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Abstract 

Background Anopheles pharoensis has a major role in transmitting several human diseases, especially malaria, 
in Egypt?. Controlling Anopheles is considered as an effective strategy to eliminate the spread of malaria worldwide. 
Galaxaura rugosa is a species of red algae found in tropical to subtropical marine environments. The presence of G. 
rugosa is indicative of the ecosystem’s overall health. The current work aims to investigate UPLC/ESI/MS profile of G. 
rugosa methanol and petroleum ether extracts and its activity against An. pharoensis and non‑target organisms, Danio 
rerio and Daphnia magna.

Methods Galaxaura rugosa specimens have been identified using DNA barcoding for the COI gene and verified as G. 
rugosa. The UPLC/ESI/MS profiling of G. rugosa collected from Egypt was described. The larvicidal and repellent activi‑
ties of G. rugosa methanol and petroleum ether extracts against An. pharoensis were evaluated, as well as the toxicity 
of tested extracts on non‑target organisms, Dan. rerio and Dap. magna.

Results The UPLC/ESI/MS analysis of methanol and petroleum ether extracts led to the tentative identification of 57 
compounds belonging to different phytochemical classes, including flavonoids, tannins, phenolic acids, phenyl 
propanoids. Larval mortality was recorded at 93.33% and 90.67% at 80 and 35 ppm of methanol and petroleum 
ether extracts, respectively, while pupal mortality recorded 44.44 and 22.48% at 35 and 30 ppm, respectively. Larval 
duration was recorded at 5.31 and 5.64 days by methanol and petroleum ether extracts at 80 and 35 ppm, respec‑
tively. A decrease in acetylcholinesterase (AChE) level and a promotion in Glutathione‑S‑transferase (GST) level of An. 
pharoensis 3rd instar larvae were recorded by tested extracts. The petroleum ether extract was more effective against 
An. pharoensis starved females than methanol extract. Also, tested extracts recorded  LC50 of 1988.8, 1365.1, and 11.65, 
14.36 µg/mL against Dan. rerio, and Dap. magna, respectively.
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Conclusions Using red algae derivatives in An. pharoensis control could reduce costs and environmental impact 
and be harmless to humans and other non‑target organisms.

Keywords Galaxaura rugosa, Anopheles pharoensis, Extract, Larvicidal, LCMS, Metabolomics

Background
Marine red algae are a diverse group of seaweeds 
often found on rocks or dead coral pieces in the upper 
subtidal zone of the Atlantic, Indian, and Pacific 
Oceans, where they are exposed to moderate wave 
action [1]. The seaweed Galaxaura rugosa has just been 
identified on the coasts of South Africa but is most usu-
ally found in the waters of Japan, Korea, Taiwan, Viet-
nam, Singapore, Indonesia, the Philippines, Australia, 
New Zealand, and the Pacific Islands [2–6]. The algaeof 
the genus Galaxaura produce various bioactive com-
pounds, such as sulfated polysaccharides, phycobilipro-
teins, fatty acids, and other secondary metabolites. 
Bioactive chemicals with antioxidant, antiviral, anti-
fungal, and antibacterial properties have been isolated 
from the red marine alga Galaxaura elongata [1, 7].

Mosquitoes, especially Anopheles genera because of 
their role in transmitting several animal and human 
diseases, such as malaria [8]. Malaria is the world’s 
most widespread parasitic disease, caused by Plasmo-
dium protozoa, which has infected about 241 million 
people and caused 627,000 deaths worldwide, in 2021 
[9]. Several strategies have been applied to control 
the prevalence of Anopheles spp. and thus eliminate 
the spread of malaria [10]. Chemical insecticides have 
usually targeted aquatic larvae of different Anopheles 
spp. for many years; however, developing new control 
agents, which are more safe, efficient, and eco-friendly, 
considered a proper and necessary replacement to 
avoid the hazards of chemical insecticides [11, 12]. Red 
marine algae bioactive compounds have been shown to 
have insecticidal properties against different pests, such 
as mosquitoes, flies, aphids, and caterpillars [13].

