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Abstract 

Background Malaria, a major cause of mortality worldwide is linked to a web of determinants ranging from individ-
ual to contextual factors. This calls for examining the magnitude of the effect of clustering within malaria data. Regret-
tably, researchers usually ignore cluster variation on the risk of malaria and also apply final survey weights in multilevel 
modelling instead of multilevel weights. This most likely produces biased estimates, misleads inference and low-
ers study power. The objective of this study was to determine the complete sources of cluster variation on the risk 
of under-five malaria and risk factors associated with under-five malaria in Uganda.

Methods This study applied a multilevel-weighted mixed effects logistic regression model to account for both indi-
vidual and contextual factors.

Results Every additional year in a child’s age was positively associated with malaria infection (AOR = 1.42; 95% CI 
1.33–1.52). Children whose mothers had at least a secondary school education were less likely to suffer from malaria 
infection (AOR = 0.53; 95% CI 0.30–0.95) as well as those who dwelled in households in the two highest wealth quin-
tiles (AOR = 0.42; 95% CI 0.27–0.64). An increase in altitude by 1 m was negatively associated with malaria infection 
(AOR = 0.98; 95% CI 0.97–0.99). About 77% of the total variation in the positive testing for malaria was attributable 
to differences between enumeration areas (ICC = 0.77; p < 0.001).

Conclusions Interventions towards reducing the burden of under-five malaria should be prioritized to improve 
individual-level characteristics compared to household-level features. Enumeration area (EA) specific interventions 
may be more effective compared to household specific interventions.
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Background
Malaria, a major cause of mortality worldwide [1] is 
caused by protozoa of the genus Plasmodium [2]. Within 
the two years of the start of COVID-19 pandemic, 
malaria endemic countries, Uganda inclusive, reported 
more than 101 million cases [3]. Uganda emerges as one 
of the six countries that account for more than half of all 
malaria cases worldwide [4] where children under five 
years of age are the most vulnerable group [5].
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Malaria is linked to a web of determinants ranging 
from individual to contextual [6–9]. Hence, it’s vital to 
take advantage of the opportunity provided by malaria 
data, to critically examine the magnitude of the effect of 
clustering of data points [10].

Issues that researchers usually overlook while model-
ling multilevel data based on complex survey design are; 
use of final survey weights (single level weights that are 
only appropriate for single level analysis) instead of mul-
tilevel weights or level-specific weights [11] and ignoring 
cluster variation on the risk of study outcomes/diseases 
[12]. This most likely produces biased estimates, mis-
leads inference and lowers study power. Besides, it is 
critical to consider several metrics like ICC as it was the 
case of this study, to identify risk factors of disease and 
derive appropriate public health interventions while ana-
lysing data from multilevel study designs [13]. Failure to 
do so can lead to inappropriate interventions for preven-
tion and control of diseases like malaria and associated 
adverse consequences. Although some studies based on a 
multilevel design have adjusted for clustering in the data, 
a number of them have not considered determining the 
complete sources of cluster variation on malaria which 
may be an important statistic to guide critical levels of 
public health interventions and future study designs [14, 
15].

The objective of this study was, therefore, to deter-
mine the complete source of cluster variation on the risk 
of malaria, and to identify risk factors associated with 
under-five malaria in Uganda.

Methods
Data source and study population
This study made use of secondary data based on a two-
stage cluster and stratified sampling technique from the 
Uganda Malaria Indicator Survey (UMIS) of 2018/19. 
The first stage of sampling involved selecting sample 
points (clusters) from the sampling frames. A total of 
320 clusters were selected with probability proportional 
to size from the enumeration areas (EAs) covered in the 
2014 National Population and Housing Census (NPHC). 
The second stage of sampling involved systematic selec-
tion of households. Twenty-eight households were 
selected from each EA, for a total sample size of 8,878 
households. The primary objective of the 2018–19 UMIS 
is to provide up-to-date estimates of basic demographic 
and health indicators related to malaria. Specifically, the 
2018/19 UMIS collected information on vector control 
interventions such as mosquito nets and indoor residual 
spraying of insecticides, on intermittent preventive treat-
ment of malaria in pregnant women, on care-seeking and 
treatment of fever in children, and malaria knowledge, 
behaviour, and practices. All women age 15–49 who were 

either permanent residents of the selected households 
or visitors who stayed in the household the night before 
the survey were eligible to be interviewed. After a par-
ent’s or guardian’s consent was obtained, children age 
0–59 months were tested for anaemia and malaria infec-
tion. The study population consisted of 7,632 children 
less than 5 years of age who were tested for anaemia and 
malaria infection by a team of two health technicians, 
respectively [16]. The selection of the final study sample 
is as shown in Fig. 1.

