
Wong et al. Malaria Journal          (2023) 22:356  
https://doi.org/10.1186/s12936-023-04760-7

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Malaria Journal

Comparison of new computational methods 
for spatial modelling of malaria
Spencer Wong1, Jennifer A. Flegg1*, Nick Golding2,3 and Sevvandi Kandanaarachchi4 

Abstract 

Background Geostatistical analysis of health data is increasingly used to model spatial variation in malaria preva-
lence, burden, and other metrics. Traditional inference methods for geostatistical modelling are notoriously compu-
tationally intensive, motivating the development of newer, approximate methods for geostatistical analysis or, more 
broadly, computational modelling of spatial processes. The appeal of faster methods is particularly great as the size 
of the region and number of spatial locations being modelled increases.

Methods This work presents an applied comparison of four proposed ‘fast’ computational methods for spatial mod-
elling and the software provided to implement them—Integrated Nested Laplace Approximation (INLA), tree boost-
ing with Gaussian processes and mixed effect models (GPBoost), Fixed Rank Kriging (FRK) and Spatial Random Forests 
(SpRF). The four methods are illustrated by estimating malaria prevalence on two different spatial scales—country 
and continent. The performance of the four methods is compared on these data in terms of accuracy, computation 
time, and ease of implementation.

Results Two of these methods—SpRF and GPBoost—do not scale well as the data size increases, and so are likely 
to be infeasible for larger-scale analysis problems. The two remaining methods—INLA and FRK—do scale well 
computationally, however the resulting model fits are very sensitive to the user’s modelling assumptions and param-
eter choices. The binomial observation distribution commonly used for disease prevalence mapping with INLA fails 
to account for small-scale overdispersion present in the malaria prevalence data, which can lead to poor predictions. 
Selection of an appropriate alternative such as the Beta-binomial distribution is required to produce a reliable model 
fit. The small-scale random effect term in FRK overcomes this pitfall, but FRK model estimates are very reliant on pro-
viding a sufficient number and appropriate configuration of basis functions. Unfortunately the computation time 
for FRK increases rapidly with increasing basis resolution.

Conclusions INLA and FRK both enable scalable geostatistical modelling of malaria prevalence data. However care 
must be taken when using both methods to assess the fit of the model to data and plausibility of predictions, in order 
to select appropriate model assumptions and parameters.

Keywords Spatial modelling, Geostatistics, Predictive modelling, Risk mapping

Background
Spatial proximity often plays an important role 
in governing the spread of geographic processes. 
Geostatistical techniques directly model these effects of 
proximity and are used to create continuous predictions 
from a finite set of observations. Since their original 
development for use in the mining sector [1], these 
techniques are now applied to wide ranging problems 
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where spatial correlation must be accounted for, 
including species distribution modelling in ecology 
[2], interpolating weather and climate data [3, 4], 
mapping soil properties for agriculture [5], and spatial 
modelling of real estate prices [6]. Mapping disease 
risk is an important application in epidemiology, where 
geostatistical techniques are used to predict risks for a 
wide range of diseases with differing biology [7–10]. 
These methods are particularly prominent in malaria 
work, where risk maps inform policy and elimination 
strategies [11, 12]. Predictive maps created using 
geostatistical models have been published for malaria 
prevalence [13–16], mortality [17], use of malaria 
interventions [18], antimalarial drug resistance [19, 20], 
risks of adverse effects [21], and the relationship between 
sickle cell anaemia and P. falciparum [22]. The mapped 
metrics depend on various spatial processes including 
environmental factors (e.g., rainfall and temperature), 
variable access to health care, and human movement. In 
the absence of a full understanding of all these processes, 
spatial statistical modelling aims to describe the spatial 
variation in the metric of interest that is caused by the 
underlying spatial processes.

In their book, Diggle and Ribeiro Jr. introduce a 
fundamental paradigm for modelling geospatial data that 
unites previous spatial modelling approaches with model-
based statistical analysis [1]. The quantity of interest or 
the response, yi , is defined throughout a contiguous study 
region and each measurement at the sample location xi is 
a realization of the random variable Yi whose distribution 
is dependent on the location xi as well as the random 
variables associated with the other data locations. 
That is, the random variables in space are dependent 
on each other based on their proximity. Hence, the 
observed responses at n locations are modelled as a 
joint n-dimensional vector of random variables where 
the dependency can be modelled using spatial random 
effects as part of a generalized linear geostatistical model. 
The spatially-correlated random variables are modelled 
as a Gaussian process (GP) and spatial covariates, such as 
bio-climatic and environmental layers, are often included 
as additional regressors to capture general trends.

Gaussian processes are widely used in spatio-temporal 
modelling including in malaria prevalence mapping 
research [23–25]. With the explosion of machine learning 
research, the popularity of GPs has remarkably increased 
in both theoretical and applied domains [26]. Rasmussen 
and Nickisch made available a toolbox called GPML for 
machine learning regression and classification tasks [27]. 
GPs for large scale regression [28] and GPs for sparse 
approximations [29] are examples of the use of GPs in 
machine learning. These new advances have made GPs 

a viable tool for modelling of very large datasets beyond 
the field of malaria mapping [30].

These modelling approaches vary in their inference 
procedures (e.g. Bayesian or frequentist) and 
computational techniques (e.g. simulation versus 
optimization). One thing these newer methods have 
in common is that they have the potential to avoid 
calculations using a ‘full’ (approximation-free) GP, due 
to the fact that full GP models scale cubicly with the 
number of unique locations in the training data. That 
is, a tenfold increase in the number of unique spatial 
locations in the dataset results in a 1000-fold increase 
in computation time. Consequently, the full GP can 
become computationally infeasible for large datasets, 
such as those used in national- and continental-scale 
malaria mapping. For such large datasets, it may also be 
prohibitive to fit the model using asymptotically exact 
Bayesian methods such as Markov chain Monte Carlo 
(MCMC) methods, so deterministic approximations to 
such simulation approaches have also been explored. 
Newer approximation methods to both the spatial 
random effect and the inference method are often used 
to combat this limitation for example when using global-
scale datasets [31, 32].

There are a multitude of approximation techniques 
available as alternatives to full Bayesian/frequentist 
inference, and the full Gaussian process, in addition to 
modern machine learning methods which lie outside of 
the standard geostatistical framework while still enabling 
the fitting of spatially-explicit models as used in disease 
mapping. Geostatistical techniques using Gaussian 
processes to model spatial autocorrelation are currently 
the most popular method for malaria risk mapping 
[33],with full Gaussian processes with both maximum 
likelihood frameworks for inference [14, 21] and Bayesian 
inference using MCMC [34, 35] appearing frequently 
in the literature. The Integrated Nested Laplace 
Approximation has become a well established method in 
the field [15, 36, 37], while recent modelling techniques 
outside of the popular geostatistical framework such as 
boosted regression trees and random forests have found 
some limited use [38, 39].

A review of all such alternative techniques is beyond 
the scope of this paper. Due to the importance of spatial 
modelling in the malaria mapping field and consequent 
need for computationally efficient methods however, this 
work presents a comparison of four such methods on a 
malaria prevalence mapping problem: Integrated Nested 
Laplace Approximation inference, with a Gaussian 
Markov Random Field approximation to the GP (INLA), 
Gaussian processes fitted via a boosting algorithm 
(GPBoost), Spatial Random Forests (SpRF), and Fixed 
Rank Kriging (FRK). These four methods are selected due 
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to their different underlying techniques for modelling the 
spatial correlation structure and varying approaches to 
inference. Of these four methods, only INLA has been 
applied to malaria risk mapping, while the other three 
methods have found use in spatial modelling applications 
in various other fields (see, for example [40–42]).

The intended audience of this comparison are twofold. 
This work may be of interest to researchers interested 
in moving into the spatial (or spatio-temporal) mapping 
field who are looking for an introduction to currently 
available methods, and it may additionally inform 
malaria mapping researchers on the relative strengths 
and weaknesses of the considered methods when applied 
to a malaria mapping problem, assisting in decision 
making for future work. It should be noted that the 
inclusion of a method in the analysis does not constitute 
an endorsement of its use for malaria risk mapping. 
Rather, the purpose of this work is to compare each of 
these method’s suitability, strengths, and weaknesses, 
when applied to malaria risk mapping problems, and 
in particular to examine the viability of the newer and 
previously unused methods.

An analysis at a national scale is first presented, with 
Kenya selected as the country of interest. This is then 
extended to a continental-scale analysis over Africa. 
The four methods are briefly introduced in “Methods” 
section, where the models implemented using each 
method are additionally specified. Due to their underlying 
mathematical differences in model specification and 
inference procedure, it is difficult to directly compare 
results. This problem is mitigated by comparing point 
and interval predictions against observed data in a 
cross-validation scheme. In addition, predictive spatial 
maps produced by each of the implemented models 
are explored. National and continent  scale results 
are discussed in “Case study: Kenya” and “Continent 
scale results” section, and the computation time taken 
by each of the methods at each scale is compared 
in “Computational results” section. As concluding 
remarks, nuances of the methods uncovered by the 
analysis are briefly discussed in “Discussion” section. The 
programming scripts for this work are available at [43].

Methods
Diggle and Ribeiro Jr. first introduce a basic geostatistical 
model that does not have any covariates [1]. They 
consider data given by 

(
xi, yi

)
 for i ∈ {1, . . . , n} , where 

xi denotes the spatial location (i.e. coordinates) and 
yi is the measured value for the quantity of interest at 
that location (e.g. the incidence of malaria at xi ). They 
describe a model for normally-distributed response data 
with a stationary Gaussian process (one that tends back 

to the same average value, over the whole analysis region) 
as:

where S(x) is a Gaussian process with mean µ (the average 
value over the study region), variance or amplitude of the 
process at each location σ2 = var{S(x)} and correlation 
function ρ(u) = cor

{
S(x), S

(
x′
)}

, where u = ||x − x′|| 
and || · || denotes Euclidean distance (which controls the 
similarity of responses based on their distances apart); 
and yi are realizations of mutually independent Gaussian 
random variables Yi conditional on 

{
S(x) : x ∈ R2

}
 (i.e. 

after accounting for the spatial correlation, each yi is 
independent and normally-distributed).

The model can be described by the equation:

This basic model represents only the effects of 
proximity on observations at different locations, and can 
be extended through the addition of a mean function to 
model the effects of covariates on the response. Common 
choices of correlation functions (termed covariance 
functions when they incorporate the variance term σ2 ) 
include Matérn, exponential and squared exponential 
functions.