The Zebrafish Danio rerio has many advantages as 
a toxicologic model in view of its easy maintenance, 
fast maturation, and successful laboratory acclimation 
[14]. Daphnia magna is a freshwater crustacean species 
belonging to the Daphnia genus. Both the zebrafish and 
Daphnia are used as non-target model organisms in 
ecology and evolution, a bioindicator of water quality, 
and a test organism for ecotoxicology [15]. Specifically, 
in the context of this study, Daphnia and zebrafish 
were used to assess the potential off-target effects of G. 
rugosa extracts, ensuring that these agents, while lethal 
to Anopheles pharoensis, were not indiscriminately 
harmful to non-target organisms. Their use provides 
a comprehensive understanding of the insecticidal 

potential of G. rugosa, as well as its broader ecological 
impact [15].

Methods
Ethical approval
This study was performed in Animal House, Zoology 
Department, Faculty of Science, Al-Azhar University, 
Cairo, Egypt, according to ethics of Zoology Department, 
Faculty of Science, Al-Azhar University.

Collection and preparation of algae extracts
Site of sampling
The sampling of G. rugosa was mainly conducted at Ras 
Muhammad National Park, located at 27°43′20″N & 
34°15′14″E at three different sites distinguished by the 
habitats. The 1st

site was Shark Reef, 2nd site was Old Quay, and 3rd site 
was Marsa Breaka (Figs. 1 and 2).

Field sampling and identification
The seaweed samples were collected in April 2023. Sam-
pling was done by snorkeling and scuba diving, and spec-
imens were preserved in frozen seawater. A Garmin GPS 
device was used to determine the coordinates of the sam-
pling sites. The marine biology section of the Zoology 
Department of the Faculty of Science et  al.-Azhar Uni-
versity in Cairo, Egypt, used the procedures described in 
the AlgaeBase website to confirm the identification of the 
samples [16, 17]. The present research sequenced sam-
ples because of the narrow gap between algae species, 
necessitating cutting-edge methods to ensure correct 
classification. The red algae DNA was extracted using a 
tweaked approach that allowed us to amplify the COX1 
gene region [18]. The PCR amplification profile con-
tinued, but the annealing temperature decreased to 50 
degrees Celsius [19]. Gel purification was used on ampli-
fied PCR products  [20]. The PCR forward and reverse 
sequencing readings were edited and aligned in MEGA 
V14.0. Using the Basic Local Alignment Search Tool 
(BLAST) at http:// blast. ncbi. nlm. nih. gov/ Blast. cgi, The 
newly acquired COI sequences of G. rugosa (Accession 
number: OR362159-61) BankIt to those in GenBank.

Preparation of the algae extractions
Air-drying G. rugosa took 2  days. It was then baked at 
40ºC for 2–3 days, or until the weight stays the same. 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Fig. 1 The boundaries of Ras Muhamad National Park

Fig. 2 Location of sampling sites
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The dried biomass was ground up in a standard kitchen 
blender to get a powder. 100  g of fine material was 
extracted for further study [21]. Both methanol and 
petroleum ether (20 g) were used to extract the moisture-
free seaweed material in a Soxhlet extractor at 40 °C for 
7 h. After filtering the whole extract, the resulting crude 
extract was concentrated in a rotary evaporator at 40ºC 
until completely dry [22]. The obtained residue was 
transferred into 100 mL glass beakers and stored at 4 °C 
until used.

Ultra performance liquid chromatography‑electrospray 
ionization‑mass spectrometry (UPLC/ESI/MS) analysis
Positive and negative ion acquisition modalities of UPLC-
ESI–MS were performed according to the established 
protocol [23].

Anopheles pharoensis colonization
Anopheles pharoensis larvae were collected from Faiyum 
Governorate, Egypt  (29º18´53.4’’ N,  30º39´19.2’’ E, alti-
tude 19  m) and identified using a previously described 
key [24]. Collected larvae were transferred into mosquito 
insectary, Animal House, Zoology Department, Faculty 
of Science, Al-Azhar University, Cairo, Egypt, under con-
trolled conditions of temperature (25–27  °C), relative 
humidity (70–80%) and photoperiod (12L:12D). A stand-
ard rearing procedure followed to provide larvae needed 
for the bioassay [25].

