
Mshani et al. Malaria Journal          (2023) 22:346  
https://doi.org/10.1186/s12936-023-04780-3

REVIEW Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Malaria Journal

Key considerations, target product profiles, 
and research gaps in the application of infrared 
spectroscopy and artificial intelligence 
for malaria surveillance and diagnosis
Issa H. Mshani1,2*, Doreen J. Siria1,2, Emmanuel P. Mwanga1,2, Bazoumana BD. Sow5, Roger Sanou5, 
Mercy Opiyo6,9, Maggy T. Sikulu‑Lord7, Heather M. Ferguson1,2, Abdoulaye Diabate5, Klaas Wynne8, 
Mario González‑Jiménez2,8, Francesco Baldini2†, Simon A. Babayan2*† and Fredros Okumu1,2,3,4*† 

Abstract 

Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased 
greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, 
a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated 
that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologi‑
cally relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determin‑
ing the age, species, and blood‑feeding histories of mosquito vectors as well as detecting malaria parasite infec‑
tions in both humans and mosquitoes. As the World Health Organization encourages malaria‑endemic countries 
to improve their surveillance‑response strategies, it is crucial to consider whether IR and ML techniques are likely 
to meet the relevant feasibility and cost‑effectiveness requirements—and how best they can be deployed. This paper 
reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field 
surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the arti‑
cle suggests initial target product profiles (TPPs) that should be considered when developing or testing these tech‑
nologies for use in low‑income settings.
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Background
Effective control of malaria requires an in-depth under-
standing of its transmission. This entails estimating 
parasitological, entomological and epidemiological 
parameters in respective communities [1]. Specific activi-
ties may include detecting malaria infections in humans, 
estimating mosquito survival following deployment of 
interventions, identifying malaria-infected mosquitoes, 
and characterizing the human populations at risk [1]. As 
countries move towards malaria elimination in line with 
the strategic goals of the World Health Organization 
(WHO) [2], there is a need to develop simple, low-cost 
and scalable methods for assessing key entomological 
and parasitological indicators of malaria and for moni-
toring the impact of interventions [1, 3–6].

Proper management of suspected malaria cases 
requires confirmation through quality-assured laboratory 
tests [2, 7]. These tests may also include quantifying the 
number of asexual malaria parasites in blood samples to 
determine the severity of the infection, or identifying car-
riers through the detection of Plasmodium gametocytes 
[8, 9]. In population surveys, malaria prevalence can be 
estimated through various methods, such as observ-
ing malaria parasites under a microscope, using rapid 
diagnostic tests (RDTs) to detect parasite-derived pro-
teins and by-products, or detecting parasite nucleic acid 
sequences through polymerase chain reactions (PCR) 
[4, 10]. These tools have greatly improved the diagno-
sis of malaria, guided effective case management, and 
enhanced the evaluation of key interventions.

In terms of entomological indicators, female Anoph-
eles can transmit malaria only if they live long enough to 
pick up the infective stages of Plasmodium, and there-
after incubate those parasites until they mature into the 
infectious sporozoite stage. This process usually takes 
10–14  days, but can be slower depending on climatic 
conditions [11, 12]. Proportions of female mosquitoes 
that are old enough to transmit malaria can, therefore, be 
used to estimate vectorial capacity (number of mosquito 
infective bites produced by a single malaria case) and 
assess the performance of vector control methods, such 
as insecticide-treated nets (ITNs) and indoor residual 
spray (IRS) [13–16].

The primary measure of malaria transmission inten-
sity, the entomological inoculation rate (EIR), is calcu-
lated as the product of the human biting rates (number 
of bites per unit of time) and the proportion of mos-
quitoes infected with Plasmodium sporozoites. Esti-
mating EIR requires detailed assessments of Anopheles 
biting rates, typically through mosquito trapping, and 
the proportion of female Anopheles that carry infective 
Plasmodium sporozoites, typically through enzyme-
linked immunosorbent assays (ELISA) or PCR [17, 18]. 

In addition to these core entomological metrics, other 
measures can be used to estimate the natural survival 
and transmission potential of Anopheles populations. 
These may include ovarian dissections to assess parous 
proportions, analysis of vertebrate blood meals to esti-
mate the proportion of mosquitoes biting humans, 
and estimation of the proportion of mosquitoes biting 
indoors and outdoors [1, 19].

Although these strategies for monitoring malaria 
transmission have contributed to progress against 
the disease [20], there are still considerable obstacles 
related to operational costs, performance accuracies, 
scalability, and human resource requirements [5, 6, 21]. 
In order to align with global priorities for malaria elim-
ination, further advancements in both entomological 
and parasitological surveillance are just as important 
as the need for new drugs, vaccines, or vector control 
approaches [2, 6].

