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Abstract 

Background Glucose‑6‑phosphate dehydrogenase deficiency (G6PDd) is an X‑linked disorder affecting over 400 mil‑
lion people worldwide. Individuals with molecular variants associated with reduced enzymatic activity are suscep‑
tible to oxidative stress in red blood cells, thereby increasing the risk of pathophysiological conditions and toxicity 
to anti‑malarial treatments. Globally, the prevalence of G6PDd varies among populations. Accordingly, this study 
aims to characterize G6PDd distribution within the Ecuadorian population and to describe the spatial distribution 
of reported malaria cases.

Methods Molecular variants associated with G6PDd were genotyped in 581 individuals from Afro‑Ecuadorian, 
Indigenous, Mestizo, and Montubio ethnic groups. Additionally, spatial analysis was conducted to identify significant 
malaria clusters with high incidence rates across Ecuador, using data collected from 2010 to 2021.

Results The A‑ c.202G > A and A‑ c.968T > C variants underpin the genetic basis of G6PDd in the studied popu‑
lation. The overall prevalence of G6PDd was 4.6% in the entire population. However, this frequency increased 
to 19.2% among Afro‑Ecuadorian people. Spatial analysis revealed 12 malaria clusters, primarily located in the north 
of the country and its Amazon region, with relative risks of infection of 2.02 to 87.88.

Conclusions The findings of this study hold significant implications for public health interventions, treatment strate‑
gies, and targeted efforts to mitigate the burden of malaria in Ecuador. The high prevalence of G6PDd among Afro‑
Ecuadorian groups in the northern endemic areas necessitates the development of comprehensive malaria eradica‑
tion strategies tailored to this geographical region.
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Background
Glucose-6-phosphate dehydrogenase (G6PD) is an evo-
lutionary conserved enzyme associated with the pentose 
phosphate pathway. As an oxidoreductase, it generates 
reduced nicotinamide adenine dinucleotide phosphate 
(NADPH) as a byproduct of glucose oxidation [1]. This 
metabolite plays an essential role in cellular reactions 
against oxidative stress, as NADPH regenerates reduced 
glutathione, a potent antioxidant that protects the cell 
from reactive oxygen species like hydrogen peroxide [2].

G6PD deficiency (G6PDd) is an X-linked disorder char-
acterized by reduced enzymatic activity. This reduction 
primarily stems from molecular variants, which adversely 
affect the enzyme’s stability. Over 200 mutations have 
been identified in the G6PD gene to date, with most of 
them being single nucleotide variants (SNVs) [3]. The 
World Health Organization classifies each allelic variant 
of G6PD into one of five levels, considering the percent-
age of reduction in enzymatic activity [4]. While the class 
I Harilaou c.648G (rs137852319) variant represents the 
most severe deficiency mutation, classes IV and V repre-
sent the least severe. The class II Mediterranean c.563T 
(rs5030868) variant leads to a residual G6PD activity of 
less than 10%; carriers of this deficiency are more likely to 
develop diseases triggered by intrinsic or extrinsic oxida-
tive stressors [5]. Class III variants c.202  A (rs1050828) 
and c.968 C (rs76723693) retain a range of activity from 
10 to 60%. Since these latter classes decrease G6PD activ-
ity, their presence is associated with acute hemolytic ane-
mia. Class IV c.376G (rs1050829) is related to enzymatic 
activity from 60 to 100%, which is considered normal 
enzyme activity [6].

Reduced activity of G6PD affects NAPDH homeostasis, 
particularly in red blood cells, leading to varying condi-
tions based on enzyme activity levels [7]. Individuals 
might remain asymptomatic until exposed to oxidative 
stressors like high consumption of fava beans (favism). 
A significant activity reduction can cause chronic non-
sphaerocytic haemolytic anaemia, presenting symptoms 
like jaundice and splenomegaly [8]. In children, G6PDd-
related haemolytic anaemia symptoms include fatigue 
and irritability [9], while in adults, manifestations vary 
based on genetic variations and deficiency severity. Typi-
cally, treating haemolytic anaemia involves removing the 
triggering factor, like certain drugs or fava beans [10].