Analysis model
The dataset was first explored for preparation purposes. 
Before any analysis was conducted, the data were sorted, 
some variables recoded while other variables and some 
observations that were not of interest to the research 
problem were eliminated. Categorical variables were 
represented as counts and percentages. Collinearity was 
assessed among independent variables using a correla-
tion matrix. Variables with correlation coefficient of 0.4 
and above were not included in the same model. The 
survey design estimation command (svy) in Stata 15.0 
(StataCorp, College Station, TX) was used to conduct 
descriptive analysis, accounting for the level weights. The 
level of statistical significance was p < 0.05 for all analyses. 
Overall, four multivariable models were considered; the 
first model neither adjusted for weighting nor cluster var-
iation in the risk of under-five malaria; the second model 
only adjusted for cluster variation; the third model only 
adjusted for weighting; and the forth model adjusted for 
both weighting and cluster variation. A model was, there-
fore, considered to best fit the data if it had lower design 
factor (deft) values in general. Lower deft values are asso-
ciated with lower loss of precision of model estimates 
[17]. The design factor (deft) was calculated as follows:

where; deff  is the design effect. rho is the intra-class cor-
relation for the variable in question. n is the size of the 
cluster.

To assess the association between malaria infection 
in under-five children and individual, household, and 
enumeration area factors, a multilevel-weighted mixed 
effects logistic regression model (chosen among the four 
compared models as the best model) was specified to 
account for contextual within-household and within-EA 
correlations [18–20]. The model is represented as below:

deft =
√

deff =

√

1+ rho(n− 1)

ln

(

pijk

1− pijk

)

= β0 + β1Xijk + ηk + ξjk
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where; ln is the natural logarithm. pijk is the probability 
of testing positive for malaria for the ith under 5-year-old 
child in household j and EA k.
β0 is the mean log-odds of malaria across household 

and EA.
Xijk is a level 1 covariate for the ith child in household 

j and EA k.
β1 represents the slope associated with Xijk which rep-

resents the relationship between the level 1 covariates 
and the log-odds of malaria.
ηk is the random effect for EA k.
ξjk is the household random effect.
Bivariate multilevel weighted-mixed effects logistic 

regression was conducted, using each of the individual, 
household, and community level risk factors as predic-
tors and malaria test result as the outcome. Individual 
predictors with p < 0.20 were considered for inclusion in 
the multivariable multilevel logistic regression models. 
The multivariable analysis was conducted in a sequen-
tial process resulting into several models. Model 0 (the 
null model) was fitted to decompose the total variance 
of malaria risk between the cluster and level-1 covari-
ates. It only included the random intercept to assess EA 
and household contribution to malaria risk before add-
ing explanatory variables. The null model established the 
degree of variance at the cluster level in order to validate 
the use of multilevel modeling. Model 1 contains indi-
vidual (level-1) variables; model 2 has household (level-2) 

variables in addition to variables in model 1; model 3 
includes EA (level-3) variables in addition to variables 
in model 2. Model 3 was selected as the final model 
that was used to identify factors associated with malaria 
risk in under-five children since it was the most com-
plete among the three models. To measure the extent to 
which individuals within the same group are more sim-
ilar to each other than they are to individuals in differ-
ent groups, intra-class correlation coefficient (ICC) was 
used [21]. A higher proportion of the ICC was linked to a 
higher general contextual effect [22]. The formula for the 
ICC is presented as below:

where VA is the cluster or area level variance and π2/3 is 
a scalar that corresponds to the individual level variance. 
When the contribution to the overall ICC of a level(s) 
was very low (< 10%) its effect was considered insignifi-
cant and hence, the random effects component(s) at the 
specific level(s) was considered insignificant.