A recent advancement in malaria monitoring is 
the use of infrared (IR) spectroscopy in combina-
tion with machine learning (ML) techniques to assess 
key indicators of malaria. These indicators include the 
chronological age of mosquitoes (e.g. number of days 
post emergence) [22–25], blood-feeding histories of 
malaria vectors [26], Plasmodium infections in human 
blood [27–29] or mosquitoes [30], and identification of 
malaria vector species [22]. In this technique, biologi-
cal samples are scanned with infrared radiation, and 
the energy absorbed by the covalent bonds in the target 
specimen causes its molecules to vibrate. An infrared 
spectrum generates information about the molecules 
that absorb the radiation and their intensity of absorp-
tion [31]. Despite the subtle biochemical differences 
between specimens with different biological traits, 
ML algorithms can disentangle these spectral changes 
and map them to specific phenotypes [27, 31, 32]. 
Together, IR and ML-based systems constitute robust, 
easy-to-use, reagent-free, non-invasive and low-cost 
approaches, making them attractive in low-income 
settings [22, 24, 26]. As a result, there has been a sig-
nificant increase in the number of studies evaluating 
or validating these techniques for monitoring vector-
borne diseases [23, 33, 34].

To ensure maximum benefits going forward, it is 
important to identify existing gaps and the essen-
tial and desirable characteristics that should be met 
for these technologies to be effectively integrated into 
routine malaria control programmes. The aim of this 
article is to review existing IR spectroscopy and ML 
applications for malaria surveillance and diagnostics, to 
identify gaps for field use, and to outline a target prod-
uct profiles for such technologies to be suitable in low-
income settings.
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Current methods for measuring malaria 
transmission
Parasitological methods
The most common method for parasitological assess-
ment of malaria is light microscopy, which is standard 
practice in many laboratories and relies on direct obser-
vations of malaria parasites on thick or thin smears of 
blood [35–37]. Although light microscopy is accessible 
even in low-resource settings, it requires highly experi-
enced personnel and can generally detect only parasite 
densities above 50 parasites/μl of blood with an overall 
sensitivity of between 50 and 500 parasites/μl [38, 39]. 
The method may, therefore, miss individuals with low 
parasitaemia levels or asymptomatic carriers [37, 38], and 
may perform poorly in low-transmission settings [42]. 
The diagnostic accuracy might also be compromised by 
poor preparation of thick or thin blood smears and visual 
identification [43, 44].

Another common approach is the use of malaria rapid 
diagnostic tests (RDTs), which have revolutionized 
malaria investigations in both clinical settings and com-
munity surveys due to their low-cost and promptness 
[45, 46]. Moreover, they do not require highly-trained or 
experienced personnel to perform or interpret the tests, 
and can be used even in hard-to-reach areas, and by com-
munity healthcare workers [45, 47]. Most RDTs target the 
parasite antigen, histidine-rich protein II (HRP-2), which 
is abundant in P. falciparum infected red blood cells [38, 
48]. Some RDTs also target glycolytic enzymes, such as 
Plasmodium aldolase and Plasmodium lactate dehydro-
genase (pLDH) antigens, and can detect non-falciparum 
malaria parasites, such as Plasmodium ovale, Plasmo-
dium malariae and Plasmodium vivax [38, 49].

The main disadvantages of RDTs include the lack 
of quantitative information and poor performance in 
asymptomatic cases or low-level parasitaemia, such as 
those with parasitaemia levels below 100 parasites/μl [4, 
47]. In addition, genetic mutations of the HRP-2 genes, 
which are spreading around the world, also compromise 
the sensitivity of RDTs [51–58]. These gene deletions, 
which have so far been detected in nearly 40 countries 
[59], make the malaria parasites undetectable by the 
HRP-2 based RDTs even when the patients are severely 
ill. The WHO currently recommends that countries 
should withdraw these specific RDTs if more than 5% of 
malaria infections have HRP-2 mutations [59].