INLA, GPBoost, and FRK provide approximation and 
inference tools for geostatistical models which extend 
the basic model in Eq. (1) by [1]. In contrast, SpRF avoids 
the use of a Gaussian process entirely, instead using a 
machine learning approach to model the impacts of 
spatial proximity on the response. Despite their varying 
approaches, all four methods allow for prediction and 
mapping of spatial processes, which is the focus in this 
paper.

The following implementations of the four methods are 
used:

1. INLA: Integrated Nested Laplace Approximations, 
implemented in the R package INLA [44, 45].

2. GPBoost: Tree boosting with Gaussian processes and 
mixed effect models, implemented in the R package 
gpboost [46].

3. SpRF: Spatial Random Forests, implemented in the R 
package ranger [47].

4. FRK: Fixed Rank Kriging, implemented in the R 
package FRK [48].

{
S(x) : x ∈ R2

}

Yi ∼ N
(
zi, τ

2
)

(1)zi = S(xi) for i = 1, . . . , n.
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As the national-scale dataset, P. falciparum prevalence 
data in Kenya from 2009 is used, retrieved from the 
open-access portion of the Malaria Atlas Project 
malaria prevalence dataset. Kenya was selected as it had 
the highest number of surveys overall, with the most 
surveys occurring in 2009. In expanding to a continental 
scale, available surveys across Africa in 2009 are used, 
keeping the same year between analyses. The R package 
malariaAtlas [32] was used in order to download the 
malaria prevalence survey data. As the aim of this work 
is to evaluate the performance of statistical models for 
malaria mapping rather than to produce reliable maps 
per say, additional validation, correction, or selection 
on these datapoints were not applied. For each record, 
only the spatial coordinates, the numbers of individuals 
screened, and the number of those individuals that were 
positive for P. falciparum were extracted.

The models constructed in this paper represent 
the simplest possible implementations of each of the 
four methods, where factors such as environmental 
covariates are not included. Indeed, due to the strong 
role environmental factors play in the malaria parasite’s 
and vectors’ life cycles [49], an in-depth selection and 
analysis of covariates is a key step in creating useful maps 
of malaria [33]. In skipping this step, the goal of this 
work is to highlight the differences between the methods 
at their most basic level, and specifically their differing 
treatments of spatial autocorrelation. Hence, the risk 
maps presented in this work should be considered only 
for the purpose of comparison with one another, and 
should not be interpreted as realistic maps of malaria 
prevalence.

INLA
INLA (Integrated Nested Laplace Approximations) is a 
method for approximate Bayesian inference which offers 
an improvement in speed over asymptotically exact 
methods such as MCMC. Instead of estimating a high-
dimensional joint posterior distribution by simulation, 
INLA obtains approximations to univariate posterior 
marginal distributions of the model parameters. INLA 
is restricted to the class of models that can be expressed 
as latent Gaussian Markov random fields. However, a 
multitude of commonly used models can be expressed 
in this form, including generalized linear geostatistical 
models. This approach to inference pairs well with an 
approximation to the spatial Gaussian process as a 
Gaussian Markov random field (GMRF) over a discrete 
‘mesh’ describing the study area, with piecewise linear 
interpolation to any locations that fall between nodes of 
this ‘mesh’. When the Gaussian process has a covariance 
function of the Matérn type, the stochastic partial 
differential equation (SPDE) representation of the GMRF 

can be used, which makes evaluation of the spatial 
process very fast for large spatial datasets, compared with 
the full GP approach. Over the years there have been 
many updates to INLA [50] to broaden its scope and 
facilitate diverse problem solving tasks. For more details, 
refer to their website [51].

Inference with INLA combines a series of 
assumptions and Laplace approximations to compute 
the marginal posteriors of model parameters and 
latent effects. INLA assumes that the response 
vector y depends on a vector of latent variables η, 
and hyperparameters θ1 , with density π

(
y|η, θ1

)
. The 

latent variables for example may include the values of 
a linear predictor, an intercept, regression coefficients, 
and the values of any random effects. Importantly, η is 
assumed to be a mean 0 Gaussian Markov random field 
with precision matrix Q(θ2) (the construction of Q for 
continuous spatial models is outlined in [52]) where θ2 
is a vector of hyperparameters. The hyperparameters 
are often combined into a single vector θ = (θ1, θ2) with 
prior distribution π(θ). INLA then approximates the 
marginal posteriors π

(
ηi|y

)
 and π

(
θk |y

)
 as follows.

The first step is to write the joint posterior of the 
hyperparameters as

A Laplace approximation is applied to the denominator, 
replacing it with a Gaussian and giving the 
approximation:

where η∗(θ) is the mode of π
(
η|θ, y

)
, and π̃G

(
η|θ, y

)
 

is its Gaussian approximation. Approximate posterior 
marginals for the hyperparameters can then be obtained 
as:

The exact marginals for the latent effects:

are approximated using numerical integration as

π
(
θ|y

)
=

π
(
η, θ|y

)

π
(
η|θ, y

)

∝
π
(
η, θ, y

)

π
(
η|θ, y

) .

(2)π̃
(
θ|y

)
∝

π
(
η, θ, y

)

π̃G

(
η|θ, y

) | η=η∗(θ) ,

π̃
(
θk |y

)
=

∫
π̃
(
θ|y

)
dθ−k .

π
(
ηi|y

)
=

∫
π
(
ηi|θ, y

)
π
(
θ|y

)
dθ ,
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where π̃
(
θ|y

)
 is as in Eq.  (2) and π̃

(
ηi|θ

)
 is an 

approximation of π
(
ηi|θ

)
. INLA provides three primary 

methods for computing π̃
(
ηi|θ

)
 , termed the Gaussian, 

Laplace, and Simplified Laplace strategies, in addition to 
adaptive and automatic strategies. Each strategy applies 
Laplace approximations or series expansions to different 
conditional distributions, and has different trade offs for 
efficiency and accuracy. For full details on these methods, 
see for example [44, 53, 54].

Predictions in INLA are carried out concurrently with 
model fitting, where the posterior predictive distribution 
of the response at each prediction location is computed 
[53]. The INLA software provides summary statistics 
including the mean, median, standard deviation and 
quantiles of the predictive distribution.

INLA‑based model
A model using the INLA software is formulated similar 
to [55] and [56] to predict malaria prevalence. Let Hi 
denote the number of positive results (e.g., in this case, 
malaria infections) and Ni the number of people screened 
at location xi for i = 1, . . . , n . Let pi denote the modelled 
prevalence at location xi , and p be the vector of modelled 
prevalences over all locations. Then Hi is modelled using 
a binomial distribution as

The standard link for the binomial distribution is the logit 
function, which opens-up the probabilities in [0, 1] to real 
values in (−∞,∞) . Thus obtaining,

where β0 denotes the intercept and S is a spatial random 
effect that follows a zero-mean Gaussian process with 
Matérn covariance function:

Here � is the smoothness parameter, σ2 denotes the 
variance and K� is the modified Bessel function of the 
second kind. The parameter κ controls how fast the 
correlation decays with distance.

The implementation and parameter settings for the 
model are based on the examples available in [56]. The 
first step in setting up a model is to construct a triangular 
mesh on which the SPDE will be solved. The software 
constructs this mesh based on restrictions provided 
by the user, and it usually contains a region of smaller 
triangles near the data surrounded by an extension of 

(3)π̃
(
ηi|y

)
=

∑K

k=1
π̃

(
ηi|θ(k), y

)
π̃

(
θ(k)|y

)
�k ,

Hi ∼ Binomial(Ni, pi).

(4)logit(pi) = β0 + S(xi) ,

(5)

cov
(
S(xi), S

(
xj
))

=
σ2

2�−1Ŵ(�)

(
κ||xi − xj||

)�
K�

(
κ||xi − xj||

)
.

coarser triangles to avoid boundary effects [57]. When 
using the Kenya data, the maximum triangle edge length 
was set to 0.5 for the inner region, and 4 for extension. 
The cutoff parameter sets a distance, under which, 
points are grouped together when constructing the mesh 
vertices. This has been set to 0.01 , and additionally the 
min.angle and offset parameters, which determine 
the minimum allowed angles in the triangles and the size 
of the extension, have been left at their default values of 
21 degrees and −0.1 , respectively. When using the Africa 
data, a mesh on the unit sphere is used, with the above 
parameter values converted to radians.

The smoothness parameter � in the Matérn covariance 
function Eq. (5) must be chosen via the alpha parameter 

where d is the dimension of the space (i.e. 2 for a spatial 
model). The alpha parameter has been set to its default 
value of 2.

User settings additionally control the approximations 
during inference. The default auto strategy was used 
for approximating π̃

(
ηl |θ, y

)
. The int.strategy 

parameter then determines how the points θ(k) are 
selected for the numerical integration in Eq.  (3), and 
the faster empirical Bayes strategy was chosen. This 
selects a single point, namely the mode of π̃

(
θ|y

)
 and 

therefore does not average predictions over uncertainty 
in the hyperparameters, as would typically happen in 
an MCMC inference procedure. The median of the 
predictive distribution was used for point predictions, 
though other quantities such as the mean are available.

GPBoost
GPBoost combines tree-boosting with Gaussian 
processes and mixed effects models. Inspired by the 
performance of gradient boosting algorithms, as 
implemented in popular software such as XGBoost and 
LightGBM, GPBoost aims to leverage the advantages 
of tree-boosting algorithms including accounting for 
complex nonlinearities, discontinuities and higher order 
interactions with the versatility of Gaussian processes 
[46]. It has the functionality to use mixed effects models, 
in particular models with grouped random effects.

The general structure for a model which can be 
implemented using GPBoost is

� = α −
d

2
,

Yi ∼ N
(
zi, τ

2
)

for i = 1, . . . , n,

z = F(X)+ ZS,
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where Yi is the response variable at location xi . The 
matrix X ∈ Rn×p is the fixed effect predictor matrix, 
with the i th row containing covariates for location 
xi . The fixed effects function of the covariates F  , is 
nonlinear and is learned with boosting. S ∈ Rm contains 
the random effects with covariance matrix � ∈ Rm×m, 
while Z ∈ Rn×m is the random effect predictor variable 
matrix, which is typically used to define grouped random 
effects.In a Gaussian process model the random effects 
S = (S(x1), S(x2), . . . , S(xm)) are a finite-dimensional 
version of a Gaussian process S(x) with a covariance 
function:

Here c is a covariance function often parameterized as:

where r is an isotropic autocorrelation function with 
σ21 = var(S(x)) and ρ is the range parameter which 
determines how quickly r decays with distance. 
GPBoost currently supports the exponential, Gaussian, 
Matérn, powered exponential, Wendland, and tapered 
exponential covariance functions. In a Gaussian process 
model, Z is usually encoded as a diagonal matrix, so that 
each element of S contains the spatial random effect for 
that location.

