
Kunambi et al. Malaria Journal          (2023) 22:280  
https://doi.org/10.1186/s12936-023-04699-9

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Malaria Journal

Sterilized Anopheles funestus can 
autodisseminate sufficient pyriproxyfen 
to the breeding habitat under semi-field 
settings
Hamisi J. Kunambi1,2,3*, Halfan Ngowo1, Ali Ali1, Naomi Urio1, Amos J. Ngonzi1, Yohana A. Mwalugelo1,6, 
Mohamed Jumanne1, Augustino Mmbaga1,2, Felista S. Tarimo1,2, Joseph Swilla2, Fredros Okumu1,2,4,5 and 
Dickson Lwetoijera1,2* 

Abstract 

Background Anopheles funestus, the main malaria vector, prefer to oviposit in permanent and/or semi-permanent 
breeding habitats located far from human dwellings. Difficulties in identifying and accessing these habitats jeopardize 
the feasibility of conventional larviciding. In this way, a semi-field study was conducted to assess the potential of auto-
dissemination of pyriproxyfen (PPF) by An. funestus for its control.

Methods The study was conducted inside a semi-field system (SFS). Therein, two identical separate chambers, 
the treatment chamber with a PPF-treated clay pot (0.25 g AI), and the control chamber with an untreated clay pot. 
In both chambers, one artificial breeding habitat made of a plastic basin with one litre of water was provided. Three 
hundred blood-fed female An. funestus aged 5–9 days were held inside untreated and treated clay pots for 30 min 
and 48 h before being released for oviposition. The impact of PPF on adult emergence, fecundity, and fertility 
through autodissemination and sterilization effects were assessed by comparing the treatment with its appropriate 
control group.

Results Mean (95% CI) percentage of adult emergence was 15.5% (14.9–16.1%) and 70.3% (69–71%) in the PPF 
and control chamber for females exposed for 30 min (p < 0.001); and 19% (12–28%) and 95% (88–98%) in the PPF 
and control chamber for females exposed for 48 h (p < 0.001) respectively. Eggs laid by exposed mosquitoes and their 
hatch rate were significantly reduced compared to unexposed mosquitoes (p < 0.001). Approximately, 90% of females 
exposed for 48 h retained abnormal ovarian follicles and only 42% in females exposed for 30 min.

Conclusion The study demonstrated sterilization and adult emergence inhibition via autodissemination of PPF 
by An. funestus. Also, it offers proof that sterilized An. funestus can transfer PPF to prevent adult emergence at breeding 
habitats. These findings warrant further assessment of the autodissemination of PPF in controlling wild population 
of An. funestus, and highlights its potential for complementing long-lasting insecticidal nets.
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Background
Long-lasting insecticidal nets (LLINs) and indoor spray 
with residual insecticides (IRS) have remained the core 
interventions for malaria control [1, 2]. However, the 
gains achieved with these indoor-based interventions are 
threatened by the on-going development of insecticide 
resistance within targeted malaria vector populations 
[3, 4]. Worryingly, increased outdoor biting as a result of 
mosquito behavioural adaptation, and change in human 
behaviour by spending more time outdoors altogether 
makes these tools less effective in sustaining the gains 
[5–9]. Despite the urgent call for additional vector con-
trol tools to complement LLINs and IRS to accelerate the 
efforts toward malaria elimination, the additional tools 
need to align with the local context of the specific malaria 
endemic countries [10].

Larval source management (LSM) particularly chemi-
cal or microbial larviciding, is one of the promising tools 
that can be used in conjunction with adult-based inter-
ventions for effective control of malaria vectors [11–13]. 
Larviciding has additional benefits because it targets the 
aquatic stage of vectors and thus controls the popula-
tion of exophilic, endophagic, and resistant mosquitoes 
that are associated with malaria transmission [13, 14]. 
It is recommended by the World Health Organization 
(WHO) to be implemented as a supplementary interven-
tion in areas where breeding habitats are only few, find-
able, and easy to map and treat [15].

The potential of using larviciding for malaria control 
in urban settings was first demonstrated in Tanzania as 
part of urban malaria control programme, resulting to 
a 32% reduction in annual mean vector densities and 
sporozoite prevalence in three malaria vectors: Anoph-
eles funestus, Anopheles coustani and Anopheles gambiae 
[16]. The government of Tanzania, leveraged these suc-
cesses, and established the Tanzania Biotech Products 
Limited (TBPL), a bio-larvicide plant. This initiative has 
enabled the piloting of the larviciding intervention to 11 
municipals in 2016 and gradually scaled up to all munici-
pal councils in 2020 [17–19].