Nucleic acid-based diagnostics, such as PCR, have the 
highest sensitivity but are often unaffordable in most 
malaria-endemic settings and are, therefore, rarely used 
[60–62]. PCR can detect parasitaemia as low as 1–5 para-
sites/μl of blood, but is used mostly in research settings 
because of its high cost and the need for specialized facil-
ities and personnel [38, 62, 63]. Epidemiological surveys 

have also demonstrated that PCR assays can be used to 
identify areas with unusually high malaria transmission 
[37, 42]. Moreover, one analysis of methods for detecting 
malaria hotspots in coastal Kenya concluded that PCR 
was the most appropriate for mapping asymptomatic 
cases once overall prevalence had dropped significantly 
[42]. Lastly, PCR also provides detailed information 
on Plasmodium species based on the small subunit 18S 
rRNA or circumsporozoite protein genes, and can also 
detect mixed infections [38, 62]. Unfortunately, as sum-
marized in Fig. 1A, the techniques require highly-skilled 
labour, expensive equipment and reagents, making them 
untenable for regular use in places with poor supply of 
laboratory materials [4].

Entomological methods
The WHO has outlined several entomological indica-
tors that malaria programs may consider for monitoring 
transmission dynamics, guiding the selection or deploy-
ment of control strategies, and evaluating the control 
efforts [1, 7]. These include: (i) mosquito blood-feeding 
histories, biting frequencies, and resting behaviours, (ii) 
vector species presence and densities (iii) insecticide 
resistance status, (iv) proportion of mosquitoes with 
Plasmodium sporozoites, and (v) larval habitat profiles 
[1, 20]. The indicators may be differently prioritized 
depending on the local capabilities, malaria epidemiolog-
ical profiles, financial constraints, and prevailing control 
strategies in the respective countries. However, the most 
central ones are biting rate, mosquito density and EIR.

Entomological surveys involve different sampling 
methods, after which the collected mosquitoes are sorted 
by taxa and physiological features. Adult female mosqui-
toes are frequently dissected for analysis of their inter-
nal organs (e.g. gut, reproductive systems and salivary 
glands) or retained for other laboratory analyses [19]. Sex 
and species are initially sorted based on the exterior mor-
phology of the mosquitoes using taxonomic keys [84, 85]; 
but the indistinguishable members of species complexes, 
such as Anopheles gambiae sensu lato (s.l.) and Anoph-
eles. funestus group require further distinction by PCR 
[86–88]. As summarized in Fig.  1B, these methods are 
time-consuming, expensive, require specialized training, 
and are not always readily available locally [89].

Depending on the research goals, additional labora-
tory tests may be performed on the collected mosqui-
toes. These can include ELISA tests to detect malaria 
parasite proteins or PCR tests to find Plasmodium 
sporozoites in the heads and thoraces of female Anoph-
eles mosquitoes [83, 90, 91]. Additionally, examina-
tion of the stomach contents of the mosquitoes, using 
ELISA [92] or PCR [93], can be performed to iden-
tify the vertebrate sources of mosquito blood meals 
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as required to determine their preference for biting 
humans compared to other animals. The age of field-
collected female mosquitoes is generally determined 
by dissection to examine changes in their ovaries; with 
age here being estimated in terms of reproductive his-
tory (e.g. whether parous or not, and if parous how 
many gonotrophic cycles have been completed) rather 
than in terms of chronological age (e.g. number of days 
post emergence) [19, 77, 94, 95]. Estimates of physi-
ological age derived from these dissection methods are 
used to approximate chronological age based on fixed 
assumption of the number of days required to com-
plete a gonotrophic cycle in the field [76, 96]. Finally, 
a series of bio-efficacy and molecular assays to deter-
mine the resistance of the mosquitoes to insecticides, 
to inform appropriate insecticidal interventions can 
also be done [97].

Entomological monitoring is complex and costly, and 
as a result, only a small number of malaria-endemic 
countries can monitor all the recommended ento-
mological parameters on a large scale [20, 21, 98]. A 
recent analysis of vector surveillance programmes in 
malaria-endemic countries found that countries with 
the highest burden have far less surveillance capacity 
than countries nearing elimination [20]. Overall, most 
countries are not well-equipped to establish effective 
surveillance systems with the minimum essential data 
necessary to detect changes and adjust public health 
responses.

Applications of infrared spectroscopy and machine 
learning for parasitological and entomological 
surveys of malaria
The attributes of mosquitoes or human body tissues can 
be studied by analysing their infrared (IR) spectral sig-
natures. These signatures contain complex biochemi-
cal information represented by absorbance intensities 
at different wavenumbers. Near Infrared (NIR) Spec-
troscopy specifically measures absorption by vibrational 
overtones, or vibrations that are excited from the ground 
state to the second or third energy level, in the 14,000–
4000  cm-1 range. On the other hand, Mid-Infrared (MIR) 
spectroscopy measures absorption by fundamental vibra-
tions of molecular bonds in the 4000–400   cm-1 range, 
which allows for more direct quantification of functional 
chemical groups present in substances, such as chitin, 
protein, or wax in the samples of interest [22, 33].