With its default settings, GPBoost does not apply 
approximations to the Gaussian process. For increased 
efficiency, Vecchia approximations are available in the 
software. These approximations assume conditional 
independence between responses based on their 
locations, resulting in sparse Cholesky factorizations 
of the precision matrix and in turn improved 
computational efficiency [46, 58].

Inference with GPBoost is carried out by jointly 
optimizing the nonlinear fixed effects function F  , and 
the variance and covariance parameters θ (i.e .τ2,σ21 , 
and ρ ). In the Gaussian process case, the goal of the 
optimization is to minimize the risk functional:

where y =
(
y1, . . . , yn

)
 are the observed responses at 

locations x1, . . . , xn.Here, L
(
y, F(X), θ

)
 is the negative log 

marginal likelihood for obtaining the observed responses 
y , given the observed covariate matrix X , and model 
parameters θ,

(6)S ∼ N (0,�),

cov
(
S(x), S

(
x′
))

= c
(
x, x′

)
, x, x′ ∈ Rd .

c
(
x, x′

)
= σ21r

(
||x − x′||/ρ

)
,

R(F , θ) = L
(
y, F(X), θ

)
,

where � = Z�ZT + τ2I . The risk functional is 
minimized by iteratively updating F  and θ . At step k , 
Fk−1 is held fixed and θk = argminθ

(
L
(
y, Fk−1(X), θ

))
 

is computed using a gradient or quasi-Newton method. 
With this value of θk , F  is updated via a single step of a 
boosting algorithm.

After optimization, GPBoost produces predictions 
in a similar manner to Gaussian process regression. 
The joint distribution of the observed and predicted 
responses is formed, and conditioned on the observed 
responses. The mean of the resulting conditional 
distribution is used for the predicted value of the 
response.

As covariates are not used in this implementation, 
tree boosting is used only to find the intercept. While 
this does neglect GPBoost’s functionality for learning 
nonlinear functions of covariates, GPBoost has been 
included in the analysis for users who may wish to apply 
it in more complicated scenarios that may benefit from 
tree boosting.

GPBoost‑based model
The basic model in Eq.  (6) can be extended to use non-
Gaussian likelihoods, where the implementation in the 
software uses a Laplace approximation during inference 
[59]. Currently Bernoulli-probit, Bernoulli-logit, Poisson, 
and Gamma distributions are supported for the response 
variable. However unlike INLA and FRK, a binomial 
response is not currently supported which does present 
a limitation for applying this method for mapping 
malaria prevalence. This work therefore models malaria 
prevalence by customizing Eq. (6) as follows:

where β0 is the intercept, and Hi and Ni denote the 
number of positive results and the number of people 
tested at location xi . Note that for simplicity, the direct 
proportion of positive tests was used rather than the 
empirical logit, and predictions were clipped to lie 
within [0, 1] for the prevalence maps. The exponential 
covariance function r

(
||x − x′||/ρ

)
= exp

(
−||x − x′||/ρ

)
 

was selected, which is the default choice in the software. 
Notably, this model does not use GPBoost’s full capability 
for learning nonlinear functions of the covariates, 
however it has been constructed in order to be consistent 

L
(
y, F(X), θ

)
=
1

2

(
y − F(X)

)T
�−1

(
y − F(X)

)

+
1

2
log det(�)+

n

2
log(2π) ,

Hi/Ni ∼ N
(
zi, τ

2
)
,

zi = β0 + S(xi) ,
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with the choice to not use covariates for any of the 
models.

The parameter settings for the implemented model 
follow examples by the package author [60]. For the 
spatial random effect, a full Gaussian process without 
approximation was used, with the gp_approx 
parameter set to its default value of none. Other 
parameters in the software control the trees and boosting 
algorithm used to learn the fixed effects function F  . 
The number of boosting rounds was set to 247 and the 
learning rate to 0.01, using the parameters nrounds and 
learning_rate. Other settings for the model include 
num_leaves=1024, max_depth = 6, and min_data_
in_leaf = 5, each of which control the size of the trees.

SpRF
Spatial Random Forests (SpRF) [47] extend classical 
random forests to a spatial domain by using distances 
to observation points as explanatory variables, i.e. when 
fitting a model with SpRF, for each point xi , where yi is 
given, covariates are used that give the distance from 
each other observation point. That is, the design matrix 
for this part of the model is simply the distance matrix 
between all pairs of observation locations. In order to 
obtain uncertainty estimates, the SpRF authors use 
quantile regression forests which estimate specified 
quantiles of the conditional distribution Yi|Xi [61] where 
Xi are the covariates for the i th response, in contrast 
to classical random forests which do not provide 
uncertainties.

The generic equation of an SpRF-based model is given 
by

where Yi is the response at location xi , XGi denotes 
a vector of the distances to each of the observation 
locations from the querying point xi (including a distance 
of 0 to itself, in the i th position of the vector) and XRi and 
XPi denote two types of covariates—surface reflectance 
and process-based. The function f  is learned by the 
random forest. Unlike the other methods examined, 
SpRF does not use a covariance function.

SpRF is based on the ranger package for random 
forests, which provides an implementation of quantile 
regression forests with training procedure outlined 
in [61]. Point predictions are given by the estimated 
medians from the quantile regression forests.

SpRF‑based model
As in [47], an additional normal assumption for the 
response was included in order to construct the simple 
SpRF model

Yi = f
(
XGi ,XRi ,XPi

)
,

where Hi and Ni are as defined above and XGi contains 
the distances from each observation point to xi.

The user parameters for SpRF determine the structure 
of the random forest and the rules for growing each tree, 
including the number of trees and the number of variables 
to split on at each node via the num.trees and mtry 
parameters. Each parameter was left at its default value, 
resulting in a forest with 500 trees where each node splits at √
nv variables ( nv is the total number of variables input into 

the random forest). Other parameters which further tune 
the structure of the trees and forest have been left at their 
default values, and the code for the SpRF model is based on 
a tutorial from the method’s authors [62].

FRK
Fixed Rank Kriging (FRK) [48] is a spatio-temporal 
modelling framework built for large datasets. It uses a 
spatial random effects (SRE) model, which decomposes 
a spatially correlated mean-zero random process using 
a linear combination of spatial basis functions. This 
dimensionality reduction using a relatively small number 
of basis functions ensures FRK’s computational efficiency. 
The spatial domain D is partitioned into M subsets, 
A1, . . . ,AM , called basic areal units (BAUs) with centroids 
x1, . . . , xM . The SRE model is constructed on these BAUs 
which determine the granularity of the model, and the 
process is assumed to be piecewise constant over the BAUs.

The general equation for a model implemented in FRK 
with a Gaussian response can be written as

Here, Yi , i = 1, . . . , n are the responses at the observation 
locations, ζ = (ζ1, . . . , ζM)T is the value of a latent spatial 
process evaluated at each of the BAUs with centroids 
x1, . . . , xM , and CZ is an n by M matrix connecting the 
observation locations to the BAU locations. The vector 
t
(
xj
)
 is a collection of covariates at BAU j and β is a 

vector of regression coefficients, while v
(
xj
)
 is the value 

of a small-scale, spatially correlated random effect. Lastly, 
ξ
(
xj
)
 is a fine-scale random effect, which is treated as 

uncorrelated across the BAUs [48].

Hi/Ni ∼ N
(
zi, τ

2
)
,

zi = f
(
XGi

)
for i = 1, . . . , n,

Yi ∼ N
(
zi, τ

2
)

for i = 1, . . . , n ,

z = CZζ ,

ζj = t
(
xj
)T

β+ v
(
xj
)
+ ξ

(
xj
)

for j = 1, . . . ,M .
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FRK introduces non-Gaussian data to the model by 
replacing the observation distribution with a member 
of the exponential family and using a link function to 
transform the latent process into a mean process [63]. 
The general structure of such a model is

where ψ is a dispersion parameter for the context 
dependent member of the exponential family EF , µ is 
called the mean process, and g(·) is the link function. The 
mean process at the observation locations is represented 
by µ , while µ′ represents the mean process at the BAUs.

The spatially correlated random effect ν(x) is 
decomposed as

where φ1, . . . ,φr are a fixed collection of basis functions 
on the spatial domain, and η =

(
η1, . . . , ηr

)T is an 
r-variate Gaussian random variable with covariance 
matrix K  . To estimate model parameters including 
the coefficients β , variance parameters for the fine 
scale random effect ξ , and covariance parameters for 
the covariance matrix K  , FRK carries out maximum 
likelihood estimation. When working with non-Gaussian 
data, a Laplace approximation is used to approximate the 
marginal likelihood, which is then maximized via a quasi-
Newton method.

By default, FRK produces a prediction for the mean 
process µ(·) at each of the BAUs. Predictions and 
uncertainties are generated via a Monte Carlo sampling 
approach, and the predicted value of µ in each BAU is 
taken to be the average of the samples.

FRK‑based model
As with INLA, the number of positive tests Hi is 
modelled using a binomial distribution

where pi is the prevalence at the i th observation location. 
The vector p′ gives the prevalence at the BAUs, and 
is transformed into the prevalence at the observation 
locations via the CZ matrix, which has construction 

Yi|µi,ψ ∼ EF(µi,ψ) for i = 1, . . . , n,

µ = CZµ
′ ,

g
(
µ′) = ζ ,

(7)ζj = t
(
xj
)T

β+ v
(
xj
)
+ ξ

(
xj
)

for j = 1, . . . ,M ,

ν(x) =
∑r

l=1
φl(x)ηl ,

Hi ∼ Binomial(Ni, pi) ,

p = CZp
′ ,

detailed in [63]. The logit function is then used as the link 
function g in Eq. (7), i.e.