Larvicidal activity of the tested extracts
The previously described larvicidal bioassay procedure 
was applied with minor modifications [23]. The larvae 
were separated and placed in 350 ml beakers containing 
250  ml of distilled water with 2 drops of  Tween80 with 
varying amounts of the extracts being evaluated. In most 
cases, three sets of 25 third-instar larvae were employed. 
The α-Cypermethrin (produced by Sidasa Company, 
Cairo, Egypt, for fertilizers, pesticides, and chemicals) 
was employed as a positive control agent, and control lar-
vae were treated with 2 drops of  Tween80 in 250 ml dis-
tilled water.

Enzymatic measurements
Acetylcholinesterase (AChE) plays a critical role in the 
termination of nerve impulse transmission at cholinergic 
synapses by hydrolyzing the neurotransmitter acetylcho-
line. While Glutathione S-transferase (GST) is an enzyme 
involved in the detoxification of xenobiotics and endog-
enous compounds by conjugating them with glutathione, 
aiding in their subsequent elimination from the organ-
ism. Lastly, Superoxide dismutase (SOD), is an essential 
antioxidant enzyme that defends cells against oxidative 
damage by catalyzing the dismutation of superoxide 

anions into hydrogen peroxide and molecular oxygen. In 
the context of present study, monitoring the activities of 
these enzymes provides insights into the physiological 
responses of the tested organisms to G. rugosa extracts, 
shedding light on potential modes of action and effects 
beyond mere mortality. The impact of the extracts was 
studied using half-lethal doses  (LC50). For the meas-
urement of AChE, GST, and SOD, 10  ml solutions of 
0.1 M-phosphate buffer, pH 7.5  (KH2PO4 -NaOH), con-
taining 1% Triton X-100, 1% Triton X-100, 1% ethanol, 
and 1% Triton X-100, respectively, were used to homoge-
nize 3 batches of larvae (obtained from each tested  LC50). 
Hereaeus Labofuge 400R, Kendro Laboratory Products 
GmbH, Germany, was used to centrifuge the homoge-
nates for 60  min at 4  °C and 15.000 × g. The resultant 
supernatant was put through an AChE (U/L) inhibition 
experiment in vitro without further purification [26–29]. 
GST activity (U/g tissue) was determined by doing spec-
trophotometric measurements of aliquots of the super-
natant in accordance with the protocol described in the 
accompanying pamphlet [30]. The SOD activity (U/mg 
tissue) was determined according to 2007 manufacturer’s 
instructions (R&D Systems, Inc.). Aliquots of 50 mL were 
collected from the supernatant for spectrophotometric 
analyses.

Repellency test
The repellent activity of the tested extracts was examined 
using a procedure described with small modifications 
[10]. Fifty An. pharoensis starved females were kept in net 
cages (45 × 30 × 45 cm). Three doses of the tested extracts 
(6.67, 3.33, and 1.67  mg/cm2) were prepared in 2  ml 
methanol or petroleum ether with 2 drops of  Tween80. 
Methanol and petroleum ether with 2 drops of  Tween80 
were used as controls. Positive control (DEET) was pur-
chased from a commercial pharmacy. Three replicates 
were usually used along with the control. The repellency 
percentages were calculated using a standard formula 
[28].

Toxicity to the non‑target organisms
Zebrafish model
Established aquaria of the Laboratory of Fish Rearing 
at the Animal House of the Zoology Department in the 
Faculty of Science et al.-Azhar University in Cairo, Egypt, 
Zebrafish, Danio rerio reared for providing a stock. The 
Al-Azhar University Animal Research Ethics Commit-
tee’s standards were followed in treating the test subjects 
(Egypt). They were acclimated in 1000-millilitre circu-
lar aquaria. Ten fish were kept in each tank, which was 
aerated artificially around the clock. The fish were given 
fish food that had the right size pellets for them. The 
tests were run in triplicate [29]. Thirty adults of healthy 
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Zebrafish were subjected to various amounts of each 
investigated item for 96 h to get insight into the influence 
of these substances on present non-target model. Mor-
tality was reported 96  h after therapy was given to the 
control group subjected to the same tests. The method of 
Deo et al. was used to calculate the estimated toxicity in 
terms of a percentage [30, 31].