Once the samples have been scanned, ML algorithms 
can be used to analyse the infrared spectral data and 
identify specific entomological and parasitological 
parameters [23–25, 28, 99]. Additional techniques may 
be used to remove errors and improve the accuracy of 
the analysis, such as transfer learning [100]. These algo-
rithms can be used to determine features such as mos-
quito age, species identity, infection status, and blood 
meal types. Studies have shown that combining IR spec-
troscopy with machine learning (IR-ML) can provide 
accurate predictions and estimates of various trans-
mission indicators [33]. For example, this approach has 
been used to classify malaria-transmitting mosquitoes 

Fig. 1 Applicability, strengths, and weaknesses of current methods used to measure key malaria indicators. Panel A compares the three most 
common methods for parasitological assessment [51, 64–72] while panel B compares the three main methods for entomological assessment 
[73–83], on a proportion score of 1–100. These scores are based on expert opinion of the authors of this article
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by chronological age or number of gonotrophic cycles 
[22, 23], making it useful for studying the effects of vec-
tor control on mosquito populations. The potential of 
IR-ML techniques for measuring malaria transmission 
should be evaluated based on factors such as robust-
ness, speed, validity, infrastructure needs, scalabil-
ity, costs, and cost-effectiveness; and should only be 
adopted if they address the challenges of conventional 
methods.

The cost of IR spectroscopy equipment used for 
malaria research can vary greatly. Hand-held versions 
of NIR or MIR spectrometer can cost as little as $2000 
[101], while desktop versions of these spectrometers 
range from $30,000 to $60,000 [27, 99]. Most equipment 
is durable for regular laboratory or field use and requires 
minimal maintenance. No additional reagents are needed 
for operation, except standard low-cost maintenance, 
such as providing desiccants to limit humidity effects.

Parasitological surveys
The use of infrared spectroscopy (IR) for diseases screen-
ing and diagnostic purposes has been demonstrated in 
various branches of medicine, including the histopatho-
logical screening of breast cancers and the prediction of 
infections (e.g. enterococci), leukaemia, Alzheimer’s, epi-
lepsy, skin carcinoma, brain oedema, and diabetes [102, 
103]. An increasing number of studies are also using 
IR-ML techniques for parasitological screening [33].

In one study in Tanzania, dried blood spots were 
scanned using an attenuated total reflection-Fourier 
Transform Infrared spectrometer (ATR-FTIR) and a 
logistic regression model was trained using the resulting 
MIR spectra [27]. This approach achieved 92% accuracy 
relative to PCR in identifying individuals infected with 
P. falciparum, and 85% accuracy for detecting mixed 
infections such as those carrying both P. falciparum and 
P. ovale [27], which is also common in some parts of 
Tanzania [104]. Another study used synchrotron MIR 
Fourier Transform Infrared spectroscopy coupled with 
artificial neural networks (ANN) to achieve a prediction 
accuracy of 100% for distinguishing between different 
stages of the cultured P. falciparum, i.e., rings, tropho-
zoites and schizonts [29]. Additionally, support vector 
machine algorithms fitted with MIR spectra from an 
ATR-FT spectrometer were used to classify infected and 
uninfected individuals with a sensitivity of 92% and spec-
ificity of 97% [28]. Recently, it has been shown that the 
NIR absorption peaks of malaria parasites can be used 
for non-invasive detection of malaria infection through 
human skin using miniaturized hand-held spectrometers 
[101].

Entomological surveys
Using off-the-shelf hardware, both NIR and MIR spec-
troscopy can be used to analyse large numbers of mos-
quito samples at a relatively low cost compared to 
traditional methods [22, 33, 94, 105]. Studies have 
demonstrated direct applications to predict mosquito 
chronological (e.g. number of days post emergence) and 
physiological age classes (e.g. whether parous or not), 
blood-feeding histories and species identity [22, 24–26, 
105, 106]. They have also been used to detect mosquito 
endosymbionts, such as Wolbachia [107, 108], and 
mosquito-borne pathogens, such as Zika [34, 109] and 
malaria [110, 111]. Scientists have attempted to validate 
these laboratory findings in the field settings but so far, 
there has been success in only a small number of studies 
[23, 25, 112].