As covariates are not being used, the latent process over 
the BAUs ζj can be written as:

where β0 denotes the intercept.
The implemented model decomposes the spatial 

random effect, ν(x) , using Gaussian basis functions 
of two different scales placed regularly across the 
spatial domain, as controlled by the type, nres, and 
regular parameters respectively. The spatial scale 
of these basis functions is determined jointly by the 
regular parameter and the scale_aperture, 
which have been left at their default values of 1 and 
1.25 respectively. The assumed correlation structure of 
the random coefficients η is controlled by the K_type 
parameter. When using a non-Gaussian model, this 
takes a default value of precision, which models 
the coefficient dependence using a precision matrix Q 
based on the Leroux model [63]. During prediction, the 
user can specify the number of Monte Carlo samples 
to be drawn, which has been left at the default value of 
400 . Code and parameter choices for the implemented 
FRK model are based on examples from the package 
authors in [48, 63].

Methods for the country scale analysis
At the country scale, the models implemented using the 
four methods were compared qualitatively using their 
predictive maps, while cross-validation was used to com-
pare their predictive performance. To produce maps of 
predicted prevalence, each model was fit on all available 
P. falciparum prevalence surveys from Kenya in 2009 
from the malariaAtlas R package. This consisted of 382 
surveys at points across the country which are shown 
in Fig.  1a. Point estimates of prevalence and uncertain-
ties were produced by the fitted models on a grid over 
Kenya, with each cell covering a nominal 0.1 degrees 
(approximately 11 × 11  km at the equator) in longitude 
and latitude.

Model fitting and prediction were run on a 2014 
MacBook Pro with a two core, 2.8  GHz Intel Core i5 
processor running macOS 10.13.6. Each model was run 
using a single thread to obtain a baseline performance 
comparison to accompany the model predictions, 
although parallelization options are available for each 
model which may provide performance improvements. 

logit
(
p′j

)
= ζj .

ζj = β0 + v
(
xj
)
+ ξ

(
xj
)
,
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Recorded times were measured as the total time to run 
a model’s R script, including both fitting and prediction.

To evaluate the models, spatial block cross-validation 
(CV) [64] was used with both 10 and 50 folds. In a spatial 
setting, randomly allocating points to cross-validation 
folds is not effective because close by points can act as 

proxies. The folds were selected using k-means cluster-
ing [65] on the spatial coordinates of the prevalence sur-
veys—resulting in a series of ‘blocks’ of spatially-adjacent 
points. Figure 2 shows the location of points for the two 

Fig. 1 2009 P. falciparum prevalence data in Kenya. a shows prevalence survey results, while b shows the Malaria Atlas Project predicted prevalence

Fig. 2 P. falciparum prevalence survey locations in Kenya for 2009. Colours represent different cross-validation folds. a and b show 10-fold 
and 50-fold cross-validation locations respectively
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sets of CV folds, where each colour represents a fold. 
The 10 and 50 CV folds measure different abilities of the 
methods. The 50-fold CV quantifies short-scale interpo-
lation ability, while the 10-fold quantifies the  ability to 
interpolate over longer distances.

Using 10 and 50-fold cross-validation, the following are 
investigated:

1. analysis of the point predictions including a 
comparison between the predictions and out-of-
sample prevalence values using multiple measures,

2. analysis of the uncertainty bounds for each model, 
and

3. analysis of the predictions with respect to density 
of the sampled locations (“Detailed cross-validation 
results”).

Analysis of uncertainties is complicated by the 
differing measures of uncertainty provided by the 
different methods. INLA contains information on the 
summaries of the posterior marginal densities of the 
fitted model, and can compute the standard deviation 
and different quantiles of the predictions. GPBoost 
provides the variance of each prediction. FRK predicts 
the standard deviation of each prediction in the linear, 
Gaussian setting. For the non-Gaussian case, it provides 
the predictions using a Monte Carlo approach [63]. 
SpRF uses quantile regression and the quantiles can be 
specified in the ranger package. To compare SpRF with 
the other methods, a normally distributed response is 
assumed as in [47], and the standard deviation for SpRF’s 
predictions is estimated as

Hengl et al. note that this assumption may not always 
be valid [47], and hence only a rough comparison of the 
SpRF model’s uncertainty with the other three models is 
possible.

For each model, the number of observed prevalence 
values which lie within the predicted uncertainty 
intervals is measured. Let ŷi denote the mean of the 
predicted response for observation yi , and define

where SD denotes the standard deviation. As prevalence 
values are between 0 and 1, the bounds are trimmed if 
they exceed these limits. Note that ŷi corresponds to the 
predicted prevalence for the implemented GPBoost and 

SD ≈ IQR/1.34898.

Within 1SD
(
ŷi
)
= TRUE if

∣∣yi − ŷi
∣∣ ≤ SD

(
ŷi
)

Within 2SD
(
ŷi

)
= TRUE if Within 1SD

(
ŷi

)

= FALSE and
∣∣yi − ŷi

∣∣ ≤ 2SD
(
ŷi

)

FRK models, but not for the INLA and SpRF models 
which use the median for predictions.

Methods for the continent scale analysis
At the continent scale, analysis focused on the prediction 
maps and each model was fit three sets of prevalence data 
over Africa. The first set consists of 868 P. falciparum 
prevalence surveys from 2009, available via the malari-
aAtlas R package. This data is shown in Fig.  3a, with 
survey points concentrated in Kenya and Somalia. Each 
model was additionally fit using two types of simulated 
data to allow comparison of the predictions with a known 
truth and to compare model performances on both inter-
polation and extrapolation tasks, and lastly to assess how 
properties of the data such as spatial sparsity and noise 
impact model predictions.

Simulated data was generated using the 2009 P. 
falciparum prevalence raster created by the Malaria 
Atlas Project (MAP), shown in Fig.  3d [13]. Prevalence 
was sampled from the raster at the locations of the 2009 
surveys and combined with the number of tests at each 
location to generate a binomial sample for the number of 
people testing positive. Of the 868 observation locations, 
28 points lie on gaps in the prevalence raster and were 
excluded, leaving 840 points in this second dataset, which 
is shown in Fig.  3b. This spatially clustered simulated 
data allows for the evaluation of each model’s ability to 
extrapolate over regions with little or no data. While this 
dataset shares locations with the observation data, its 
prevalence notably contains less noise.

The second set of simulated data was generated by 
selecting 1000 points at random on the MAP raster, 
allowing for comparison of the models’ interpolation 
performance when trained on data with good spatial 
coverage. A binomial sample for the number of positive 
tests was generated at each location, where the number 
of people tested was set to 85, approximately the average 
number in the surveys from 2009. The prevalences from 
this simulated dataset are shown in Fig. 3c.

The same parameter settings were used as in the 
country scale analysis, though whenever possible, 
settings that compute an appropriate spherical distance 
between points were chosen due to the larger spatial 
extent of the data. This was possible SpRF which uses 
great circle distances, and for INLA which allows for 
meshes to be constructed on the unit sphere. GPBoost 
does not have this functionality at the time of writing 
this article, however correspondence with the package 
authors reveals that they hope to add this functionality 
in future. While FRK does support using great circle 
distances for some models, this feature is not currently 
well supported for models with a binomial response and 
did not work in implemented tests. Hence, this work 
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uses Euclidean distances between coordinates for both 
GPBoost and FRK.

Using INLA with a spherical geometry requires a mesh 
to be built on a subset of the sphere. Although several 
methods for constructing this mesh are used in the 
literature [52, 57, 66], each produced similar results and 
hence the method outlined by Lindgren and Rue [57] was 
selected.

Model fitting and prediction were carried out on a 
single 3.00 GHz Intel(R) Xeon(R) Gold 6154 CPU in the 

Physical partition of the University of Melbourne’s high 
performance computing cluster, Spartan, and each model 
run was allocated 32  GB of RAM. As with the country 
scale data, each model was run using a single thread. 
Predictions were produced on a grid with cell side length 
0.15 degrees (approximately 16.7 km at the equator).

Fig. 3 P. falciparum prevalence data used to fit the four models at the continental scale. a shows the 2009 observed data at 868 locations. b shows 
the prevalence generated from binomial samples at the observation locations. c shows the prevalence generated by binomial samples at 1000 
uniformly random locations. d is the Malaria Atlas Project predicted prevalence raster from 2009 used to generate the samples in b and c 
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Results
This section presents the analysis on Kenya, which 
includes the predictive maps and cross-validation results, 
and the continent scale analysis including models trained 
on three different input datasets discussed above.

Case study: Kenya
At a national scale, two means of verifying the 
implemented models have been used: 1. predictive maps, 
and 2. 10-fold and 50-fold cross-validated predictions. The 
whole dataset was used to produce the predictive maps, 
while for cross-validation, some data was left out in each 
fold.

Predictive maps
The predictions and uncertainties produced by the four 
models when trained on the 2009 Kenya prevalence data 
are shown in Fig. 4 At the broadest scale, each model is 
similar in predicting a region of high prevalence in West-
ern Kenya, with clusters of higher prevalence in the East, 
but low prevalence over much of the rest of the country. 
For each model, the predicted prevalence drops to zero 
quite quickly away from the data, indicative of a smaller 
spatial range than might be expected. This is especially 
prominent with the INLA-based model, and may be 
indicative of overdispersion in the data.

A notable feature is the arc like band of higher 
prevalence in the north west of Kenya in SpRF’s 
predictions in Fig.  3c, which is further discussed in 
“Continent scale results” section. Higher prevalence in 
this region is also somewhat apparent in the GPBoost-
based model’s predictions and, to a lesser extent, FRK. 
This area of predicted higher prevalence falls in a 
broad region with no prevalence data and so represents 
different approaches to extrapolation in the four models.

Cross‑validation results
Table  1 gives the cross-validation results. In terms of 
cross-validation RMSE and correlation, FRK performs 
the best for 10-fold CV, and GPBoost performs the 
best for 50-fold CV. SpRF predictions had the highest 
correlations to the data used to train the model, but 
poorer correlation to out-of-sample data, indicating that 

Fig. 4 Predicted prevalences and uncertainties for a INLA, b 
GPBoost, c SpRF, and d FRK when trained on P. falciparum prevalence 
data from Kenya in 2009. Note that these maps are intended 
only to illustrate differences in model predictions when fit to a small 
data sample, and are not likely to accurately represent malaria 
prevalence across the country in this year

Table 1 Cross-validation results of the four models

Boldface denotes the best score in each column

Model 10-fold- RMSE 50-fold RMSE Training 
Correlation

10-fold 
Correlation

50-fold 
Correlation

% points within 
1SD (10-fold)

INLA 0.181 0.124 0.909 0.235 0.683 75

GPBoost 0.127 0.11 0.873 0.646 0.751 84.211

SpRF 0.132 0.121 0.912 0.641 0.702 37.105

FRK 0.125 0.123 0.902 0.661 0.702 83.421
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this model may be overfitting to the training data. INLA 
performs poorly with respect to the 10-fold RMSE and 
correlation.