G6PDd also has significant implications in the con-
text of malaria, particularly in terms of treatment 
efficacy and the development of toxicity-associated con-
ditions. The recommended treatment drug for eliminat-
ing Plasmodium vivax hypnozoites and Plasmodium 
falciparum gametocytes is the 8-aminoquinoline drug 
family, including primaquine and tafenoquine. G6PDd 
individuals generate toxicity upon administration of 

these drugs, probably due to an imbalance in the redox 
reactions within blood cells, favouring the formation of 
highly reactive oxidized metabolites of primaquine [11]. 
Patients receiving treatment for P. vivax malaria are at a 
higher risk of developing haemolytic anaemia because 
of the increased dose of primaquine they receive (0.25–
0.5  mg over a 14-day treatment period), compared to 
those with P. falciparum malaria (a single dose of 0.25 mg 
on the first day of treatment) [12]. While higher doses of 
primaquine effectively clear primary infections and pre-
vent relapse in P. vivax patients compared to lower doses, 
there are inherent risks due to factors the unknown 
G6PD levels in many patients [13, 14].

The diversity of genetic factors contributing to G6PDd 
is closely linked to ethnogeography. The reduced function 
Mediterranean c.563T variant is prevalent in the Mid-
dle Eastern and Southern Italy. Similarly, the Mediter-
ranean together with the Seattle c.844  C (rs137852318) 
variants are prevalent for European groups, with allelic 
frequencies for the minor allele (MAFs) of 0.07% and 
0.11% respectively [15, 16]. In Asia, although the Mahidol 
c.487  A (rs137852314) variant is the best-characterized 
and is considered predominant across Myanmar and 
Thailand [17, 18], additional variants are described in dif-
ferent regions of the continent. Thus, the Canton c.1376T 
(rs72554665) and Kaiping c.1388  A (rs72554664) vari-
ants are frequent in East Asia (MAF of 1.1% and 0.7%, 
respectively), while the Mediterranean (1.74%) and Ker-
ala c.949  A (rs137852339) variants are frequent in the 
south, with frequencies of 1.74% and 1.14%, respectively 
[19]. The African A-haplotype, formed by the combina-
tion of the c.202  A/c.376G (rs1050828/rs1050829) or 
c.968  C/c.376G (rs76723693/rs1050829) variants, are 
majority for African populations (MAFs = of 11.6–0.24%, 
and 0.5% respectively) and for Latin American popula-
tions (MAFs of 0.4% and 0.08% respectively [15, 20, 21]. 
These molecular markers largely describe G6PD defi-
ciency for these population groups.

In Latin America, malaria is considered endemic, 
especially in coastal and Amazonian areas, where both 
P. vivax and P. falciparum are prevalent [22, 23]. Even 
though G6PDd frequencies in Latin America are rela-
tively low, with mean frequencies of ≤ 1% observed in 
Mexico, Guatemala, Peru, Bolivia, Uruguay, Chile, and 
Argentina, the highest prevalence is found in the Carib-
bean islands, French Guiana, Suriname, Guyana, north-
western Venezuela, and the Pacific coastal regions of 
Colombia, where the estimated prevalence exceeds 10%. 
In the Amazon region, prevalence estimates range from 
4% in southern areas to 10% along the border with Guy-
ana [24]. Although malaria has been nearly eradicated 
in Ecuador, it is still considered endemic, with occa-
sional outbreaks caused by both parasites (P. vivax and P. 
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falciparum) [25, 26]. Previous studies conducted on Afro-
descendant groups in Ecuador indicate G6PDd rates of 
approximately 12–14% [27, 28]. However, these studies 
were limited to specific geographic regions, involved a 
small number of participants, and did not apply an accu-
rate genetic screening strategy covering the main phar-
macogenetic variants associated with G6PDd. Hence, the 
objective of this study was to analyse the molecular vari-
ants of G6PD associated with reduced enzymatic activ-
ity in various ethnic groups across Ecuador through a 
genetic screening approach employing Sanger sequenc-
ing, targeting multiple coding region sequences of the 
G6PD and with a specific focus on prevalent variants 
such as African A- c.202 A, A- c.968 C, and Mediterra-
nean c.563T. The aim is also to provide a spatial distri-
bution of reported malaria infections thus far. Describing 
the allelic and genotypic frequencies of G6PD molecular 
variants associated with decreased enzymatic activity 
will not only enrich the genetic characterization of this 
diverse Latin American population, but will also aid in 
the development of genetic screening strategies to iden-
tify individuals with G6PDd. The findings of this study 
will have implications for improving anti-malarial drug 
therapy in the Ecuadorian population, particularly for 
those groups residing in areas where malaria is endemic.

