K264R) in isolates from Goa. Other non-
synonymous mutations have been reported from SEA 
and Oceania areas namely N57I, M124I, S452R, R501K, 
V541A, E553K, C566G (China–Myanmar border), I537V 
(Vanuatu), V552I (Cambodia, Malaysia), M548I (Thai–
Cambodian border), G581R (China), K596R and P641L 
(Thai–Cambodian border), and V652L (Solomon Islands) 
[71, 86–91]. In contrast, other studies from SEA (China–
Myanmar border) and Africa (Mauritania) reported no 
pvk12 polymorphism in P. vivax isolates collected from 
local and imported malaria patients [76, 92, 93]. It is still 
elusive if these mutations within and outside the pvk12 
propeller domain can modulate P. vivax susceptibility to 
ACT, thereby requiring further research.

Limitations
This study should be interpreted in light of its limitations. 
First, samples were not from all Indian regions and this 
limits the representativeness of results at national level. 
Second, not all samples could be sequenced analysed in 
this study. Finally, due to low number of good quality 
sequences for some study sites and year of sample collec-
tion, it was impossible to apply sophisticated statistical 
methods such as generalized equation models to analyse 
the evolution of resistance mutation over time.

Conclusions
The profiling of genetic markers associated with P. falci-
parum and P. vivax drug resistance was determined over a 
30-year timeframe in India. The analysis revealed substan-
tial spatiotemporal changes with increase in SNPs related 
to genetic profile of anti-malarial drug molecular markers 
in P. falciparum and P. vivax populations over 30  years. 
These findings support continuous surveillance and char-
acterization of P. falciparum and P. vivax populations as 
proxy of the effectiveness of anti-malarial drugs in India.
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