Table 1 shows that SpRF has only 37.105% of the points 
within 1SD for 10-fold cross-validation, which is much 
lower than for the other models and is discussed further 
in “Detailed cross-validation results” section. GPBoost 
performs the best in terms of the percentage of points 
within 1SD. However these results need to be taken in 
context, because a higher standard deviation can increase 
this percentage.

Figure  5 shows the interval and point predictions for 
the four methods for 10-fold cross-validation. Points 
within 1SD are shown in green, points within 2SD are 
shown in blue, and the rest are shown in red. Many 
of INLA’s predictions are close to zero and this issue is 
investigated in “Effects of input noise on INLA” section. 
Additional cross-validation metrics that consider the 
prediction error divided by its standard deviation are 
detailed in [67]. However, this work does not consider 
these metrics as some methods produce very small stand-
ard deviations and thus will result in very large values. 
More details on cross-validation results in terms of the 
clusters and density of locations are given in “Detailed 
cross-validation results” section.

Continent scale results
Geostatistical mapping is often carried out at a conti-
nent or global scale and frequently uses large datasets of 
observations. As computation time for inference and pre-
diction can scale poorly with the amount of data and size 
of the domain, it is important to assess the performance, 
both in terms of predictive power and time, of recent 
methods. To examine how each of the four methods per-
form at larger scales, and to understand how predictions 
are affected by potential violations of model assumptions 
and by clustering and sparsity of observation points, the 
study area was expanded to the whole continent of Africa 
in 2009, and each model was fit to the three prevalence 
datasets shown in Fig. 3. Figure 6 shows the prevalence 
predicted by the models when trained on each input 
dataset. The corresponding uncertainties appear in “Pre-
diction uncertainty”.

Scaling up to the continent level reveals differences 
between the methods that are not apparent at smaller 
scales. While the national scale prevalence maps in Fig. 4 
are largely similar apart from the slight banding effect 
seen in SpRF’s predictions, the prevalence maps in Fig. 6 
differ significantly, with artifacts appearing in several of 
the maps.

Overall, the four models are better at local interpolation 
than extrapolation over large regions without data. The 
predictions in Fig.  6(iii) generated using the randomly 
distributed data recover the prevalence structure of the 
MAP raster in Fig.  3d much more faithfully than the 
predictions in Fig.  6(ii) from the sparser non-uniform 
data. This behaviour is expected as malaria prevalence is 
known to be highly heterogeneous and the implemented 
models do not use covariate data.

SpRF’s predictions display a prominent banding effect, 
visible in both the country and continent scale maps 
where contiguous arc-like bands of high prevalence 
appear in both point and uncertainty estimates. This 
may be explained by the fact that SpRF models the 
quantity of interest—malaria prevalence in this case—
based on distances to points with known values. Thus 
bands of high or low prevalence appear at different 
radii from clusters of observations, and the piecewise 
constant nature of random forests would contribute to 
the sharp steps between each band. The banding effect 
is particularly prominent in Fig. 6(ci) and (cii), where the 
points were clustered into smaller regions, while it is less 
obvious when the datapoints have good spatial coverage, 
as in Fig. 6(ciii), which does not show bands spanning the 
continent. Further increasing the number of simulated 
points was found to further reduce the prominence of 
these bands.

Even though SpRF produces maps with this unwelcome 
feature, the cross-validated point estimates are quite 

Fig. 5 Interval predictions for 10-fold cross-validation for a INLA, b 
GPBoost, c SpRF, and d FRK using the national level Kenya data. Points 
show the predicted mean from each model, and intervals show one 
standard deviation above and below the mean
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accurate. Table  3 in “Detailed cross-validation results” 
shows that SpRF has the highest proportion of points 
with absolute errors less than 0.05 and 0.1 for 10-fold 
cross-validation, which is a harder task for the algorithms 
than 50-fold cross-validation. Thus in this example, 

SpRF gives reliable predictions at points even though it 
may produce a predictive map that can be misleading in 
regions where there are no sample points.

Figure  6(ai), produced by INLA with the observation 
data, displays a sudden drop in prevalence away from 
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Fig. 6 P. falciparum prevalence predictions when fit using three different datasets. In column (i), models are fit using the survey data from Africa 
in 2009, shown in Fig. 3a. In column (ii), the models are fit to binomial samples drawn from the Malaria Atlas prevalence raster at the same 
survey locations, shown in Fig. 3b. In column (iii), they are fit to binomial samples drawn from the raster at 1000 uniformly selected locations 
across the continent, shown in Fig. 3c. Outputs have been masked by the Malaria Atlas Project raster in Fig. 3d. Note that these maps are intended 
only to illustrate differences in model predictions and are not likely to accurately represent malaria prevalence in this year
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observations, resulting in flat near-zero predictions cov-
ering most of the continent. This appears to result from a 
combination of both the sparsity and noise present in the 
data, rather than clustered nature of the data alone. Fig-
ure 6(aii) uses nearly the exact same locations, yet shows 
higher values of prevalence spreading much further from 
the observations. “Effects of input noise on INLA” out-
lines evidence that this effect arises from unaccounted-
for overdispersion in the observation data. In particular, 
increased noise in the data appears to reduce the esti-
mated range for the spatial random effect, resulting in 
the model reverting to constant predictions away from 
observation locations. This behaviour is consistent with 
the INLA-based model’s poor performance in the 10-fold 
cross-validation analysis in “Cross-validation results” 
section, where the model predicted near-zero malaria 
prevalence for each of the held out folds.

The FRK-based model’s predictions depend strongly on 
the arrangement of the basis functions, which are gener-
ally placed by the software based on the data locations and 
the user parameters introduced in “FRK-based model” 
section. For example, FRK’s predictions in Fig.  6(di) and 
(dii) display spurious oscillations in regions with little or 
no data, however these oscillations correspond to peri-
odic placement of the basis functions. In regions with lit-
tle data, FRK reverts to the prior mean, which varies with 
the basis functions and leads to oscillating predictions (A. 
Zammit Mangion, personal communication, September 
1 2023). The spurious oscillations should generally coin-
cide with locations where the predicted uncertainty is 
high, however notably Fig. 6 (di) and (dii) include a large 
patch of low prevalence over South Sudan where no data is 
located, yet where the predicted standard deviation is low 
in Fig.  20. Other tested arrangements led to flat predic-
tions over the whole continent (results not shown). These 
types of artifacts are not present in Fig. 6(diii), where the 
input data has good spatial coverage. However, this map 
appears as a smoothed version of the input data, and does 
not resolve the finer structure in the MAP surface. The 
impact of the arrangement and number of basis functions 

on the prediction maps is detailed further in “FRK sensi-
tivity” section.

For both Kenya and Africa, the GPBoost-based 
model produces prevalence maps without the artifacts 
appearing in the other models’ outputs. However, the 
uncertainty maps in Fig.  20(ci)-(cii) exhibit a high level 
of overall uncertainty regardless of whether the regions 
have more survey points or not. This is further confirmed 
by the near-constant interval widths that rarely fluctuate 
with the density of the survey points in Fig. 16 (“Detailed 
cross-validation results” section). Even though GPBoost 
currently computes only Euclidean distances between 
coordinates, both the prevalence maps for Africa and 
Kenya appear to be reasonable. However, it is sub-
optimal to use Euclidean distances between longitude 
and latitude coordinates for a global model.

Computational results
Times taken to train each model on each of the datasets 
and produce predictions are shown in Table  2. While 
FRK is consistently the fastest, INLA shows great varia-
tion among the African datasets, ranging from less than 
10  min with the uniform simulated data to 69.11  min 
with the observation data. Further analysis of this varia-
tion for INLA is given in “Effects of input noise on INLA”.

Table 2 Times taken in minutes to train the models on each dataset and generate the prediction maps

The Kenya: Observations column corresponds to the maps in Fig. 4. The Africa: Observations, Africa: Simulated observations, and Africa: Simulated uniform columns 
correspond to columns (i), (ii), and (iii) of Fig. 6 respectively. Note that different machines were used to run the models for the Kenya and Africa datasets

Dataset

Kenya: Observation Africa: Observation Africa: Simulated 
observation

Africa: 
simulated 
uniform

Model INLA 0.34 69.11 11.49 7.05

GPBoost 0.99 11.27813 6.56 13.85

SpRF 0.44 24.54 24.64 27.6

FRK 0.35 3.28 3.41 3.09

Fig. 7 Times taken by each model on uniformly distributed 
simulated datasets. GPBoost was not run with 5000 or 10,000 points 
due to the likely long computation time
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Each model was additionally trained on simulated 
prevalence datasets with 1000–10,000 points selected at 
random. Figure  7 shows times taken to fit each model 
and produce predictions as the dataset size varies. Both 
INLA and FRK remained very fast on larger datasets, 
showing little variation in their times. In contrast SpRF’s 
time appears to increase linearly with dataset size, and 
GPBoost rapidly slows down on larger datasets, reflecting 
the computational requirements of using an unapproxi-
mated Gaussian process. As noted in GPBoost, a Vecchia 
approximation is available for this method to improve the 
computational efficiency. In “GPBoost with the Vecchia 
approximation”, the effects on computation and model 
predictions of applying this approximation are examined.

Sensitivity of FRK and INLA to parameter choices
Of the four methods, INLA and FRK show promise in 
their computational efficiency, displaying favourable 
scaling compared to SpRF and GPBoost in Fig.  7. 
Additionally, while the artifacts in SpRF’s output appear 
to stem from the way it uses distances as an input, it 
is less clear whether the artifacts in INLA and FRK’s 
prevalence maps are due to specific model parameters, or 
if they are fundamentally caused by the approximations 
used by each method. For this reason, these two methods 
are examined more closely and test the sensitivity of their 
predictions to the model parameters.

INLA sensitivity
The primary artifact visible in the INLA-based mod-
el’s prediction maps is the flat, near zero, predictions 
when the model is fit to the observation data, as shown 
in Fig.  6(ai). “Effects of input noise on INLA” outlines 
evidence that this feature is due to overdispersion, 

suggesting that the binomial response is unsuited for 
modelling the variability in the observed malaria data, 
despite commonly being used in tutorials on the applica-
tion of INLA to disease mapping problems.