Methods
Sample collection
The sampling process was conducted during the period 
2017 to 2018, and a total of 292 healthy men and 289 
healthy women of Ecuadorian nationality, unrelated and 
of legal age, were included in the study. On the contrary, 
people who did not have Ecuadorian nationality, minors, 
and people sharing first-generation ancestors, were 
excluded from the study. To assess genetic diversity in 
current Ecuadorian populations, participants from the 3 
main regions of Ecuador were considered: Coast (CO), 
Andes (HG), and Amazonia (AZ). In addition, ethnic self-
determination was considered, and the sampled individu-
als were classified into 4 ethnic groups: Afro-Ecuadorian 
(AFE), Indigenous (IND), Mestizo (MEZ), and Montubio 
(MON). The MEZ group was sampled in the provinces 
of: El Oro, Esmeraldas, Guayas, Los Ríos, Manabí, Santa 
Elena, and Santo Domingo (CO); Azuay, Bolívar, Carchi, 
Cañar, Chimborazo, Cotopaxi, Imbabura, Loja, Pichin-
cha, and Tungurahua (HG); and Morona Santiago, Napo, 
Pastaza, and Sucumbíos (AZ). The Montubio group was 
limited to the provinces of Los Ríos and Manabí (CO 
region). IND groups were selected from the provinces 
of: Chimborazo, Cotopaxi, and Imbabura (HG region); 
Morona Santiago, Napo, Pastaza, Orellana, and Zamora 
Chinchipe (AZ region); and Santo Domingo (CO region). 
Finally, the AFE groups were included from the provinces 

of: Esmeraldas province (CO region); and Imbabura and 
Carchi (HG region).

Each participant signed an informed consent form for 
population genetic studies. The applied experimental 
methodology was approved by the Ethical Committee in 
Human Research from the Universidad de las Américas, 
with registration number CEISH-UDLA 2017 - 0301.

DNA extraction
Genomic DNA was extracted from blood samples using 
the salting-out method [29]. DNA was quantified using 
a NanoDrop ND-1000 Spectrophotometer (NanoDrop 
Technologies, Willmington, DE, USA) at 260  nm. The 
quality of the genetic material was evaluated by the 
absorbance values at 280 and 230 nm, and by electropho-
resis in 1% agarose gel.

Genotyping of G6PD SNVs and statistical analysis
For the design of the primers, 4 classes of SNVs related 
to a decreased enzymatic activity of G6PD were con-
sidered, and the Primer-BLAST tool was used (https:// 
www. ncbi. nlm. nih. gov/ tools/ primer- blast/), reference 
sequence NG_009015.2 (GRCh38.p13). The ampli-
fied regions included the class I Harilaou c.648T > G 
(rs137852319) variant, the class II Mediterranean 
c.563  C > T (rs5030868) variant, the class III A- 
c.202G > A (rs1050828) and A- c. 968T > C variants, and 
the class IV SNV A- c.376 A > G (rs1050829). In addition, 
the SNVs c.1365-13  C > T (rs2071429) and c.1431  C > T 
(rs77214077) described as likely benign were screened.

PCR reaction was performed with the GoTaq® Green 
Master Mix (Promega, Madison, Wisconsin, USA) in a 
final volume of 15 µl, with 0.3 µMol of each primer and 
~ 20 ng of genomic DNA. Amplified products were tested 
by electrophoresis in a 2% agarose gel and purified using 
exonuclease I (Exo I) and alkaline phosphatase (FastAP™) 
(Thermo Scientific™) according to the manufacturer’s 
standard protocol.