Weighting
Since the sample for this study is a two-stage stratified 
cluster sample, level weights were calculated separately, 
based on sampling probabilities for each sampling stage 
and cluster. In this study, level weights were estimated 
using a framework for approximating level weights in 

ICC =
VA

VA + π2/3

All household members interviewed
45,767

Children aged 0-59 months
8,044

Excluded:
37,723 individuals aged 5 

years and above

Under-five children with malaria test results
7,632

Excluded:
412 children without malaria 

status results

Fig. 1 Flow chart showing selection of the study participants
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Malaria Indicator Surveys (MIS) proposed by the Demo-
graphic Health Survey program [11]. The framework 
required data that is included in the publicly available 
UMIS datasets and final report.

Results
Characteristics of children aged 0–59 months
Overall, children were evenly distributed by sex. On aver-
age, children were aged 29.2 (SD = 17.3) months. Slightly 
more children were anaemic 3939 (51.6%). A higher pro-
portion of households were headed by males 5478 (71.8%) 
and in the two lowest wealth quintiles 4,385 (57.5%) with 
at least five members 5880 (77.1%). Most households did 
not have electricity 4921 (64.5%), had at least one bed net 
6666 (87.4%), but had not sprayed their dwellings within 
the last 12 months of the survey 6601 (86.5%) and were 
in rural areas 5516 (72.3%). Finally, most mothers had 
attained at least primary level of education 5002 (78.7%). 
The rest of the results are presented in Table 1.

Regional variation in prevalence of malaria 
among the under‑five children
Malaria prevalence showed great variability across 
regions. Of the 15 statistical regions in Uganda, five of 
them had malaria prevalence above the national average 
of 21.1%. Prevalence was highest in the West Nile region 
(42.6%), followed by Karamoja region (41.5%), Busoga 
region (39.3%), Acholi region (31.7%) and Lango region 
(22.7%) as shown in Fig. 2.

Factors associated with malaria risk in under‑five children
Table  2 shows results of the multivariable multilevel-
weighted mixed effects logistic regression modelling 
at various levels. It is by this model that risk factors of 
under-five malaria were determined. At the individual 
level, every additional year in a child’s age was associated 
with 42% higher odds of malaria infection (AOR = 1.42; 
95% CI 1.33–1.52). Also, children whose mothers had 
at least a secondary school education had about 47% 
lower odds of malaria infection compared to those 
whose mothers were uneducated (AOR = 0.53; 95% CI 
0.30–0.95).

At household level, children who dwelled in house-
holds in the two highest wealth quintiles had lower odds 
of malaria infection compared to those in the two low-
est wealth quintiles (AOR = 0.42; 95% CI 0.27–0.64). At 
enumeration area level, an increase in altitude by 1 m was 
associated with slightly lower odds of under-five malaria 
infection (AOR = 0.98; 95% CI 0.97–0.99).

The ‘sex of child’ variable was maintained in the final 
model regardless of its statistical insignificance because 
of its biological importance. Variables ‘has bed net’ and 
‘HH sprayed’ were maintained because of their relational 

Table 1 Distribution of under-five children by selected 
background characteristics

Background characteristics Category Count Percent

Sex of child Male 3,870 50.7

Female 3,762 49.3

Age of child  < 1 1,502 19.7

1 1,441 18.9

2 1,502 19.7

3 1,608 21.1

4 1,579 20.7

Anaemia status Not anaemic 3,691 48.4

Anaemic 3,939 51.6

Sex of HH head Male 5,478 71.8

Female 2,152 28.2

Wealth index Poor 4,385 57.5

Middle 1,227 16.1

Rich 2,018 26.5

Has electricity No 4,921 64.5

Yes 2,709 35.5

Has bed net No 964 12.6

Yes 6,666 87.4

HH size Below 5 1,750 22.9

5 & above 5,880 77.1

Residence Urban 1,453 19.0

Rural 5,516 72.3

Refugee 661 8.7

HH sprayed No 6,601 86.5

Yes 989 13.0

Don’t know 40 0.5

Mother’s education No education 1,354 21.3

Primary 3,647 57.4

Secondary & above 1,355 21.3

0.0
1.6
1.9
2.5

4.6
10.7

14.5
14.6

20.7
21.1

22.7
31.7

39.3
41.5

42.6

0.0 10.0 20.0 30.0 40.0 50.0

Kigezi
Kampala

South Buganda
Ankole
Bukedi
Bugisu

North Buganda
Bunyoro

Teso
Tooro
Lango
Acholi

Busoga
Karamoja
West Nile

Percent

Re
gi
on

Fig. 2 Weighted regional ranking of prevalence of under-five malaria
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importance to the research problem, according to previ-
ous research literature.