Several adjustments can be made to the model to 
address this overdispersion, such as the use of a Beta-
binomial or Gaussian response (either directly on the pro-
portion positive, or its empirical logit transform), or the 
inclusion of an independent error term in the linear pre-
dictor. All of these options include an additional param-
eter in the model to capture error variance at the level 
of the observation. Figure  8 shows predictions from an 
INLA-based model with a Beta-binomial response which 
has been fit to the observation data. The flat predictions 
of Fig. 6(ai) are notably absent, suggesting that the Beta-
binomial is effective in resolving the overdispersion. A 
Gaussian response was additionally tested and was found 
to also handle the variability in the observation data, with 
results shown in “INLA with a Gaussian response”. These 
results highlight a need for caution when applying INLA 
with a binomial response to disease mapping problems, 
and the importance of checking for overdispersion.

FRK sensitivity
While the fastest of the four methods, FRK’s conti-
nent  scale predictions display a spurious ‘spotty’ pattern 
when fit to either of the spatially sparse datasets and a 
much less detailed map when fit to the simulated data 
at randomly selected locations (Fig.  6). These features 
appear to stem from FRK’s use of a small number of basis 
functions in approximating the Gaussian process. This 
section examines whether increasing the number of these 
functions can resolve the artifacts in FRK’s outputs.

The number of basis functions used in FRK’s approxi-
mation is primarily controlled by the nres and regu-
lar parameters. Increasing the nres parameter adds 
an additional ‘resolution’ or layer of basis functions with 
a finer spatial scale, while increasing the value of regu-
lar reduces the scale of each basis function and adds 

Fig. 8 Prevalence predictions from an INLA-based model 
with a Beta-binomial response, fit to the observation data in Fig. 3a

Fig. 9 P. falciparum prevalence predictions from the FRK 
model with a nres = 3 and regular = 1, and b nres = 2 
and regular = 2
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additional rows and columns to their arrangement. Details 
on the effects of these parameters are available in the soft-
ware documentation [68]. The model used throughout 
“Case study: Kenya”  to “Computational results” section 
had these parameters set to nres = 2 and regular = 1.

Figure 9a shows FRK’s predictions when fit to the obser-
vation data with nres increased to 3, and regular left 
at 1, which resulted in a model with 1338 basis functions. 
Whilst the broad-scale ‘spottiness’ is less prominent in 
this model, finer-scale oscillation is quite visible in regions 
of Central Africa. This modest improvement came at a 
significant computational cost, as the model took over 
55  min and required 106  GB of RAM, compared to the 
4.77 GB of RAM and 3.28 min required when nres was 
set to 2 , and regular was set to 1 . Figure 9b shows the 
predictions when nres is kept at 2 and regular is 
increased to 2 . These settings resulted in 600 basis func-
tions, and required 22.74 GB of memory and 9 min to run, 
significantly less than when increasing the nres param-
eter. However the fine-scale oscillation is noticeably more 
pronounced in areas with little or no data.

While the key to FRK’s computational efficiency is its 
decomposition of the spatial random effect into a small 
number of basis functions, these results suggest that it is 
challenging in practice to balance this efficiency with the 
risk of artifacts appearing in the model output, especially 
on large scale mapping problems, with sparse data. The 
observed issues with computational efficiency may result 
from the current software implementation rather than 
from FRK’s underlying mathematical approach (A. Zam-
mit Mangion, personal communication, September 1 
2023), and hence such a balance may be easier to achieve 
in future software versions.

Discussion
This applied comparison of four computational spatial 
modelling methods found that two of them (SpRF and 
GPBoost) are not sufficiently scalable or accurate to be 
applicable to large-scale malaria prevalence modelling 
problems. SpRF’s spatial predictions displayed a prominent 
‘banding’ artifact, and at first glance the SpRF-based mod-
els appeared to be overfitted (matching closely to training 
data, but making poor predictions to hold-out data). How-
ever, closer inspection (“Detailed cross-validation results”) 
shows that SpRF’s tighter uncertainty intervals in low den-
sity regions may result in this perception. Unlike the other 
methods, SpRF does not incorporate a covariance func-
tion, but instead treats the columns of the distance matrix 
between coordinates as covariates for inclusion in the Ran-
dom Forest. A covariance function could in fact be applied 
to the distance matrix before inclusion in the model. This 
would not have the same interpretation as in the Gauss-
ian-process based models considered in this work, but 

would enable SpRF to consider a distance-based decay in 
the unobserved spatial effects being modelled. However, 
the Random Forest inference machinery in SpRF would 
have no means to estimate the parameters of such a func-
tion (such as the rate of decay with distance), and it seems 
unlikely they could be reasonably specified in advance. 
Due to these issues of fit, and the fact that the computation 
time of SpRF scaled approximately linearly with the size of 
the data, this approach is unlikely to be useful for applied 
spatial modelling of malaria data.

The GPBoost-based model made reasonably good 
predictions to hold-out data, being the best-performing 
model at 50-fold spatially-blocked cross-validation in 
the national-scale comparison (implying a good ability 
to extrapolate over short distances) and the second-best, 
behind FRK, at 10-fold cross-validation (ability to extrap-
olate over longer distances). However the computa-
tion time using the default GPBoost specification scaled 
very poorly with increasing data size. This is because by 
default GPBoost performs inference on the full (unap-
proximated) Gaussian process, with each step of the 
inference procedure requiring an O

(
n3
)
 inversion of the 

covariance matrix. Neither the maximum-likelihood 
inference of GP hyperparameters, and boosting inference 
on the intercept (and covariate effects if used) reduce this 
computational burden. Employing the Vecchia approxi-
mation available for the method did not resolve all issues, 
as shown in “GPBoost with the Vecchia approximation”. 
The Vecchia approximation resulted in faster compu-
tation times, but also resulted in artifacts in the model 
predictions. Increasing the complexity (number of neigh-
bouring points to consider) in the approximation reduced 
these artifacts, but at the cost of a substantial increase 
in the required computation time and RAM usage. It is 
worth noting that GPBoost is a relatively new technique, 
and future versions may include faster approximations.

Both INLA and FRK offered substantially better 
scalability to increasing data size than SpRF and 
GPBoost, taking only minutes to fit to 10,000 datapoints. 
Whilst it was computationally scalable, and is a widely 
established method and software for geostatistical 
modelling of malaria data, implementing INLA using 
the commonly suggested binomial distribution for 
prevalence data (e.g. as suggested in [31, 56]) resulted 
in spurious predictions and poor ability to extrapolate 
in both the 10-fold and 50-fold cross-validation tests. 
This work has demonstrated that this is due to the 
fact that the malaria prevalence data being modelled 
are overdispersed relative to the binomial sampling 
assumption and spatial-only model. That is, the 
assumption is violated that the infection status of each 
individual in a given sample is independent of the others, 
given the estimated prevalence estimate at that location. 
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This should not be surprising from an epidemiological 
perspective, given that the infections in a given place 
do not arise independently—each infection is caused by 
another. This gives rise to local noise, either at the level 
of a pixel or group of pixels (that particular location may 
have some risk factor not accounted for by the smooth 
spatial model), or at the level of the observation (on 
the day of sampling, that population may have had a 
higher or lower than usual prevalence). The INLA-based 
model’s behaviour in this case is an attempt to capture 
these small-scale variations with a very ‘wiggly’ spatial 
random effect, i.e. one with rapid decay with increasing 
distance. It favours this parameter configuration on 
overdispersed data because the observation variance is 
fixed when using a binomial likelihood, and the variance 
is not sufficiently large to explain the data. This issue 
of poor identifiability between the observation-level 
variance and the lengthscale of a Gaussian processes has 
previously been described ([69], see Fig. 5.4), and can be 
resolved in classical (and model-based) geostatistics with 
the use of an independent ‘nugget’ effect either on each 
observation or each observed location [1]. Despite also 
using a binomial observation distribution, FRK does not 
suffer the same pitfall because it includes a type of spatial 
nugget effect in its ‘small-scale’ effect parameter.

For malaria prevalence modelling with INLA, this 
analysis suggests that a more reliable ‘default’ model than 
the standard binomial observation model would be one 
which includes additional observation-level random 
noise. This can be achieved by using a Beta-binomial or 
Gaussian (on the observed prevalences or on the empir-
ical-logit scale). Both of these options have an additional 
observation-level variance parameter that can be used 
to explain the overdispersion relative to the binomial. 
Of these, the Beta-binomial is most likely to be generally 
applicable to malaria prevalence data, since it is able to 
accurately account for observation errors in the common 
situation where only very few of the individuals tested are 
infected. It is worth noting that fitting with a Gaussian 
response is substantially more computationally efficient 
in INLA, and so may be preferable if computation time is 
a major constraint. An alternative approach would be to 
include an independent observation-level random effect 
in the model specification.

Whilst FRK scaled well to large datasets (generally tak-
ing slightly less time than INLA) and performed well in 
both the 10-fold and 50-fold extrapolation comparisons, 
for continental-scale modelling, specifying the model in 
such a way that it was both computationally scalable and 
avoided the spurious oscillating effect of the basis func-
tions was not achieved using with modest model modifi-
cations. Whilst less noticeable, similar patterns are visible 
in the national-scale analysis in parts of North-Western 

and far North-Eastern Kenya where no data are available 
to inform such a prediction. Given these issues, signifi-
cant care must be taken, when applying FRK to mapping 
of sparse malariometric data, to avoid these spurious pre-
dictions that are driven by computationally convenient 
approximations rather than data.

Comparing four methodologically different techniques 
has its limitations. One such limitation is that the inher-
ent differences of the methods make a comparison some-
what difficult. For example, the likelihoods are different 
as well as the underlying model structure and/or covari-
ance functions. Thus, each method has its own measures 
and an INLA goodness of fit measure cannot directly be 
compared with that of SpRF and vice versa. For this anal-
ysis, this has been mitigated by focusing on the outputs—
predictive maps and cross-validation results.

Another aspect of interest is the parameter settings. 
There are many different parameter settings for each 
method. This analysis selected the commonly used 
(default) parameter settings and even though several dif-
ferent parameter settings were explored, a comprehensive 
exploration of the parameter space of these algorithms was 
not conducted. While the default parameter settings were 
acceptable for Kenya, it is expected that algorithms can 
benefit from customized parameters when running the 
model on the scale of Africa. The limitations of the choice 
of parameters is brought to light by the extent of the geo-
graphical region. Exploring optimal parameter selection 
is another avenue of research. Furthermore, there might 
be other parameter settings that can make the inference 
approximations of the different models more comparable.