Sequencing reactions were performed using the Big-
Dye® Terminator v3.1 Cycle Sequencing Kit (Applied 
Biosystems, Austin, TX, USA), following the manufac-
turer’s instructions. Within the reaction, a final concen-
tration of 1 µM of primer was used in a volume of 10 µl. 
Next, amplicons were purified using Sephadex G-50 Fine 
(GE Healthcare) and run in an ABI 3130 Genetic Ana-
lyzer 142 (Applied Biosystems, Foster City, CA, USA). 
Finally, the sequences were aligned and analysed in the 
software Geneious Prime, version 2022.1.1.

Population genetic parameters, such as allele frequen-
cies, gene diversity, Hardy-Weinberg Equilibrium (HWE), 
pairwise genetic distances  (FST), and analysis of molecu-
lar variance (AMOVA), were calculated using Arlequin 
software v.3.5.2.2. HWE analysis was performed only for 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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females, and LD analysis in males. The significance level 
of 0.05 was adjusted by applying Bonferroni’s correction 
for multiple tests.

From the  FST indices, a cluster analysis was applied to 
evaluate the degree of association between the popula-
tion groups studied, using the Euclidean distance and 
Ward’s method for grouping. For the visualization of 
these data, heatmaps and dendrograms were developed 
in RStudio.

Spatial analysis and statistical methods
A spatial cluster analysis was conducted to identify sig-
nificant malaria clusters with high incidence rates across 
Ecuador, following the methodology described in pre-
vious studies [30, 31]. The analysis used the National 
Archive of Data and Statistical Metadata of the Ecuado-
rian National Institute of Statistics and Censuses (INEC) 
[32]. This study encompassed all documented malaria 
cases, categorized by canton and ICD-10 identification 
code, covering the time frame from 2010 to 2021. Inci-
dence rates were adjusted based on population projec-
tions by year and sex, using exact 95% Poisson confidence 
intervals. These rates were reported in terms of abso-
lute numbers of new cases and relative rates per 100,000 
members of the population.

By comparing the reported cases with the spatial coor-
dinates of each canton, the occurrence of cases in dif-
ferent areas was assessed using a Poisson distribution. 
Spatial clustering was evaluated by comparing the inci-
dence rates in specific areas to the expected rate if cases 
were randomly distributed. The statistical significance of 
spatial clusters was determined using a likelihood test, 
with 999 Monte Carlo simulations employed to calcu-
late the associated p-values. Any spatial clusters with a 
p-value below 0.05 were considered statistically signifi-
cant. Additionally, the Gini coefficient [33] was used to 
make further selections among the significant clusters.

The identification of statistically significant spatial clus-
ters was carried out using SATSCAN (version 10.1.2). 
Spatial analyses were performed using QGIS software 
(version 3.32.0), while the calculation of incidence rates 
was performed using the Epitools package, R version 
4.1.3.

Results
G6PD genotyping
Five regions in G6PD were amplified to genotype previ-
ously described variants using the primers described in 
Additional file  1: Table  S1.  In the screened Ecuadorian 
population, the presence of class III and class IV vari-
ants is observed, while no polymorphic genotypes are 
recorded for class I Harilaou (c.648T > G) or class II 

Mediterranean (c.563  C > T) variants (Additional file  1: 
Table S2).

The class III A- c.202G > A and class IV A- c.376 A > G 
variants are the most prevalent in the AFE groups when 
compared to other G6PD variants in the total population. 
The MAFs in AFE from the HG (Imbabura and Carchi), 
and the CO (Esmeraldas) reach 0.143 and 0.304 respec-
tively. On the other hand, only one AFE heterozygous 
individual was recorded in the province of Esmeraldas 
for the SNV A- c.968T > C (rs76723693). Additionally, 
a high prevalence was observed for the intronic variant 
c.1365-13  C > T (rs2071429) in the Ecuadorian popula-
tion (MAF = 0.701). Allele frequencies of 0.358 and 0.021 
are recorded for the minor allele of variants class IV 
c.1116G > A (rs2230036) and c.1431  C > T (rs77214077) 
respectively (Fig. 1).