There has been a particular interest in evaluating the 
potential of IR-ML systems for mapping the demographic 
characteristics of wild mosquito populations and using 
this to evaluate the performance of vector control inter-
ventions, or monitoring transmission risk. Following 
multiple successes in combining IR spectroscopy and ML 
for age-grading laboratory and semi-field vector popula-
tions [22, 105], field studies are now underway to validate 
the potential of this tool in malaria-endemic communi-
ties. It is expected that these ongoing efforts will deliver 
a scalable and operationally relevant IR-ML system that 
integrates off-the-shelf hardware and open-source soft-
ware to simplify the technologies. Ultimately, IR-ML 
based approaches will be most desirable only if they 
constitute a simple set of routine activities that can be 
performed by researchers and National Malaria Control 
Programme (NMCP) staff.

Despite advancements in using IR-ML for malaria 
surveillance, there remain several challenges that might 
hinder its full potential. In entomological surveillance, 
existing algorithms show up to 99% accuracy with lab-
oratory-reared mosquitoes, but this drops significantly 
in field data, due to variances in mosquito body compo-
sitions from dietary, genetic, and environmental factors 
[22, 23, 33, 112, 113]. Fortunately, recent strides using 
Convolutional Neural Networks (CNN) have improved 
accuracy across diverse datasets, with CNNs achieving 
over 90% accuracy in laboratory and field assessments 
on specific mosquito species [24]. Transfer learning is 
also being explored to enhance algorithm generaliz-
ability in real-world settings [100]. Additionally, logisti-
cal hurdles akin to those faced by existing surveillance 
methods exist, particularly in hardware maintenance 
and supply [20]. Moreover, unlike other diagnostic 
methods with built-in verification, IR-ML lacks this fea-
ture [42, 114], indicating a vital area for future research 
to ensure reliable operations and address these 
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identified gaps. The sections below will discuss these 
gaps and potential solutions in detail.

Considerations for research and development 
of IR‑ML approaches for malaria survey 
and diagnostics
As the WHO encourages malaria-endemic countries 
to scale up effective surveillance-response strategies 
for malaria, an important question that remains is 
what elements should be considered when developing 
or evaluating new approaches such as IR spectroscopy 
and ML. Moreover, while IR-ML technologies have the 
potential to aid in malaria surveillance, several gaps in 
research and development must be addressed to opti-
mize their utility. This section identifies key research 
and development gaps in the applications of these tech-
nologies for malaria surveys in low-income settings. It 
further proposes a target product profile (TPP) consist-
ing of both the essential characteristics and desirable 
characteristics that could improve its uptake, perfor-
mance, and cost-effectiveness.

Research gaps to be addressed
Table 1 provides a summary of the key research gaps for 
the IR-ML applications relevant to malaria. For each of 
these gaps, additional details are provided below.

Gap 1: Need for a greater understanding of the biochem-
ical and physicochemical basis of the IR signals relevant 
for malaria surveys and diagnosis.

IR spectral absorption intensities are determined by the 
chemical bonds within chitin, protein, and wax, which 
are the three most abundant components of the mosquito 
cuticle. Recent research has shown that these signals can 
be used to infer the age and species of mosquitoes [22, 
23], as well as distinguish between Plasmodium-infected 
and uninfected human blood [27].

In the case of parasitological observations, it is appar-
ent that the most dominant spectral features that influ-
ence ML model predictions are found in the fingerprint 
region (1730–883  cm−1), where most of the signal from 
biological samples is expected [27]. The breakdown of 
haemoglobin into haemozoin crystals may also show 
up in the IR spectra and can help detect infections 
in blood samples [27, 115]. The interpretation of IR 

Table 1 A summary of key research questions and potential research agenda for IR‑ML applications relevant to malaria surveys and 
diagnostics

R&D gaps Descriptions and examples References

Incomplete understanding of the IR spectroscopic signals relative 
to specific biological traits

There is an insufficient understanding of the IR spectroscopic 
signals (vibrational absorption bands/wavelengths) and their 
association with biological traits such as parasite infections, age, 
species, and blood meals

[22, 26, 27, 118]

Inadequate field validation of the IR‑ML approaches There is insufficient field validation of the performance of IR‑ML 
methods for assessing important entomological and parasitologi‑
cal indicators

[22, 23, 28, 120]

Gaps in machine learning frameworks for the IR spectroscopy 
analysis

There is a need for studies to identify optimal ML objectives such 
as computational efficiency, prediction accuracy, and model gen‑
eralizability. This might entail one or a combination of the many 
existing unsupervised and supervised algorithms

[22, 23, 28, 123]

Unknown detection thresholds There has not been sufficient demonstration of the limits 
of detection of IR‑ML techniques for detecting malaria infections 
in human or mosquito samples

[32, 118, 123]

Uncertain granularity of discretized biological outcomes It is uncertain which method of classifying mosquito age 
is the best. For example, comparing classification by specific 
days (1, 2, 3, 4 days) to using longer ranges of days (1, 3, 5, 7 days) 
or grouping days into ranges (1–5, 5–7, 7–10 days) is unclear