Effective implementation of larviciding depends on the 
accurate identification and targeting of productive mos-
quito breeding habitats [20]. This necessitates a sustain-
able surveillance system for monitoring the availability 
and distribution of breeding habitats before implemen-
tation [21–23]. Recently, the application of geospatial 
technology and deployment of unmanned aerial vehicles 
(UAV) have proven effective in identifying and target-
ing water bodies in a wide space, which would not have 
been possible by only relying on personnel [24–26]. On 
the other hand, both UAV and geospatial technology are 

resource demanding, and require high operational and 
analysis skills. In addition, they are both limited in distin-
guishing the mosquito productive breeding habitats from 
merely water bodies [25, 26]. On this basis, the high cost 
and limitations associated with both the conventional 
larviciding and deployment of UAV highlight the need 
for alternative larviciding strategies that are cost-effective 
and complementary to LLINs and IRS, such as the auto-
dissemination technique [27–29].

The autodissemination technique, also known as “Mos-
quito-assisted larviciding” is a technique that exploit 
females mosquito oviposition behaviour, to transfer 
insecticides from a contaminated resting station to its 
breeding habitat and results in mortality or prevents 
emergence of the immature mosquito therein [28]. Sev-
eral studies have demonstrated the effectiveness of the 
autodissemination technique, mainly with pyriproxyfen, 
an insect growth regulator, in controlling Aedes, Culex, 
and Anopheles mosquitoes under controlled and field 
settings [28–34]. The autodissemination technique inter-
rupts malaria transmission by preventing the emergence 
of adult vectors from contaminated breeding habitats 
resulting in the reduction of malaria vector density [35, 
36]. By relying on female mosquitoes that know suitable 
places to breed, this technique can precisely enhance 
high coverage of targeted breeding habitat during field 
application and overcome the need for widespread appli-
cation of insecticide and excessive use of labour [32, 37, 
38].

Pyriproxyfen a juvenile hormone mimic is an insect 
growth regulator (IGR) that has been demonstrated to 
effectively control disease-carrying mosquitoes of differ-
ent species [29, 39–41]. Pyriproxyfen works by mimick-
ing the action of a naturally occurring juvenile hormone 
by interfering with the growth and development of the 
target insect resulting in either sterilizing the contami-
nated mosquitoes [42, 43] or inhibiting adult emergence 
[44]. In addition, the compound is highly specific and 
effective at a ultralow concentration [45]. To date, there 
is no evidence of pyriproxyfen resistance in malaria vec-
tors with practical implications, with exception of ani-
mal model experiments that suggest pyriproxyfen can be 
metabolized in the same way as pyrethroid [46]. Another 
study highlighted a partial increase in the level of mos-
quito tolerance to pyrethroids when used in sub-lethal 
doses [47].

Of importance, pyriproxyfen is the safe compound, with 
allowable amount of 300 parts per billion in human drink-
ing water, which is 6 times higher than amount recom-
mended by the WHO for effective mosquito control [45]. 
While the autodissemination technique and sterilization 
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impact of pyriproxyfen has been demonstrated with An. 
gambiae and An. arabiensis [29, 34], the ability of An. 
funestus, a dominant malaria vector, to perform autodis-
semination of pyriproxyfen remains unknown. Therefore, 
this study was conducted in a semi-field setting in rural 
Tanzania to evaluate the efficacy of pyriproxyfen to con-
trol the An. funestus via autodissemination and sterilization 
effects.

Methods
Study site
The study was conducted at Kining’ina village (8.11417 S, 
36.67484 E), in rural southern Tanzania from May to Octo-
ber 2022 inside a partitioned netted cage with dimensions 
of 6 m long, 2.25 m wide, 2 m high, built within the semi-
field system. The partitioned, netted cage made with fine 
mesh was installed inside the semi-field chamber to pre-
vent An. funestus from escaping upon release, due to its 
small body size [48, 49].

Mosquitoes rearing
Insectary-reared female An. funestus aged 5–9 days post 
eclosion were used for the experiments. These colonies 
originated from individual wild An. funestus mosquitoes 
collected from three villages (Tulizamoyo, Ikwambi and 
Sululu) within the Kilombero valley in 2019. The standard-
ized rearing procedures of the An. funestus mosquito colo-
nies has already been described [48]. It has been reported 
that the insemination rate increases as the age of male 
mosquitoes increases [50]. Therefore, it was considered 
essential to mix a batch of 5–9 days old females with male 
An. funestus of older age, 10–14 days in the same cages to 
increase the chance of mating. Female mosquitoes were 
starved for 12 h prior to blood feeding, by placing arm of 
consented human inside the cage for 30 min. These proce-
dures were repeated on two consecutive days to ensure that 
the mosquitoes were fully engorged.