Hardy Weinberg equilibrium, pairwise genetic distances 
and AMOVA
The HWE analysis for the Ecuadorian female population 
shows statistical differences for loci A- c.202G > A, A- 
c.968T > C, c.1116G > A, and c.1365-13  C > T (p < 0.001). 
However, these differences disappear when considering 
ethnic self-determination and when developing the anal-
ysis by AFE, IND, MEZ, and MON groups. No statisti-
cally significant deviations from HWE expectations were 
detected for the 6 loci in the studied population when 
considering the groups by ethnic self-determinations and 
geographic location (Additional file 1: Table S3).

The pairwise analysis shows a high degree of differen-
tiation between Ecuadorian ethnic populations when 
calculating  FST indices, especially between AFE and 
each of the three other populations: IND  (FST = 0.222, 
p = < 0.0001), MEZ  (FST = 0.278, p = < 0.0001) and MON 
 (FST = 0.172, p = < 0.0001). When considering the dis-
tribution of ethnic groups by geographic region, there 
is a certain degree of differentiation between MEZ pop-
ulations in the HG and those in the CO  (FST = 0.0145, 
p = 0.04505) (Additional file 1: Table S4). The high degree 
of divergence between AFE and the other Ecuadorian 
ethnic groups is evident in the dendrogram generated 
(Fig.  2). This differentiation was confirmed by applying 
an AMOVA between the ethnic groups studied. The cal-
culated variability between AFE, MEZ, IND, and MON 
groups is 19.16, while within geographic groups it is 
80.01.

Prevalence of G6PD deficiency in ecuadorian ethnic groups
The genotyping results for the Ecuadorian population 
show the presence of class III A- c.202 A and A- c.968 C, 
and class IV A- c.376G alleles. The A- c.376G allele by 
itself is not considered a variant that induces a deficiency 
in the enzymatic activity of G6PD, but in association 
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with A- c.202  A or A- c.968  C it leads to the deficient 
enzyme. Furthermore, heterozygous females who carry 
the minor allele can be regarded as deficient patients due 
to epigenetic X-chromosome inactivation [34]. Due to 

the recessive X-linked inheritance of the G6PD gene and 
in order to estimate population deficiency by provinces, 
the calculation incorporated both hemizygous men for 
A- c.202  A and heterozygous and homozygous women 
for the A- c.202 A and A- c.968 C alleles. The calculated 
prevalence of G6PDd in the general Ecuadorian popula-
tion is 0.046. However, when analysing the distribution 
by ethnic self-identification, it is observed that the AFE 
population presents a higher frequency (0.192) than the 
IND groups (0.014). For MEZ and MON populations, 
individuals with diminished phenotypes are not recorded 
(Additional file 1: Table S5).

Spatial distribution of malaria cases and G6PD deficiency 
in Ecuador
From 2010 to 2021, 2,277 malaria hospitalized cases were 
reported in Ecuador. 1,351 were males and 925 were 
females. The average annual incidence rate was 1.16 cases 
per 100,000 inhabitants ([1.11;1.21] 95% Poisson confi-
dence intervals). The yearly evolution of hospital records 
showed a decline in the incidence of malaria through the 
years (Fig. 3). Poisson regression indicated a negative sig-
nificant association of malaria cases with recent years 
(p < 0.00001).

Fig. 1 Schematic representation of the G6PD gene and the pharmacogenetic variants screened in the Ecuadorian population. The schematic 
diagram shows the exonic (black boxes) and intronic regions of the G6PD gene. The amplified regions are indicated with boxes in pink (at 
the bottom of the figure). The stacked bar chart shows the allele frequencies for the minor allele of the total Ecuadorian population (ECU) 
and for the Afro‑Ecuadorian (AFE), Indigenous (IND), Mestizo (MEZ), and Montubio (MON) ethnic groups