[22, 105]

Resolving overlap and interactions between signals For biological indicators such as blood meal identification, 
the possibilities of detecting mixed blood sources remain 
unknown, and how long after feeding, the blood can still be 
detected

[22, 105]

Lack of evidence from different epidemiological profiles or set‑
tings

There is a need to demonstrate the performance of the IR‑ML 
techniques for detecting malaria parasites in areas with varying 
epidemiological strata‑ with low to high transmission or preva‑
lence, and in conditions with varying parasite densities

[27, 28]

Gaps related to hardware and software for IR and ML There are limited off‑the‑shelf portable tools that are com‑
pletely ready for applications in malaria surveys and diagnostics 
in both laboratory and field settings

[26, 28, 118]

Need to standardize sample‑handling procedures There is currently no standardized protocol for sample handling 
when using IR‑ML methods for malaria surveys and diagnostics

[113, 119, 130]
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spectra should, therefore, take into account the sample 
type and characteristics, and in the case of composite 
sample types such as parasite-infected blood, consid-
erations on how the parasite interacts with and alters 
the biochemical makeup of the host tissues should be 
factored in. For example, changes in the carbohydrate 
regions at 1144, 1101 and 1085  cm−1 may be associated 
with differential glucose levels in infected red blood 
cells, since Plasmodium parasites metabolize glucose 
faster than normal cells [32, 116]. The presence of these 
direct and indirect signals of infection raises the pos-
sibility of non-specific detection and false positive diag-
noses, which should be mitigated with carefully chosen 
controls when training machine learning (ML) models.

Given the many different applications of IR-ML 
for investigating malaria indicators, a generalized 
framework is essential and should be derived from an 
updated understanding of the bio-chemical and phys-
ico-chemical features of the samples.

Gap 2: Need to validate the performance of the IR-ML 
in different field settings and laboratories

So far, most of the successes in the application of 
IR-ML have been with laboratory specimens, but it has 
been difficult to apply these laboratory-trained algo-
rithms to field-collected specimens due to environmen-
tal, laboratory, and genetic sources of variation, and/or 
limited training data. Only a small number of studies 
have achieved this with partial success [23, 25, 112]. 
This challenge is compounded by the limited general-
izability of many existing ML models. Efforts towards 
field validation should be integrated with those that 
seek to improve the generalizability of the models, 
using more diverse datasets with greater genetic and 
environmental variability.

Field validation is also essential for IR-based para-
sitological surveys, as algorithms trained using spec-
tral data from laboratory parasite cultures may not be 
applicable to other settings, in part due to different 
immunological and physiological profiles [117–119]. 
Consequently, early validation of IR-ML for parasito-
logical surveillance is essential and the training data 
should capture representative signals associated with 
immunological and genetic composition from multiple 
populations [27, 120]. For clinical applications, deter-
mining the true effectiveness of these techniques may 
also require large-scale clinical studies.

Gap 3: Need for appropriate ML-frameworks that 
achieve maximum predictive accuracies with minimal 
computational power.

While IR-ML approaches for assessing malaria indica-
tors can achieve high accuracies, there are many differ-
ences between the analytical methods and algorithms 
used. Currently, there is no consensus on the best ML 

frameworks for spectral analysis, either supervised or 
unsupervised. Ideally, the best framework would be that 
which provides minimum computational needs while 
also achieving accurate and generalizable predictions of 
the target traits.

Initially, multivariate statistics, including partial least 
squares (PLS) and principal component analysis (PCA) 
were the most widely used [32, 116, 119, 121, 122]. More 
recently, IR spectroscopy coupled with different ML clas-
sifiers has been used to link the signals of IR biochemi-
cal bands to specific biological traits [33]. A general 
approach is to compare and select from multiple model 
types. Diverse ML algorithms, such as support vec-
tor machines (SVMs), Random Forests (RFs), K-nearest 
neighbours (KNNs), Naive Bayes (NBs), Gradient Boosts 
(XGBs), and Multilayer Perceptrons have been tested 
for their ability to decipher IR spectra associated with 
malaria indicators [24, 25, 27–29].

Unsupervised learning is often utilized in spectra pre-
processing to decrease dimensionality or cluster domi-
nant features before algorithm training [23, 28, 29], but 
additional statistical techniques can be added to improve 
generalization. For example, unsupervised PCA was 
used to reduce the dimensionality of the data set, and an 
ANN was trained on the pre-processed data to accurately 
predict malaria parasite stages [29]. Moreover, trans-
fer learning and dimensionality reduction techniques 
like PCA and t-SNE (t-distributed stochastic neighbour 
embedding) can significantly reduce computational 
power while maintaining robust accuracy in models 
[100].