Test insecticide
Sumilarv dust containing pyriproxyfen of 10% active ingre-
dient and 12 μm particle size, supplied Sumitomo Chemi-
cals, Japan, was used in all experimental replicates.

Preparation of contamination station
In all experimental replicates, a clay pot of 10-litre volume 
was used as a contamination station. It was prepared by 
lining the inside with damp black cotton cloth dusted with 
2.5 g of 10% pyriproxyfen powder using a paint brush [29]. 
Prior to mosquito exposure, the dusted clay pot was left to 
dry for 24 h to allow the pyriproxyfen powder to attach to 
the cotton fibers and enhance pick-up by female mosqui-
toes upon landing.

Experimental procedures and study design
Experiment 1: assessment of pyriproxyfen transfer from 
pyriproxyfen‑treated clay pot to the breeding habitat by 
female Anopheles funestus
Two chambers of the semi-field system which were 1.5 m 
apart were used as the treatment and control chambers 
for this experiment. In the treatment chamber, a PPF-
dusted clay pot and a breeding container of 1 L of water 
were installed at a distance of 5  m apart. Two experi-
ments (30 min and 48 h exposure) of five replicates each 
were performed by exposing mosquitoes to PPF inside 
the clay pot. In each replicate, a batch of 300 blood-fed 
mosquitoes were separately held inside treated clay pot 
for 30 min and 48 h before were released for oviposition. 
The breeding habitat container was monitored for the 
presence of eggs for two consecutive days before being 
removed from the chamber.

Because the number of eggs that were naturally depos-
ited in the breeding containers were few, the presence of 
PPF was confirmed via larval bioassay, during which 20 
instar three insectary-reared larvae of An. funestus were 
introduced in a container that was removed from the 
chamber, and monitored for daily mortality and emer-
gence success until all were dead or emerged to adults. A 
similar setup was adopted for the control chamber.

Experiment 2: assessment of fertility, reduction in egg laying, 
and eggs viability as a proxy indicator for pyriproxyfen 
sterilization effect on exposed female Anopheles funestus
Few numbers of eggs signaled the possibility of sterili-
zation effect to exposed females. Hence, the sterilizing 
effect of PPF on exposed An. funestus via pyriproxyfen 
autodissemination was assessed using a sub sample of 
mosquitoes from experiment 1 (60 mosquitoes per rep-
licate). The samples were gently aspirated on day three 
post their first blood meal. Of 60 mosquitoes, 30 were 
dissected for examination of ovary development, and 30 
were transferred into a separate net cage (15 × 15 × 15 cm) 
and monitored for oviposition events over three gono-
trophic cycles.

Prior dissection, An. funestus females were anesthe-
tized by freezing at −   20°C for 10 min. Mosquitoes were 
dissected by gently pulling out the last two segments of 
the abdomen under the stereoscopic microscope at 0.7x 
magnification and the extracted ovaries were further 
observed under a compound microscope for a focused 
view of ovary appearance. The ovaries’ development sta-
tus was recorded as normal when they appeared fully 
developed at stage V or previtellogenic resting stage and 
abnormal when underdeveloped at IV. The classification 
and interpretation of ovary appearance were based on 
the Christopher stage of egg development [51].
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During oviposition monitoring, an oviposition sub-
strate made of a petri dish and wet/damp cotton lined 
with filter paper was placed inside the net cage. The An. 
funestus were maintained with 10% glucose solution ad 
libitum. The oviposition substrate was then followed up 
for a maximum of five days to observe the presence of 
eggs. If the eggs were spotted, then the filter paper con-
taining the eggs was removed and eggs were counted and 
transferred into a 300 ml plastic cup filled with tap water. 
Therein, eggs were monitored for daily hatching for up to 
seven days consecutive until all eggs hatched to larvae or 
died [42, 52, 53].

Following the first egg-laying cycle, the remaining An. 
funestus were offered a second blood meal to assess the 
effect of PPF on the second gonotrophic cycle. Three days 
post blood feeding, the oviposition substrate was sup-
plied for egg laying. Similar monitoring procedures for 
egg development and hatching as described above were 
followed. Following the second egg-laying cycle, similar 
procedures were repeated to assess the effect of PPF on 
the third gonotrophic cycle [54].