Fig. 2 Genetic structure of the Ecuadorian ethnic groups evaluated 
by pairwise  FST analyses. Dendrogram and heat map generated 
from  FST genetic distances.  FST values were calculated from SNVs 
found in the G6PD gene. The four Ecuadorian ethnic groups 
(Afro‑Ecuadorian: AFE; Indigenous: IND; Mestizo: MEZ; and Montubio: 
MON) and their geographic distribution (Coast: CO; Highlands: HG; 
and Amazon Region: AZ) are considered
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From the reported hospitalized cases, a total of twelve 
significant clusters of malaria infection in Ecuador 
were identified, 4 of these as single spots and 8 as spa-
tial clusters (Additional file  1: Table  S6). The clusters 
with the highest relative risk rates (RR) are identified as 
single spots in the CO region, specifically the provinces 
of Esmeraldas (RR = 87.88, p = 0.0001) and Los Ríos 
(RR = 12.92, p = 0.0001), and as a spatial cluster in AZ, 
namely the provinces of Pastaza and Morona Santiago 
(RR = 11.81, p = 0.0001). The remaining clusters exhibit 
similar relative risk rates, ranging from 2.05 to 3.09 
(Fig. 4A).

As shown in Fig.  4B, the spatial clusters primarily 
concentrate in the centre-north CO and AZ regions. By 

comparing the distribution of these clusters with the cal-
culated prevalence of G6PDd for the entire population, 
notable observations can be made. Specifically, the clus-
ters located in the provinces of Esmeraldas (clusters 1 
and 11) and Carchi (cluster 8) are situated in geographic 
regions where a prevalence of G6PD deficiency is evident 
in genotyped individuals. In contrast, the clusters identi-
fied in AZ (clusters 3, 4, 10, and 12) and CO-HG region 
(clusters 2, 4, 5, 6, 7, and 9) are located in provinces with 
low prevalence of G6PD deficiency.

Discussion
MAFs for the SNVs in G6PD show differences across 
the groups studied. The HWE analysis reveals statisti-
cal differences for the A- c.376  A > G, A- c.968T > C, 
c.1116G > A, and c.1365-13 C > T loci in the total popula-
tion. However, these disparities disappeared upon analy-
sis by ethnic group, suggesting a potential substructure 
[35]. This divergence is corroborated by clustering anal-
ysis and calculated  FST values (Fig.  2). In particular, the 
AFE group exhibits a high genetic divergence compared 
with the NAM, MEZ, and MON groups. Nonetheless, no 
significant differences were observed between the AFE 
subgroups of CO and HG regions. These results align 
with previous findings on pharmacogenetic variants in 
the Ecuadorian population [36], indicating that genetic 
variability in the G6PD allows a genetic characterization 
of the different ethnicities present in Ecuador.

G6PDd is one of the most common inherited disorders, 
affecting approximately 400  million people worldwide, 

Fig. 3 Incidence of hospitalized cases of malaria in Ecuador 
during the years 2010–2021

Fig. 4 Spatial distribution of malaria cases and G6PD deficiency in Ecuador. A Relative risk for malaria clusters identified in Ecuador. B Spatial 
distribution of malaria clusters and frequency of G6PD deficiency in the Ecuadorian population
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representing 4.87% of the global population [37]. This 
deficiency shows significant variation in its prevalence, 
being almost nonexistent in the original Amerindian 
populations and reaching 20% or more in parts of Africa 
and Asia [38]. In addition, the distribution of variants 
associated with a decrease in G6PD enzymatic activ-
ity presents a distinctive pattern in populations world-
wide. The A- c.202G > A and A- c.968T > C variants are 
predominant in Afro-descendant groups, whereas the 
Mediterranean G6PD variant c.563 C > T is predominant 
in West Asia [21]. In this study, it was identified the pres-
ence of class IV A- c.376 A > G and class III A- c.202G > A 
and A- c.968T > C variants, associated with moderate and 
severe deficiency, respectively. As reported, the class III 
A- c.202  A allele is the most common in Latin Ameri-
can groups, and together with A- c.968  C, it represents 
the genetic basis of the deficiency in more than 90% of 
individuals throughout the region [21, 22, 24]. These 
variants are predominantly found in AFEs, aligning with 
the global distribution where Afro-descendant popula-
tions exhibit higher frequencies of A- c.202G > A and A- 
c.968T > C variants compared to European, Asian, and 
Indigenous North and South American populations [15, 
39]. The presence of these pharmacogenetic markers in 
this group may be attributable to the transatlantic slave 
trade from West African populations. Conversely, the 
absence of European G6PDd variants in the studied pop-
ulation is consistent with its genetic basis, especially con-
sidering that the European ancestral genetic contribution 
is not predominant in the general population [40–43].