Gap 4: Need to understand the malaria parasite detec-
tion thresholds for the IR-ML systems.

As conventional methods have a low likelihood of 
detecting malaria infections with low parasitaemia [61], 
it is necessary to understand the lower limits of detec-
tion (LLOD) for any novel diagnostic and screening tools. 
Unfortunately, only a small number of studies have exam-
ined such thresholds for IR-based malaria detection. One 
study which used serially diluted parasites grown in vitro 
demonstrated that ATR-FTIR data could be used to iden-
tify and quantify parasite densities as low as < 1 parasite/
μl [32]. Other research has shown that NIR spectroscopy 
coupled with PCA and PLS can detect up to 0.5 parasite/
μl and quantify up to 50 parasite/μl parasites in isolated 
RBCs [118].

Other studies have also shown that using wider spectral 
ranges, e.g. combining the UV, Visual and IR spectra, can 
accurately detect and measure malaria without the need 
for complex preservation methods [118, 123]. Neverthe-
less, most studies that established the LLODs of the IR 
did not use ML as the framework for interpreting para-
site signals in IR spectra. There has been no investigation 
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of threshold detections for malaria parasites using IR-ML 
approaches in field settings. Future research should, 
therefore, establish absolute or the relative LLOD of the 
IR-ML techniques in both the point-of-care applications 
and population surveys.

Gap 5: Understanding the performance and validity of 
the IR-ML techniques in settings with varying epidemio-
logical profiles.

Malaria screening methods perform differently in set-
tings with varying transmission intensities and parasitae-
mia. The most sensitive markers of malaria infections at 
low transmission intensities tend to be nucleic acids or 
antibodies to P. falciparum [124]. One study in coastal 
Kenya that compared RDTs, light microscopy, and PCR 
showed that malaria transmission hotspots detectable by 
PCR overlapped with those detectable by microscopy at 
a moderate transmission setting but not low transmis-
sion settings [42]. Elsewhere, the effectiveness of RDTs 
and microscopy was greatest in regions with high malaria 
transmission or in the presence of high parasitaemia 
[125]. These tests can however miss many infections in 
low-transmission regions, where microscopy-negative 
individuals may still contribute 20–50% of infections sus-
taining transmission [126].

According to the WHO-backed “High Burden, High 
Impact” malaria strategy [127], endemic countries are 
encouraged to implement sub-nationally tailored plans 
that differentially address high and low malaria bur-
dens. This requires sensitive, high-throughput, and fast 
screening tools for malaria with comparable validity 
across transmission settings [2, 5]. Unfortunately, the 
performance of new tools such as IR-ML has not been 
compared across settings. Researchers have been able 
to identify malaria-positive MIR spectra with models 
trained on pooled data from both low and high transmis-
sion settings or from high transmissions only, but not 
across strata [27, 28]. Additionally, the positive predictive 
value (ability to predict true positive cases), and negative 
predictive value (ability to predict true negative cases) 
should be clarified. One study in Tanzania estimated the 
positive and negative predictive values of IR-ML at 92.8 
and 91.7%, respectively for detecting malaria infections 
field-collected dried blood spots relative to PCR [27], but 
this study had only a small number of samples. Future 
studies should include broad demonstrations of the per-
formance of IR-ML approaches in different epidemiologi-
cal strata.

Gap 6: The need for essential human resource training 
in malaria-endemic countries.

The implementation of effective malaria surveillance in 
endemic countries is hindered by inadequacies of trained 
personnel and facilities. A global survey found that only 
8% of malaria-endemic countries had sufficient capacity 

for vector surveillance and nearly 50% had no capacity to 
implement core interventions [21]. To effectively imple-
ment IR-ML based surveillance at the country level, two 
forms of training are necessary: one for potential users, 
including researchers and malaria surveillance officers, 
and one for higher-level experts capable of tasks such 
as manipulating infrared and machine learning systems 
and creating new classification algorithms. Countries 
may also implement periodic refresher training to boost 
human resource capabilities [128].

To ensure sustainability and effectiveness, a compre-
hensive and strategic training plan involving the develop-
ment of IR-ML training guidelines and partnerships with 
research and academic institutions is necessary.

Gap 7: Need to select the most appropriate hardware 
and software platforms.