From a practitioner’s point of view, it is challenging to 
adopt a new method for spatial modelling mostly because 
it takes a long time to learn the methodology and write 
code to produce meaningful output. This is a significant 
barrier to entry. If the methods discussed provide tuning 
functions that explore the parameter space and select a set 
of parameters that enables the practitioner to build a good 
model, it would increase the usability of these methods.

An in-depth investigation of strengths and weaknesses 
of the models would be another avenue of interest. One 
option is to construct a meta-model that can predict the 
best model based on features of different locations [70]. 
Such a meta-model could combine the strengths of the 
diverse models to make a stronger prediction. The find-
ings of this paper should be of use for those creating, 
interpreting or working with spatial data, as a baseline 
comparison of new computational geostatistical models.

Appendix
See Tables 3, 4, 5, 6 and Figs. 10, 11, 12, 13, 14, 15, 16, 17, 
18, 19, 20, 21 and 22
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Detailed cross‑validation results
Point predictions
Table  3 gives the results for 10-fold and 50-fold cross-
validation. For each set of folds it gives the Root Mean 
Square Error (RMSE), correlation coefficient between the 
predicted and actual values and the percentage of obser-
vations that have an absolute error 

(∣∣predicted− actual
∣∣) 

less than a specified threshold (thresholds of 0.05, 0.1 
and 0.2 considered). As noted earlier, FRK and GPBoost 
have the best RMSE and correlation values for 10-fold 
and 50-fold cross-validation respectively. SpRF gives the 
best performance in terms of the percentage of obser-
vations with absolute error less than 0.05 and 0.1. Com-
pared to the other models, INLA performs poorly for the 
10-fold cross-validation, with a higher RMSE and sig-
nificantly lower correlation coefficient. However, it gets a 
high percentage of observations with absolute error less 
than the three thresholds. This is because a large num-
ber of observations have low prevalence values. This is 

further illustrated in Fig. 10, which shows the actual and 
predicted values using 10-fold cross-validation for each 
model.

Figure 10 shows the points by cross-validation fold as 
determined in Fig.  2a As the folds are determined by k
-means clustering, observations in each fold lie close 
together. Data points in most folds have similar preva-
lence values, apart from the points in Folds 3, 8 and 9 
which have a broad range of values. The points assigned 
to Fold 8 are difficult to predict for all four models. These 
points are along the coast near the city of Mombasa and 
are somewhat isolated from other clusters, which might 
be a contributing reason.

Figure  11 shows 50-fold cross-validation results for 
the four models while Fig.  12 shows their interval pre-
dictions. As shown in Table  3, GPBoost achieves bet-
ter results in terms of RMSE and correlation. It has the 

Table 3 Cross-validation results of the four models

Boldface denotes the best score in each column for each of the cross-validation experiments

Fold Model RMSE Correlation % points with absolute error less than

0.05 0.1 0.2

10-fold INLA 0.181 0.235 69.211 76.316 86.053

GPBoost 0.127 0.646 52.632 73.947 93.158
SpRF 0.132 0.641 69.474 80.263 91.053

FRK 0.125 0.661 57.105 76.579 92.105

50-fold INLA 0.124 0.683 69.474 80.789 87.895

GPBoost 0.11 0.751 65.789 80.789 90

SpRF 0.121 0.702 67.632 78.947 90.526
FRK 0.123 0.702 66.053 79.211 90.263

Fig. 10 Model predictions of the four models vs actual prevalences 
using 10-fold CV

Fig. 11 Model predictions of the four models vs actual prevalences 
using 50-fold CV with folds in different colours
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same performance as INLA for the highest percentage 
of observations with absolute error less than 0.1. INLA 
has the highest percentage of observations with abso-
lute error less than 0.05 and SpRF has the highest per-
centage of observations with absolute error less than 0.2. 
Figure 11 shows that certain folds perform poorly. These 
folds match with the locations of the poorly performing 

folds in the 10-fold CV scenario. Another interesting 
observation is that while GPBoost achieves good results 
for both sets of folds, it performs poorly on high preva-
lence observations, whereas FRK and SpRF do not appear 
to have this limitation.

Point predictions by location density
These results are further analyzed using the density of 
sampled locations, i.e. do some models find it difficult 
to predict observations in low density regions? Fig.  13 
shows the malaria prevalence and kernel density esti-
mates of the sampled locations on two separate maps. 
Figure  14 shows scatter plots of prevalence and density 
with points coloured by the fold. Fold 8 in the 10-fold CV, 
which is located around the city of Mombasa, has a broad 
range of prevalence values while having relatively low 
density. This explains the reason behind the high errors 
for Fold 8 (Fig.  10). When the sampled points are away 
from each other (low density) and the prevalence values 
have high variation, it is challenging for the models to 
predict accurately.

Figure 15 shows the absolute errors of the four models 
with respect to density for both 10 and 50-fold cross-val-
idation. For 10-fold CV, Fold 8 exhibits high error rates 
for all four models. Considering the same set of points for 
50-fold CV shows that while FRK and SpRF have similar 
error rates in both CV experiments (maximum ≈ 0.75 ), 
INLA and GPBoost have comparatively lower error 
rates (maximum ≈ 0.6 ). Thus, a higher number of folds 

Fig. 12 Interval predictions for 50-fold cross-validation for a INLA, b 
GPBoost, c SpRF and d FRK

Fig. 13 a P. falciparum prevalence in Kenya for 2009 and b the kernel density estimates of the sampled locations
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benefits GPBoost and INLA in this instance more than it 
benefits FRK or SpRF.

Moving on to the points with very low density ( < 0.2 ), 
Fig. 14 shows that the prevalence values of these points 
are relatively low. Figure 15a shows that INLA and SpRF 
have lower errors for these low density points compared 
to FRK and GPBoost. A similar outcome can be observed 
for the 50-fold CV case in Fig. 15b when the density of 
points are less than 0.2.

As seen in Fig. 14, points in high density regions ( > 0.4 ) 
have a higher variation in prevalence ranging from 0 to 
0.75. The 10-fold CV results in Fig.  15a show that FRK 
performs best for these high density points with an error 
< 0.4 , followed by GPBoost and SpRF. INLA performs 
poorly on these points for 10-fold CV. For 50-fold CV 
(Fig.  15b) GPBoost performs best on the high density 
points followed by SpRF, while both FRK and INLA per-
form similarly.

Table  4 gives metrics for different density groups for 
both 10 and 50-fold CV. With low density defined as 
density ≤ 0.2 , medium density as 0.2 < density ≤ 0.4 
and high density as density > 0.4 , the absolute errors of 
all four models are small for low density points, while the 
percentage of observations with absolute error less than 
0.05, 0.1 and 0.2 are quite high for both 10 and 50-fold 
cross-validation sets. In both CV sets, INLA has the 
lowest RMSE with SpRF following closely. For both 10 

and 50-fold CV the correlation coefficients between the 
actual and the predicted values are negative. This indi-
cates that most prevalence values are close to zero in low 
density locations. This would also explain why less points 
were sampled from those regions, as more points are 
generally sampled from high prevalence regions.

GPBoost, SpRF and FRK have higher RMSE for the 
medium density point set, compared to the high density 
point set for 10-fold CV. A similar behaviour is observed 
for FRK for 50-fold CV. This is due to the high absolute 
errors in Fold 8 as discussed previously. For the medium 
density points, GPBoost is preferred in terms of RMSE 
for both 10-fold CV and 50-fold CV. For high density 
points FRK is preferred for 10-fold CV while GPBoost 
is preferred for 50-fold. In terms of the percentage of 
points with absolute error less than 0.05 and 0.1, SpRF 
leads the other models for 10-fold CV, while INLA leads 
for 50-fold. For both 10 and 50-fold CV, INLA and SpRF 
perform better on low density points compared to the 
other two methods, while GPBoost and FRK perform 
better on high density points.

Interval predictions
As described in "Results" section, each method has a dif-
ferent uncertainty quantification mechanism, however 
this analysis has estimated the standard deviation of pre-
dictions from each model to allow comparison.

Table 5 gives the interval prediction results for all four 
models. Figures  5 and 12 show the interval predictions 
for 10 and 50-fold CV. For both 10 and 50-fold CV, SpRF 
has on average the smallest uncertainty intervals and 

Fig. 14 P. falciparum prevalence and kernel density estimates of different clusters (folds) for a 10-fold cross-validation and b 50-fold cross-validation, 
with zero prevalence observations taken out
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the smallest number of points within one or two stand-
ard deviations of the mean. Surprisingly SpRF’s inter-
val widths are zero for 148 and 164 of the predictions 
for 10 and 50-fold CV respectively. Each of these points 

correspond to a prediction (median) of zero prevalence, 
and the majority correspond to an observed prevalence 
of zero. However, the mean value of the response at 
nearly all of these locations is small but non-zero, and 

Fig. 15 Kernel density estimates of the locations and the absolute errors of the four models for a 10-fold cross-validation and b 50-fold 
cross-validation
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so the prevalence at these points does not lie within any 
number of standard deviations of the mean, contributing 
to the low percentages for SpRF in Table 5.

For both 10 and 50-fold CV, GPBoost has the largest 
mean interval widths but smallest standard deviation, 
suggesting that it predicts consistently high width inter-
vals for most observations. For 10-fold CV, this results in 
the highest percentage of points lying within one or two 
standard deviations. For 50-fold CV INLA has a higher 
percentage of points lying within each type of interval, 
which may be accounted for by the higher variation in 
INLA’s interval widths.