Daphnia magna model
Daphnia magna came from the invertebrate breeding 
facility. A yeast powder solution raised both nymphs 
and adults in 10-L water tanks. Total hardness ranged 
from 35 to 50 mg CaCO3  L−1, pH ranging from 7.15 to 
7.5, the temperature was constant at 25 ± 1  °C, electrical 
conductivity was around 160  µS.cm−1, dissolved oxygen 
was about 4  mgl−1, and pH was 7.15–7.5 [31]. The acute 
toxicity tests were conducted mostly in accordance with 
the OECD recommendations (Test no. 202, Daphnia sp., 
Acute Immobilization Test) [32], but with the essential 
changes noted below. Twenty Daphnia magna neonates 
were subjected to each test tank, with a total of four rep-
etitions. Individual Daphnia were tested for 48 h in con-
tainers containing 250  mL of clean water and various 
amounts of materials. A stereomicroscope was used to 
view the organisms at the conclusion of the acute toxic-
ity tests, and the number of dead neonates in each of the 
four replicates was used to calculate the  LC50 after 48 h. 
The individual was considered dead if the stereomicro-
scope revealed no signs of life [33].

Statistical analysis
Mean ± SD was how the data were presented. ANOVA 
was used to evaluate the data, as recommended [34]. 
SPSS V.22 was used for data encoding and entry. Quan-
titative data were reported using mean, and stand-
ard deviation; qualitative data were presented with 
frequency. The threshold for statistical significance was 
set at P < 0.05. All stations polled throughout the research 
period had their parameters’ correlation coefficients cal-
culated using the computer application MINITAB V.14. 
With R-studio 4.1.3, data was visualized.

Results
The LC/ESI/MS analysis of Galaxaura rugosa tested extracts.
The LC/ESI/MS analysis of the methanol and petroleum 
ether extracts of G. rugosa led to the tentative identifica-
tion of 57 compounds with their possible fragments. The 
% identification was 88.15 and 99.00 for methanol and 
petroleum ether extracts, respectively. The tentatively 
identified compounds (Table  1) belonged to different 
phytochemical classes, viz. flavonoids, tannins, phenolic 
acids, phenylpropanoids, alkaloids, triterpenes, etc. It 
is worth noting that this is the first study evaluating the 

phytochemical content of G. rugosa methanol and petro-
leum ether extracts collected from Egypt using UPLC/
MS. The tentatively identified compounds are summa-
rized in Table 1 and can be detailed as follows.

Flavonoids
Twenty flavonoids, their glycosides and other derivatives 
were identified from the methanol and petroleum ether 
extracts of G. rugosa (Table  1) (Fig.  3). A deprotonated 
molecular ion peak  (Rt 0.69 min.) was traced at [M-H]− 
m/z 273 and [M +  H]+ m/z 275 and was tentatively identi-
fied as afzelechin (6.39% of methanol extract and 33.56% 
of petroleum ether extract) [35]. An apigenin biflavonoid 
was identified  (Rt 14.11 min.) at [M-H]− m/z 553 and was 
for 2′′,3′′-dihydro-3′,3′′′-biapigenin methyl ether [36]. 
Kaempferol-3-O-pentoside, a well-known and common 
flavonoid glycoside, showed a deprotonated molecu-
lar ion peak  (Rt 16.21 min.) at [M-H]− m/z 441 [37–39]. 
Another flavonoid glycoside was traced at  (Rt 16.43 min.) 
[M +  H]+ m/z 451 [40]. Similarly, another kaempferol 
derivative had a molecular ion peak at  (Rt 16.82  min.) 
[M-H]− m/z 617 and was tentatively identified as kaemp-
ferol-O-pentose-O-hexouronic acid [23]. The presence 
of a pseudomolecular ion peak at  (Rt 17.36 min.) [M-H]− 
m/z 537 allowed for the identification of limocitrol-
O-hexoside (6.45% of the methanol extract) [41].