The main objective of this study is to determine the 
prevalence of G6PDd in different Ecuadorian ethnic 
groups, which together with the identification of malaria 
clusters, can facilitate the implementation of effective 
treatment strategies and significantly reduce the likeli-
hood of toxicity associated with the use of anti-malar-
ial therapies. From 2006 to 2018, a total of 9,429 cases 
of Plasmodium sp. were documented in Ecuador [44]. 
Malaria-endemic regions are primarily located along 
the Pacific coast in western Ecuador, the inter-Andean 
valleys in central Ecuador, and the Amazon River basin 
in the eastern part of the country [45]. This distribution 
is consistent with the spatial clusters identified in this 
study. Specific provinces highlighted as major geographic 
foci of infection, such as Esmeraldas, Imbabura, Carchi, 
and AZ provinces, provide valuable information for tar-
geted surveillance, prevention, and control efforts. This 
knowledge enables the allocation of resources to areas of 
greatest need, including improved access to diagnostic, 
treatment, and vector control measures.

It is noteworthy that Ecuador, like many South Ameri-
can countries excluding Venezuela, has witnessed a sig-
nificant decrease in malaria prevalence in recent years, 

and most cases are now reported as asymptomatic [22, 
46]. The study found a significant reduction in malaria 
incidence, as evidenced by hospital records over the years 
(Fig. 3). While this decline is a positive development for 
the population, it presents a challenge, as untreated cases 
in endemic regions act as crucial reservoirs for ongoing 
disease transmission. Although occasional outbreaks of 
P. falciparum are reported in Ecuador [47], the primary 
cause of malaria cases can be attributed to P. vivax. Spe-
cifically, along the northern coast of Ecuador, P. vivax 
accounts for 97.9% of infections, with P. falciparum 
accounting for 2.1% [26]. A similar pattern is observed 
in the Lower Napo region, where P. vivax is the domi-
nant parasite, responsible for 92% of reported cases [48]. 
Considering this distribution of Plasmodium species, it 
is crucial to implement effective pharmacological strat-
egies. The recommended primary prophylaxis strategy 
against P. vivax involves the use of primaquine, which is 
also recommended as a first-line treatment in eliminat-
ing P. vivax hypnozoites and P. falciparum gametocytes 
[49–52]. According to the Ministry of Public Health of 
Ecuador [53], the recommended protocol for malaria 
treatment includes the utilization of 8-aminoquinoline 
drugs, with a specific focus on primaquine as a comple-
mentary therapeutic agent. In cases of non-complicated 
malaria caused by P. falciparum, the primary treatment 
entails TCA (artemether + lumefantrine), coupled with 
a single administration of primaquine at a dosage of 
0.75  mg per kilogram of body weight. In cases of non-
complicated malaria due to P. vivax or Plasmodium ovale, 
the treatment strategy consists of 3-day administration 
of chloroquine accompanied by a 14-day regimen of pri-
maquine at a dosage of 0.5 mg. It is important to exercise 
caution with chloroquine and hydroxychloroquine due to 
their potential anti-malarial efficacy in inducing oxida-
tive stress through the generation of haem-based reactive 
oxygen species [20, 54]. Individuals with G6PDd should 
be especially careful as they are at an elevated risk of 
adverse effects [55, 56].

In Ecuador, different ethnic groups show a specific 
spatial distribution due to historical and social events, 
which places special value on the present study. The 
effects of G6PDd in malaria-exposed populations of dif-
ferent ethnic origins can be characterized with less bias 
than in other regions where ethnic groups are mixed, 
or where there is dynamic variation among them. As 
shown in Fig. 4B, the deficiency calculated by the alleles 
A- c.202  A and A- c.968  C is geographically and eth-
nically limited, and is concentrated in the north of the 
country, specifically in Esmeraldas (CO region) along 
with Imbabura and Carchi (HG region). In contrast, the 
IND groups within the AZ do not exhibit markers asso-
ciated with G6PDd. Considering the spatial relationship 
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found between malaria foci and G6PDd distribution, 
treatment strategies should be tailored to AFE groups 
distributed in the northern region of the country.