Measure of sources of cluster variation in the risk 
of malaria
Figure  3 shows the proportional contribution of ICC 
across levels of the nested data and the error term. This 
informed the choice of the random effect term that was 
included in the mixed effects models. That is, EA.

The EA random effect estimate for measuring vari-
ation in Table  3 shows significant variation in under-
five risk of malaria. The random effect of Model-0 (null 
model) shows that there was statistically significant vari-
ation in the odds of a positive test for malaria across EAs 
(variance = 11.16; 95% CI 8.55–14.56). The ICC value 
for a positive malaria test between EAs (ICC = 0.77; 
p < 0.001) indicates that 77% of the total variance in the 
positive testing for malaria was attributable to differ-
ences between EAs. Hence variation in the risk of under-
five malaria was mainly attributed to EAs compared to 

Table 2 Factors associated with prevalence and risk of malaria in under-five children

AOR: Adjusted odds ratio, CI: Confidence interval, EA: Enumeration area, HH: Household
** p < 0.001, *p < 0.05

Variable Model 1 (Individual level) Model 2 (HH level) Model 3 (EA level)

AOR (95% CI) AOR (95% CI) AOR (95% CI)

Sex of child

 Female 1.02 0.83 1.24 1.00 0.82 1.22 0.98 0.80 1.21

 Age of child 1.40** 1.31 1.50 1.41** 1.32 1.51 1.42** 1.33 1.52

Mother’s education

 Primary 0.93 0.67 1.28 0.94 0.67 1.30 0.94 0.66 1.33

 Secondary and above 0.50* 0.29 0.86 0.59* 0.33 1.02 0.53* 0.30 0.95

Has bed net

 Yes 0.81 0.60 1.09 0.82 0.60 1.11 0.77 0.56 1.06

Wealth Index

 Middle – – – 1.00 0.68 1.46 1.03 0.70 1.52

 Rich – – – 0.41** 0.27 0.62 0.42** 0.27 0.64

HH sprayed

 Yes – – – 1.07 0.55 2.09 1.05 0.53 2.08

 Don’t know – – – 1.38 0.40 4.70 1.37 0.42 4.42

 Cluster altitude – – – – – – 0.98** 0.97 0.99

23%

77%

Others

EA

Others: Individual, Household and Error term

Fig. 3 Proportional contribution of ICC by the hierarchical levels 
of the data

Table 3 Measures of EA level variations in the risk of under-five malaria

CI: Confidence interval, ICC Intra-class correlation coefficient
** p < 0.001

Random effects Model‑0 Model‑1 Model‑2 Model‑3
Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Area variance 11.16** 11.56** 10.66** 7.86**

(8.55–14.56) (8.74–15.27) (8.02–14.17) (5.82–10.61)

ICC 0.77** 0.44** 0.29** 0.18**
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households. In addition, moving from Model-0 to Model-
3, area variance reduced by 29.6% (from 11.16 to 7.86). 
Area variance steadily reduced as more fixed effects were 
added into the model. The percentage reduction in area 
variance in each model equates the percent of variance 
contributed by fixed effects at the specific level.

Moreover, the variation across EAs remained statisti-
cally significant throughout the three models (1, 2, and 
3). The ICC values showed heterogeneity between EAs. 
The ICC values in models 1, 2 and 3 indicate that; 44% 
was attributable to EAs differences after adjusting for 
individual factors, 29% after adjusting for household fac-
tors and 18% after adjusting for EA factors as indicated in 
Table 3.

Discussion
Identifying risk factors of malaria is critical in designing 
interventions and evaluating existing ones. This study 
did not find any sex difference among children under-
five years of age with malaria. These results are consist-
ent with similar studies based on multilevel analysis in 
Ethiopia [23] and Nigeria [24]. In addition, according 
to this study’s findings, children with educated mothers 
were less likely to have malaria compared to those whose 
mothers were uneducated. These results are similar to 
previous findings where prevalence of under-five malaria 
drastically decreases with increase in a mother’s educa-
tion [25] since education has previously been associated 
with use of malaria prevention measures like mosquito 
nets [16] as educated mothers are more prone to using 
these preventive measures.