Statistical analysis
Statistical software, R version 4.2.1, was used to ana-
lyze the data. Generalized linear mixed-effects models 
(GLMM) were implemented using functions within the 
lme4 package [55]. The difference in the total number 
of laid eggs between the control and treatment cham-
bers was determined with Poisson distribution using 
the best fit Generalized linear mixed model. The differ-
ence in the adult emergence rate of third instar larvae 
previously introduced into water basins was determined 
with a binomial GLMM using the logit function. The dif-
ference in the total number of eggs laid by the batch of 
female mosquitoes in the net cage and their hatch rate 
was also analysed using Poisson and binomial GLMM, 
respectively. In the model, the experiment chamber (with 
or without PPF) was classified as a fixed effect, whereas 
the experiment replicate was classified as a random effect 
variable. In addition, Percentage reduction of fertility per 
gonotrophic cycle was calculated using the following for-
mulation. Reduction in fertility (%) per gonotrophic cycle 

= (C − T)/ C × 100 where C = hatch rate in the unex-
posed group; T = hatch rate in the exposed group.

Results
Pyriproxyfen transfer from pyriproxyfen‑treated clay pot 
to the breeding habitat by female Anopheles funestus
Both exposure times (30  min and 48  h) resulted in the 
transfer of pyriproxyfen from the PPF-treated clay pot 
to the provided breeding habitats. In all five experimen-
tal replicates, at 30 min of exposure, the mean (95% CI) 
percentage of adult emergence was 70% (69–71%) in 
the control chamber compared to 15.5% (14.916.1%) 
in the treatment chamber (p < 0.001). Similarly, at 48  h 
of exposure, the mean (95% CI) percentage of adult 
emergence was 95% (88 ̶ 98%) in the control chamber 
compared to 19% (12 ̶28%) in the treatment chamber 
(p < 0.001) (Table  1). The significantly lower percentage 
of adult emergence in the treatment chamber suggest 
that provided breeding habitats were contaminated with 
pyriproxyfen by ovipositing female An. funestus.

Effect of autodissemination of pyriproxyfen on 
the Anopheles funestus reproductive capacity
As summarized in Table 2, female mosquitoes contami-
nated with pyriproxyfen laid significantly fewer eggs 
(estimated from recorded larvae) compared to the uncon-
taminated mosquitoes in the control chamber (p < 0.001). 
For 30 min and 48 h exposure, the mean number (95%CI) 
of mosquito larvae resulting from laid eggs in the con-
trol chamber were 89.7 ± 25.56 and 249.5 ± 15.56 respec-
tively. The number of larvae in their respective treatment 
groups were significantly low, 26.7 ± 3.72 for 30 min and 
49.6 ± 3.42 for 48 h exposure (p < 0.001).

Compared to the control group, the hatch rate was sig-
nificantly lower in the treatment group across all three 
gonotrophic cycles for both exposure times (p < 0.001) 
(Fig. 1). In a treatment group, hatchability decreases with 
increase in gonotrophic cycles for both exposure times. 
Overall, the reduction of hatch rate at 30 min exposure 
was 15.4%, 52.9%, and 60.6% for the first, second, and 
third gonotrophic cycles respectively, whereas at 48  h 
exposure were 20.8%, 45% and 51.5%, respectively.

Table 1 Percentage of adult emerged from the third instar larvae in the breeding habitats

OR odds ratio, CI confidence interval, min minutes, hrs hours

Exposure time Section Proportion % [95% CI] OR [95% CI] P-values

30 min Control 70.3 [69.3, 71.2] 1 < 0.001

Pyriproxyfen 15.5 [14.9, 16.1] 0.07 [0.03, 0.21]

48 h Control 95.0 [88.4, 97.9] 1 < 0.001

Pyriproxyfen 18.9 [12.2, 28.2] 0.01 [0.004, 0.03]
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Effect of pyriproxyfen exposure on female Anopheles 
funestus sterility/fertility
Pyriproxyfen exposure adversely affected female mos-
quitoes eggs development (Fig.  2; Table  3). Of the 590 
exposed and unexposed female An. funestus that were 
dissected to observe the effect of PPF on eggs develop-
ment, 35% (n = 205) had abnormal eggs, and the remain-
ing 65% (n = 385) had normal eggs. During 30  min 
exposure, 4% (n = 6) of 141 females in a control group 
had abnormal eggs compared to 42% (n = 63) of 149 
in the treatment group. Whereas for 48  h exposure, 4% 
(n = 6) of 150 females in a a control group had abnormal 
eggs compared to 87% (n = 130) of 150 females in the 
treatment group. However, normal eggs of the females 
exposed for 48 h were observed to have fewer abnormal 
eggs arrested at stage IV.