The complex interplay between genetics, ethnic-
ity, and disease susceptibility, shaped by historical and 
societal influences on malaria distribution and genetic 
factors such as G6PDd, offers invaluable insights. 
Understanding these dynamics can guide the develop-
ment of culturally sensitive strategies for malaria pre-
vention and control, considering the diverse needs and 
vulnerabilities of different ethnic groups. Patient man-
agement requires careful consideration of the individ-
ual risk/benefit ratio in determining the most suitable 
treatment approach. In order to mitigate the occur-
rence of adverse clinical outcomes associated with 
anti-malarial drugs, it is essential to know the patient’s 
G6PD status prior to prescribing any 8-aminoquino-
line-based drug [57]. For example, a safer alternative for 
treating identified G6PDd-positive cases could involve 
administrating primaquine at a dose of 0.75  mg/kg/
week for a period of 8 weeks. Considering the relation-
ship found between foci of infection and deficiency 
in the north of the country, it is vital to develop and 
implement screening methods to ensure the safe and 
effective use of anti-malarial drugs, thus minimizing 
the potential risks of drug-induced toxicity [58, 59]. 
By incorporating genetic screening into the treatment 
approach, healthcare professionals can tailor treatment 
plans to improve patient safety and optimize therapeu-
tic outcomes.

This study provides for the first time the prevalence 
and distribution of genetic variants associated with 
G6PDd within the Ecuadorian population, encompass-
ing its four primary ethnic groups. However, there are 
inherent limitations. The sample size of 581 individu-
als might not capture the full genetic diversity of the 
population, suggesting that a larger sample could offer 
a more comprehensive insight into G6PDd and its 
relation to malaria patterns in Ecuador. Similarly, the 
employed methodology facilitated a genetic screen-
ing for prevalent variants in G6PDd that hold predic-
tive value in malaria treatment. While several coding 
regions of the gene were screened (9 out of 13 exons), 
the need remains for forthcoming studies to employ 
high-throughput sequencing techniques and broaden 
the coverage of genotyping. Lastly, the spatial cluster 
analysis relied on publicly available data, which might 
be prone to reporting biases or data gaps, further exac-
erbated by the COVID-19 pandemic. Although the cal-
culated incidence rate shows a decreasing trend in all 
the years analysed, the possible biases introduced dur-
ing this pandemic period highlight the need for a cau-
tious interpretation of the findings.

Conclusions
The genotyping analysis of the G6PD gene identified 
the presence of class III A- c.202G > A (rs1050828) and 
A- C.968T > C (rs76723693) variants, both of which are 
associated with a reduction in G6PD enzymatic activ-
ity. The frequency of these variants differed between 
the studied Ecuadorian ethnicities, with the AFE groups 
showing the highest prevalence. Evaluating G6PDd has 
significant implications for the population in question, 
especially in light of the spatial distribution of reported 
malaria cases in Ecuador and the distribution of G6PDd 
molecular variants. Twelve clusters as endemic malaria 
areas in Ecuador were identified, mainly distributed 
along the northern coast (Esmeraldas), in the Andean 
region (Carchi), and the Amazon region (Sucumbíos, 
Orellana, Pastaza, and Morona Santiago). Given the high 
prevalence of G6PDd in AFE groups (19.2%) located in 
the northern (both the coastal and the Andean region) 
of the country, coupled with the elevated rates of malaria 
infection identified in this geographic region (a rela-
tive risk ranging from 2.06 to 87.88), there is a pressing 
need to implement genetic screening strategies within 
these ethnic communities. This would mitigate toxicity 
risks when administrating anti-malarial therapies. The 
integration of genetic screening into patient manage-
ment enables health professionals to optimize treatment 
plans, improve patient safety, and enhance therapeutic 
outcomes.
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