Figure 16 shows the kernel density estimates of the loca-
tions and the respective interval widths of the four models 
for both 10 and 50-fold CV. For both 10 and 50-fold CV, 
GPBoost has similar widths for all observations. There is 
a slight increase in width for low density points. However, 
there is not much variation in width with respect to the 
density. In contrast, FRK, INLA and SpRF have varying 
interval widths for different folds. There is also high vari-
ation for locations with high density, mostly likely because 
of the variation in prevalence. For both 10 and 50-fold 
CV, FRK has relatively high width values for low density 

Table 4 Cross-validation results grouped by density of sampled locations

Boldface denotes the best RMSE score for a given number of cross validation folds and point density

Fold Density Model RMSE Corr % points with absolute error less than

0.05 0.1 0.2

10-fold Low INLA 0.005 − 0.234 100 100 100

GPBoost 0.028 − 0.189 96 100 100

SpRF 0.006 − 0.059 100 100 100

FRK 0.048 − 0.021 62 98 100

Medium INLA 0.141 − 0.003 75.723 82.659 93.642

GPBoost 0.138 − 0.021 60.694 85.549 94.22

SpRF 0.143 − 0.025 72.832 80.347 93.642

FRK 0.145 − 0.035 58.382 76.301 94.22

High INLA 0.24 0.305 52.229 61.783 73.248

GPBoost 0.134 0.788 29.936 52.866 89.809

SpRF 0.14 0.737 56.051 73.885 85.35

FRK 0.119 0.828 54.14 70.064 87.261

50-fold Low INLA 0.005 − 0.128 100 100 100

GPBoost 0.017 − 0.202 98 100 100

SpRF 0.006 − 0.077 100 100 100

FRK 0.021 − 0.17 96 100 100

Medium INLA 0.123 0.501 73.41 83.815 90.173

GPBoost 0.117 0.511 73.41 84.393 91.908

SpRF 0.121 0.435 71.676 85.549 96.532

FRK 0.133 0.31 75.723 83.237 91.329

High INLA 0.143 0.776 55.414 71.338 81.529

GPBoost 0.119 0.809 47.134 70.701 84.713

SpRF 0.14 0.742 52.866 64.968 80.892

FRK 0.129 0.784 45.86 68.153 85.987

Table 5 Interval prediction results of the four models

Mean width refers to the average of the predicted standard deviations, while 
Std. Dev. width refers to their standard deviation

Fold Model Mean width Std. Dev. Width Points within 
(%)

1SD 2SD

10-fold INLA 0.102 0.048 75 87.105

GPBoost 0.136 0.014 84.211 95.526

SpRF 0.071 0.106 37.105 55

FRK 0.1 0.072 83.421 92.368

50-fold INLA 0.096 0.091 81.053 95.789

GPBoost 0.112 0.014 81.053 91.053

SpRF 0.056 0.086 28.158 42.895

FRK 0.062 0.068 74.474 85
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points. Conversely, INLA and SpRF have low width values 
for low density points. Similar to the point predictions, a 
high variation of width occurs for medium density points 
( density ≈ 0.3 ) for FRK, INLA and SpRF.

Effects of input noise on INLA
Figure  6(ai) shows INLA predicting a flat near-zero 
prevalence over most of Africa when trained on the 
observation data, a behaviour that is not replicated by 
fitting the model to either set of simulated data. This 

Fig. 16 Kernel density estimates of the locations and the interval widths of the four models for a 10-fold cross-validation and b 50-fold 
cross-validation
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behaviour may be due to the noise in the observation 
data, which is visible in Fig. 3a particularly in Uganda. In 
contrast, the simulated data at the same locations, shown 
in Fig. 3b, appears much smoother.

This working hypothesis is examined by adding 
Gaussian noise to the simulated data. Prevalence values 

sampled from the MAP raster in Fig.  3d with locations 
based on the observation points were transformed using 
the logit function. Gaussian white noise with chosen 
standard deviations was added to the transformed val-
ues, before being brought back to values between 0 and 
1 via the inverse logit. Binomial samples for the number 
of positive tests were then drawn using these prevalences 
and INLA was fit to this data.

Predictions from INLA fitted to data with three dif-
ferent levels of noise are shown in Fig.  17. Figure  18 
shows posterior means and interquartile ranges for the 
intercept, range, and variance of the fitted models as 
the standard deviation of the added noise increases, as 
well as the time taken to fit each model and generate 
predictions.

As the standard deviation of added noise increases, 
both the intercept and spatial range fall, and predictions 
become less correlated between locations. The time taken 
jumps for standard deviations above 0.6 and presumably 
the model has difficulty converging. With greater noise, 
the model predicts a flat prevalence away from the simu-
lated data dependent on the value of the intercept, and its 
output in Fig. 17c resembles the predictions in Fig. 6(ai) 
of the model trained on the observation data. These 

Fig. 17 Predicted prevalence from INLA when fit to simulated data at observation locations with a no added noise, b added Gaussian noise 
of standard deviation 0.4 and c added Gaussian noise of standard deviation 1.2

Fig. 18 Posterior means of the intercept, range and variance 
for the INLA-based model fit using simulated data at the observation 
locations with added Gaussian noise of varying standard deviation. 
The bottom right plot shows the time taken to fit the model to each 
of the datasets. Error bars show posterior interquartile ranges

Table 6 Cross-validation results for INLA-based models using a binomial and Beta-binomial response

Fold Model RMSE Correlation % points with absolute error less than

0.05 0.1 0.2

10-fold INLA binomial 0.181 0.235 69.211 76.316 86.053

INLA Beta-binomial 0.166 0.457 70.263 76.316 85.789

50-fold INLA binomial 0.124 0.683 69.474 80.789 87.895

INLA Beta-binomial 0.115 0.74 71.053 80.263 89.474
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results suggest the presence of overdispersion, and that 
the model implemented with INLA may be misspecified. 
Indeed the model in Eq.  (4) does not contain an inde-
pendent error term. Methods to address this include add-
ing an observational random effect to the model, or using 
a Beta-binomial response.

Table  6 shows the cross-validation results using the 
Kenya dataset for an INLA-based model using a Beta-
binomial response compared to the earlier model which 
used a binomial response. For both 10 and 50-fold cross-
validation, the Beta-binomial response leads to improved 
performance in terms of the root mean square error and 
the test correlation. For 10-fold cross-validation, the 
Beta-binomial model still performs worse than the other 
three models in Table 3, however for 50-fold cross-vali-
dation it outperforms all but GPBoost.

INLA with a Gaussian response
Due to the overdispersion when fitting the INLA-based 
model to the observation data, an additional model using 
“INLA with a Gaussian response” was tested. Predictions 
from this model are shown in Fig.  19 and the absence 
of flat predictions suggests that this response is able to 
resolve the overdispersion.

Prediction uncertainty
Figure 20 shows the prediction uncertainties correspond-
ing to each of the prevalence maps over Africa in Fig. 6.

GPBoost with the Vecchia approximation
As it uses a full Gaussian process, it is unsurprising 
that the GPBoost model shows the least favourable 
computational time for larger datasets. To improve 
efficiency, a Vecchia approximation is available in the 
software, which approximates the distribution of the 
response as

as per [46]. Here yN (i) is the subset of {y1, . . . , yi−1} 
containing the mv nearest neighbours to yi , where ‘near-
est neighbours’ are determined by the distances between 
the responses’ corresponding locations. The parameter 
mv determines the number of neighbours to use dur-
ing fitting, while a separate parameter, mv,p , controls 
the number of neighbours used for prediction. The 
above approximation of the density results in a sparse 
Cholesky factor of the precision matrix, with the number 
of selected neighbours impacting this sparsity and the 
accuracy of the approximation [58]. The approximation 
additionally requires a choice of ordering of the observed 
responses {y1, . . . , yn} , which by default is taken to be a 
random ordering of the data.

Figure  21 shows GPBoost’s predictions when using 
a Vecchia approximation with several values of mv and 
mv,p . Uncertainty predictions were not produced as they 
are not currently well supported in the software when 
using the Vecchia approximation.

Applying the Vecchia approximation introduces arti-
facts to GPBoost’s predictions. Figure  21a shows sharp 
discontinuities, which were prominent whenever low 
values of mv and mv,p were used. Experiments using the 
Kenya data suggested that the discontinuities could be 
prevented by increasing mv and mv,p , however for the 
dataset on the continent scale there was a computa-
tional cost for doing so. Increasing mv,p from 30 to 150 
while keeping mv fixed at 30 had a relatively small impact 
on the computation time, which surprisingly decreased 
from 11.09  min to 9.56  min, but the required memory 
jumped from 425 MB to 20,593 MB. Meanwhile, increas-
ing both mv and mv,p to 150 greatly increased the compu-
tation time, requiring over 3.6 h to run, much longer than 
when the Vecchia approximation was not applied. Addi-
tionally, this model configuration required 20,722  MB 
of RAM. These examples suggest that increasing mv pri-
marily increases the computation time required without 

p
(
y|F(X), θ

)
=

∏n

i=1
p
(
yi|yi−1, . . . , y1, F(X), θ

)

≈
∏N

i=1
p
(
yi|yN (i), F(X), θ

)
,

Fig. 19 Predictions from an INLA-based model with a Gaussian 
response fit to the observation data. Values have been clipped to lie 
within [0, 1]
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affecting the RAM usage, while increasing mv,p increases 
the required RAM, with a smaller impact on computa-
tion time. Despite the increased computational require-
ments, neither adjustment to the parameters completely 
removed the discontinuities.

One benefit of using the Vecchia approximation 
is an improvement in scaling behaviour, even if the 
computational requirements on an individual dataset 
depend strongly on the choice of mv and mv,p . Figure 22 
shows the computational results from Fig.  7, with an 
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Fig. 20 Predicted standard deviations for each of the maps shown in Fig. 6
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additional plot for GPBoost using the Vecchia approxi-
mation. Parameters mv and mv,p were held fixed at 30 
and 150 respectively, and the model shows favourable 
computation times compared to the full GP version of 
the model and SpRF, though is slower than INLA and 
FRK. These results highlight an obstacle to applying 
GPBoost to large scale data. Using the full Gaussian 
process can result in large computation times, while 
applying the Vecchia approximation introduces arti-
facts which require sacrifices in computational effi-
ciency to remove.

GPBoost’s computation times are amplified by the 
high value of the nrounds parameter, which has been 
set to 247 following available tutorials. As described in 
“GPBoost-based model”, this parameter controls the 
number of optimization steps during fitting. When fit 
to the malaria datasets used throughout this paper, the 
log-likelihood generally stopped increasing after 5 to 10 
steps, suggesting that 247 training steps is unnecessar-
ily high for the considered data and model. Figure  22 
additionally includes the times taken for GPBoost with 
nrounds reduced to 5, and the scaling behaviour is 
greatly improved by this change, with the fastest com-
putation time among all of the implemented models. 
Additional experimentation however found that reduc-
ing the number of rounds had little effect on the high 
RAM requirements for large values of mv,p ; something 
which may be necessary to minimize the discontinuities 
and noise in the predictions. Reducing nrounds would 
also improve the efficiency of the GPBoost model when 
no Vecchia approximation is used, however would not 
change the overall scaling behaviour.
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