Discussion
The current study has proven that sterilized female An. 
funestus exposed one day post blood meal, can trans-
fer a lethal dose of pyriproxyfen to the breeding habitat 

located 5 m from a contaminated clay pot. Overall, forced 
contaminated An. funestus with pyriproxyfen resulted to 
78% and 81% adult emergence inhibition of its filial at 
30 min and 48 h of exposure respectively. These findings 
are corroborated by previous studies in Anopheles that 
documented successful autodissemination events by An. 
arabiensis, An. gambiae and Anopheles quadrimaculatus, 
via either self or forceful mosquito contamination [29, 31, 
33, 34, 56]. The recorded similarity in emergence inhibi-
tion at 30 min and 48 h might be due to loss of the picked 
pyriproxyfen particles because of their grooming behav-
iour when mosquitoes are exposed longer, its absorption 
to mosquito cuticle, and during flight to breeding habitat 
[57–59].

In this study, the females were held in presence of 
pyriproxyfen for 30 min and 48 h to mimic possible mini-
mum and maximum resting time for rest seeking blood 
fed mosquitoes in the field environment [60–64]. In a 
situation where mosquitoes are transiting the contami-
nation stations, the success of autodissemination events 
might be impaired [28, 57, 65].

Table 2 Mean number of larvae hatched from laid eggs by An. funestus in the control and pyriproxyfen-contaminated breeding 
habitats

RR relative risk, CI confidence interval, min minutes, hrs hours

Exposure time Section Predicted mean [95% CI] RR [95% CI] P-value

30 min Control 189.7 [139.6, 257.9] 1 < 0.001

Pyriproxyfen 26.7 [19.4, 36.8] 0.14 [0.13, 0.16]

48 h Control 249.4 [218.9, 284.1] 1 < 0.001

Pyriproxyfen 49.6 [42.9, 57.4] 0.20 [0.18, 0.22]

Fig. 1 The hatch rate of the eggs laid by exposed and unexposed female Anopheles funestus across three oviposition cycles
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Of importance, this study documented An. funestus 
vulnerability to pyriproxyfen sterilization after being 
exposed one day post blood meal, and confirmed signifi-
cant reduction in eggs laid (fecundity). Overall, at 30 min 
and 48 h of pyriproxyfen exposure, the mean number of 
eggs laid by the exposed group was reduced by 85.9% and 
80.1% respectively compared to the control group. Simi-
larly, negative effect of pyriproxyfen on mosquito fecun-
dity has been also shown in several studies [34, 42, 54, 
66, 67]. Consistent with previous study [54], the effect of 
pyriproxyfen on fecundity and fertility (eggs hatchability) 

in exposed An. funestus was observed up to third gono-
trophic cycle, suggesting that this effect might be irre-
versible during mosquito lifespan.

Previous studies have reported that pyriproxyfen inter-
feres with the balance of hormones levels between juve-
nile hormone and ecdysone hormone, and disrupt the 
hormonal pathways responsible for egg’s maturation [44, 
54, 66, 68]. Similarly, in this currently study, the dissection 
of PPF exposed female mosquito revealed that pyriproxy-
fen sterilization effect was via retention of under devel-
oped (unmatured) eggs. Longer exposure time resulted 
to high proportion of mosquitoes that retain underde-
veloped eggs compared to shorter exposure time. Many 
underdeveloped eggs were arrested at Christopher stage 
IV, a proxy indication for sterilization effect [68]. It has 
been documented in other studies that the sterilization 
effect interferes with the desire of contaminated female 
to find a place for oviposition. [34, 58, 66]. This depends 
on the time of pyriproxyfen exposure relative to when 
the female obtains a blood meal. While Mbare and oth-
ers reported unlikelihood of contaminated female mos-
quito to visit the oviposition habitat after being exposed 
to pyriproxyfen within 24  h before and after the blood 
meal [34], Itoh et  al., reported the frequency of visiting 

Fig. 2 Morphological features of an eggs of PPF-exposed and unexposed blood-fed female Anopheles funestus at 72 h post blood meal. A and C 
showing observed abnormal eggs (undetachable, oval shape with no floats). B and D showing observed normal eggs (detachable, boat/sausage 
shape with floats)