One flavonol was identified from the methanol extract, 
and it recorded a molecular ion peak at [M-H]− m/z 
303 and [M +  H]+ m/z 305, and it was assigned to 30 
-O-methylcatechin [42]. Another flavonoid glycoside 
with an attached phenolic acid group was identified as 
rhmanocitrin-O-coumaroyl hexoside, and its identity 
was shown by the existence of a molecular ion peak at 
m/z 609 in positive mode [43] also, this same coumaroyl 
flavonoid glycoside showed one of its fragments at m/z 
475 in positive mode [43]. In the same context, querce-
tin-7-O-hexoside- 3-O-(malonyl) hexoside was traced at 
[M-H]− m/z 711 [44], while Chrysoeriol-7-O-hexouronic 
acid was tentatively identified at [M-H]− m/z 475 [45]. In 
addition to that, scutellarein-6-O-β-D-pentosylhexosyl 
7-O-α-L-pentosylhexoside was recorded at [M-H]− m/z 
564 [46], luteolin derivative at [M +  H]+ m/z 739 [47], 
quercetin-3-O-hexouronide at [M-H]− m/z 477 [23, 39, 
48] together with taxifolin hexoside at [M-H]− m/z 465 
[49]. One isoflavonoid was recorded at [M-H]− m/z 459 
for glycitein-7-O-hexouronide [42].

Phenyl propanoids
Phenyl propanoids represented the second most abun-
dant class identified from G. rugosa methanol and 
petroleum ether extracts (Table  1) (Fig.  3). Ten phe-
nyl propanoids and their derivatives were tentatively 
identified from the two extracts and can be detailed as 
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Table 1 Secondary metabolites of the methanol and petroleum ether extracts of Galaxaura rugosa identified through tandem mass 
spectrometry (UPLC/ESI/MS)

No Compound Molecular formula Rt (min.) [M‑H]− (m/z) [M +  H]+/ 
[M + H +  Na]+ 
(m/z)

Source (% 
Composition)

References

Meth Pet. Ether

1 Afzelechin C15H14O5 0.69 273 275 6.39 33.56 [35]

2 3‑methyl‑epigallocatechin gallate C17H34O2 0.77 269 – 0.24 – [57]

3 Fragment of urolithin A C13H8O4 0.90 198 – 0.35 – [42]

4 Fragment – 1.03 – 132 0.44 – –

5 Fragment – 6.74 187 – 0.11 – –

6 Fragment of vitexin pentoside – 11.51 293 – 0.27 8.38 [64]

7 Acetyl‑O‑galloyl hexose C15H19O11 11.66 – 373 0.61 – [55]

8 Feruloyl‑caffeoyl‑quinic acid derivative C26H26O12 12.33 265 – 1.79 23.10 [50]

9 2′′,3′′‑dihydro‑3′,3′′′‑biapigenin methyl ether C30H20O10 14.11 553 – 1.96 – [36]

10 Tanshinone V C19H18O3 14.30 – 316 – 0.99 [59]

11 Fragment – 14.71 – 304 8.22 – –

12 Cinnamoyl hexose C15H18O7 15.00 309 – – 12.15 [42]

13 Caffeoyl tartaric acid C13H12O9 15.29 311 – 11.22 ‑ [42]

14 Chlorogenic acid C16H18O9 15.57 351 353 – 6.60 [23]

[54]

15 Isoaloeresin D C29H32O11 15.60 555 557 4.52 – [45]

16 Hc4 (dimer) ‑ 15.94 581 – 1.71 – [65]

17 3‑Sinapoylquinic acid C18H22O10 16.11 397 – 0.50 3.20 [42]

18 Kaempferol‑3‑O‑pentoside C21H20O10 16.21 441 – 0.24 1.51 [37]

[39]

[38]

19 2,3‑Didemethyl‑(‑)‑demecolcine C19H19NO5 16.27 – 344 – 4.57 [63]

20 Menisperine C21H26NO4 16.41 – 357 0.75 – [59]

21 Eriodictyol‑7‑O‑ hexoside C21H22O11 16.43 – 451 – 4.06 [40]

22 p‑Coumaric acid hexoside C15H18O8 16.58 325 – 7.57 – [23]