Selecting suitable hardware and software platforms is 
crucial for enhancing the scalability of IR-ML systems 
for malaria surveys and diagnostics. A mix of hardware, 
such as sample collection devices and spectrometers, 
and software, such as spectral filters and ML models, is 
necessary. Portable devices are available for field surveys 
[22, 23, 26], but they are mostly in clinical or research 
laboratory settings. To implement them on a large scale, 
spectrometers with hardware systems designed for areas 
with limited electricity access, such as solar-powered or 
battery-powered spectrometers, may be necessary. Other 
options may include the miniaturized IR spectrome-
ters, such as those recently used to detect and quantify 
malaria parasites in RBCs [118] and for non-invasive par-
asite detection via the skin of human beings [101].

Spectral data must also be easily interpretable for non-
expert users in remote settings. This may require deploy-
ing trained algorithms on cloud-based platforms and 
designing user-friendly interfaces that work with simple 
internet connectivity. Systems based on mobile phone 
applications [28] or web interfaces [129] are already being 
tested, and can be enhanced to remain functional even 
under limited internet connectivity in remote settings. 
Lastly, the availability of relevant source codes (preferably 
via code-sharing platforms such as GitHub) and training 
in their use should also be ensured.

Gap 8: Need to standardize sample-handling procedures.
Standardized protocols for sample handling are needed 

to ensure the comparability of findings and to make 
IR-ML techniques more widely applicable in parasito-
logical and entomological assessments. Unfortunately, 
little effort has been devoted to determining the optimal 
methods for storing and preserving samples for IR-ML 
investigations. For entomological studies, some proto-
cols have indicated using chloroform to kill specimens 
and storing them in silica gel for 2–3  days before scan-
ning [22, 26], and also that NIR  spectroscopy performs 
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well when samples are stored by either desiccants, RNAl-
ater, or refrigeration [130]. Separately, a study using MIR 
spectroscopy and ML demonstrated the crucial need for 
standardized handling (storage or preservation) for both 
training and validation samples [113].

Proper sample storage and preservation is also essential 
for reducing spectral noise and preserving the biochemi-
cal composition of the specimens. For example, the use 
of anticoagulant materials can significantly affect model 
performance when using dried RBCs compared to the 
wet RBCs or whole blood when scanned using ATR-FTIR 
spectroscopy [119]. While some of these challenges can 
be addressed by statistical approaches, e.g. transfer learn-
ing [100], optimal performance requires a level of stand-
ardization in methods for handling different sample types 
destined for IR-ML analysis.

Target product characteristics of the IR and ML approaches
To guide further development and evaluation of the 
IR-ML based approaches for parasitological and entomo-
logical investigations of malaria, this article proposes an 
initial outline of key characteristics that should be met. 
This target product profile (TPP) consolidates the current 
thoughts and expertise of the authors as experts and early 
adopters of the application of this technology for malaria 
surveys. However, this TPP is subject to future modifica-
tions and should be considered as a preliminary version. 
To satisfy the global strategies for malaria monitoring, 
the draft describes the necessary and desirable qualities 
of emerging IR and ML-based techniques for use in both 
field surveys and clinical settings (Tables 2, 3). 

Different TPPs have previously been proposed for 
future vector surveillance tools [95] and malaria diag-
nostic tools [131]. The article complements these by 
proposing relevant attributes for IR-ML techniques 
including both parasitological (Table 2) and entomologi-
cal measures (Table  3). The proposed profile presents 
both the core characteristics, which are the minimum 
basic requirements for a functional system, as well as 
other desirable characteristics that could further improve 
the capabilities, scalability, and cost-effectiveness of this 
technology.

Conclusion
The combination of infrared spectroscopy and machine 
learning is being considered a promising new method 
for predicting or estimating various entomological and 
parasitological indicators of malaria. The IR-ML plat-
forms have the added advantage of being simple to use, 
reagent-free, high-throughput, low-cost, and applica-
ble in rural and remote settings. As malaria-endemic 
countries seek to enhance their surveillance-response 
strategies to achieve elimination targets, an important 

question is how IR-ML-based approaches can comple-
ment ongoing processes and be integrated into routine 
surveillance. This paper has reviewed existing IR and 
ML applications and their gaps for malaria surveys and 
parasite screening; with provision of initial suggestions 
on target product profiles (TPPs) for such technologies 
in low-income settings. The TPPs outline both essential 
and desirable attributes to guide further development. 
The article also outline key research and development 
gaps that should be addressed in the short and medium 
term, including the need for field validation, determi-
nation of minimum detection threshold, capacity devel-
opment and training in user countries, assessment of 
the validity of the tests in different epidemiological 
strata, and work on robust hardware and software to 
enable expanded use.
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