Table 3 Effect of pyriproxyfen exposure on female An. funestus 
fertility

PPF treatment chamber, min minutes, hrs hours

Effect of pyriproxyfen on An. 
funestus fertility

30 min Exposure 48 h Exposure

PPF Control PPF Control

Mosquito exposed 1500 1500 1500 1500

Mosquitoes dissected 149 141 150 150

Percentage of sterilized 
females (with 100% abnormal 
eggs)

42% 4% 87% 4%

Percentage of fertile females 58% 96% 13% 96%
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the oviposition habitat to be lower for female exposed 
to pyriproxyfen before blood meal and higher for female 
exposed to pyriproxyfen after blood meal [58].

Furthermore, Yadav et  al. [66], when assessing sur-
face treated with a range of pyriproxyfen concentra-
tions, reported a lower frequency of visiting oviposition 
habitat to a female exposed to a lower concentration of 
pyriproxyfen at 24 h before blood meal and higher to the 
females exposed at 24  h after blood. But the frequency 
of visiting the oviposition habitat was the same only for 
the female exposed to higher concentration [66]. In this 
current study, female mosquitoes exposed 24  h post 
blood meal were capable of visiting oviposition habitat. 
The difference in oviposition behaviour for contami-
nated female mosquitoes across different studies might 
be due to differences in pyriproxyfen exposure methods, 
pyriproxyfen formulation (e.g., powder or suspension), 
pyriproxyfen doses and environments under which the 
study was conducted.

It has been reported in previous studies that environ-
mental factors, such as wind speed, temperature, and 
relative humidity are responsible for triggering oviposi-
tion flights of gravid female mosquitoes [69]. Because 
the current study was conducted in a semi-field environ-
ment, the observed oviposition behaviour in sterilized 
An. funestus is more representative to what might hap-
pen under actual field settings compared to similar stud-
ies that were conducted under laboratory conditions [34, 
58, 66].

Overall, the findings of this study further support the 
potential of autodissemination of pyriproxyfen in con-
trolling primary susceptible and resistant malaria vec-
tors. More striking, is the fact that sterilized mosquitoes 
were capable to autodisseminate pyriproxyfen enough to 
cause adult emergence inhibition at the breeding habi-
tats. Therefore, its potential use could be aligned with 
the current recommended integrated vectors control 
approach, which focuses on controlling and eliminating 
outdoor and residual malaria transmission [15, 70, 71]. 
Furthermore, this presents an opportunity of scaling up 
this technique along recently recommended next gen-
eration bed nets co-treated with pyriproxyfen and pyre-
throid [71]. It was envisaged that, host-seeking resistant 
mosquitoes sterilized by pyriproxyfen nets might transfer 
pyriproxyfen upon successful access to a bloodmeal and 
resting in a contaminated station. In addition, the com-
bined effect of these two modes of actions of pyriproxy-
fen can be mathematically modelled to assess its additive 
or synergistic effect on malaria transmission interruption.

The appropriate time for deploying autodissemina-
tion of pyriproxyfen is mainly during the dry season 
[72, 73] characterized by few but stable breeding habi-
tats. This season provides ideal condition to attain 

optimal doses to prevent adult emergence in the breed-
ing habitats. On the contrary, implementing auto-
dissemination of pyriproxyfen during rainy season, 
associated with flooding, hence dilution of PPF in the 
breeding habitats, might amplify resistance levels of the 
already pyrethroid resistant mosquito population as the 
results of the sub-lethal doses in the habitats [47].

Despite achieving the main objective of this study, 
some limitations were observed. The effect of autodis-
semination of pyriproxyfen was not directly monitored 
at the provided breeding habitat but through larval 
bioassays. All experiment were conducted in presence 
of small water volumes (1  L), which was important to 
prove the principle, but not representative of actual 
habitats found in the field environment [74]. Lastly, the 
resistance status of the exposed mosquitoes was not 
assessed, instead the supposition that they were resist-
ant was based on the most recent reports from the 
same study area [75–78].

Conclusion
The present study demonstrates sterilization and adult 
emergence inhibition effects in An. funestus via autodis-
semination of pyriproxyfen. It also offers proof that steri-
lized An. funestus can transfer pyriproxyfen sufficient to 
prevent adult emergence at its habitats. These promising 
findings warrant further assessment of the autodissemi-
nation of pyriproxyfen in controlling wild population of 
An. funestus, and emphasize its potential in complement-
ing LLINs.
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