At the household level, wealth index was significantly 
associated with malaria parasitemia. These finding are in 
agreement with previous studies [25, 26]. This is partly 
due to the fact that a household’s economic status that 
can be represented by wealth index affects other factors 
like housing conditions which in turn have an effect on 
malaria prevalence in the affected households [16]. Also, 
the nature of residence like in this study, has been found 
to be significantly associated with under-five malaria 
infection like it is the case with other studies [26, 27].

Determining sources of cluster variation is important 
in designing future study designs and identifying effec-
tive and efficient levels at which interventions should be 
designed. The study presented a significantly higher ICC 
at EA level compared to other levels. Computing the ICC 
to estimate power and sample sizes is problematic given 
the difficulty in estimating variances a priori. Therefore, 
the ICC is typically estimated using the values reported 
in previous research [28]. Hence the calculated ICC 
and deft from this study can be used in computation of 
power and effective sample size in future studies of MIS 
and other similar surveys based on complex designs like 

Demographic and Health Survey (DHS), Multiple Indica-
tor Cluster Survey (MICS) and Performance Monitoring 
for Action (PMA) surveys.

Ideally, more units should be samples at EA level com-
pared to household level for future designs of studies 
based of multi-stage (specifically two-stage) sampling 
since ICC at EA level was higher than that at household 
level. These results are consistent with a study [28] that 
found out that as a general rule of thumb, increasing the 
sample size at the highest level that is, sampling more 
groups will do more to increase power than increasing 
the number of individuals in the groups. However, the 
problem is that increasing sample size at higher levels 
is more difficult and costly than increasing the sample 
within each group. Thus, the increases in study power 
may come at a substantial cost.

ICC is used in equations along with the cluster size and 
the number of clusters to calculate the effective sample 
size (ESS) which is the sample size in clustered samples as 
compared with the number of subjects actually enrolled 
in the study. As an example, proper accounting for cor-
relation among subjects in a cluster almost always results 
in a net loss of power, requiring increased total subject 
recruitment. Increasing the number of clusters enhances 
power more efficiently than does increasing the number 
of subjects within a cluster [29].

In addition, ICC guides level-based interventions. The 
higher this proportion, the higher is the general contex-
tual effect [22]. As an example, when the ICC value is 
lower at a specific level, then interventions need not to 
be done at that level but at a level where ICC is higher 
as it is the case of the study findings. High values of ICC 
therefore inform intervention to be done at specific levels 
[30]. This study similarly suggested interventions based at 
a level with higher ICC value. Instead of household-spe-
cific interventions, this study recommends EA-specific 
interventions.

Study strength and limitations
The multilevel design of the MIS that allows contextual 
analysis was the strength of this study. The limitations 
were parasitaemia was diagnosed using rapid diagnos-
tic test (RDT) which is not the gold standard. How-
ever, both microscopy (gold standard) and RDT have 
always yielded very close results. Also, given that the 
data resulted from a cross-sectional design, causal rela-
tionship between explanatory variables and under-five 
parasitaemia could not be guaranteed. This was a draw-
back concerning the prediction capability of the final 
model. Also, although some variables deemed impor-
tant in analysis were not among the collected data, the 
variables available in the data were sufficient to address 
the study objective. Another limitation was potential 
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recall bias because household and children charac-
teristics were purely based on self-report by survey 
respondents. The potential bias was however minimal 
since response was only required about events from the 
most recent past and by eligible respondents.

Conclusions
Individual or child characteristics were more signifi-
cantly associated to malaria risk compared to house-
hold and EA characteristics. Even after accounting for 
individual, household and EA level fixed effects; vari-
ation remained significant at EA level hence, cluster 
variation was substantial at EA level. Interventions 
towards reducing the burden of under-five malaria 
should be prioritized to improve individual-level char-
acteristics compared to household-level features. This 
is because more variables were significant at child-level 
compared to household-level. Also, EA-specific inter-
ventions towards malaria control may be more effective 
compared to household level interventions.
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