23 Fragment of Caffeic acid derivative – 16.67 – 332 12.42 ‑ [55]

24 Kaempferol‑O‑pentose‑O‑hexouronic acid C27H30O17 16.82 617 – – 1.82 [23]

25 Aloeresin B C29H32O11 16.84 393 – 7.24 – [45]

26 Limocitrol‑O‑hexoside C24H26O14 17.36 537 – 6.45 – [41]

27 p‑Coumaroyl‑quinic acid C16H18O8 17.95 337 – – 3.58 [51]

28 Caffeoyl‑2‑hydroxyethane‑1,1,2‑tricarboxylic 
acid

– 17.98 339 360 17.72 2.25 [35]

[52]

29 Fragment of dimeric procyanidin B – 18.38 407 – 1.76 – [49]

30 Rosmarinic acid hexoside C24H26O13 18.94 521 – 1.75 – [53]

31 Fragment of cis‑resveratrol‑3‑O‑β‑galloyl‑
hexoside

C27H26O12 19.26 425 492 1.71 – [66]

32 Valoneic acid dilactone C21H10O13 19.56 469 – 0.27 – [58]

33 Fragment of  132 –Hydroxypheophorbide‑α‑
methyl ester

– 20.24 – 485 – 12.34 [53]

34 30 ‑O‑Methylcatechin C16H16O6 20.37 303 305 1.56 – [42]

35 Fragment of  132 –Hydroxypheophorbide‑α‑
methyl ester

– 22.04 – 459 0.41 – [55]

36 Rhmanocitrin‑O‑coumaroyl hexoside C31H30O14 22.26 – 609 2.48 – [43]

37 Caffeic acid 3‑O‑hexouronide C15H16O10 22.34 355 – 0.49 – [42]

38 Fragment of sterol ester – 22.63 381 – 0.39 – [67]

39 Fragment of Rhmanocitrin‑ O‑coumaroyl 
hexoside

– 22.64 – 475 ‑ 3.72 [43]
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follows; compound 8 showed a molecular ion peak at 
[M-H]− m/z 265 and was tentatively identified as fer-
uloyl-caffeoyl-quinic acid derivative [50], and was one 

of the major compounds in the petroleum ether extract 
(23.10%). Another quinic acid derivative was traced at 
[M-H]− m/z 397 and was found to be 3-sinapoylquinic 
acid [42]. Similarly, p-coumaroyl-quinic acid showed 
a molecular ion peak at m/z 337 [51], and was found 
only in the petroleum ether extract (3.58%). Compound 
28 was assigned to be one of the caffeic acid derivatives 
with a molecular ion peak at m/z 339 in negative mode 
and m/z 360 in positive mode due to ammonium adduct 
[M + H +  NH4]+ [35, 52]. One glycoside derivative of phe-
nyl propanoid was recorded at [M-H]− m/z 521 and was 
tentatively assigned to rosmarinic acid hexoside [53]. 
Compounds 14 with [M-H]− m/z 351 and [M +  H]+ m/z 
353 were tentatively recorded for chlorogenic acid (6.60% 
of the petroleum ether extract), which showed one of its 
fragments at [M-H]− m/z 311 and [M +  H]+ m/z 313 [23, 
54].

Meth. methanol extract, Pet. Ether petroleum ether extract, Rt retention time

Table 1 (continued)

No Compound Molecular formula Rt (min.) [M‑H]− (m/z) [M +  H]+/ 
[M + H +  Na]+ 
(m/z)

Source (% 
Composition)

References

Meth Pet. Ether

40 5‑(30,50 ‑dihydroxyphenyl)‑ γ‑valerolactone C17H20O10 24.90 383 413 0.23 – [42]

41 3‑Hydroxy‑12‑oleanene‑28,29‑dioic acid C30  H46  O5 26.14 486 – 0.07 – [61]

42 Trimeric ferulic acid C30H30O12 26.65 685 – 0.11 – [56]

43 Chrysoeriol‑7‑O‑hexouronic acid C22H20O12 27.03 475 – 0.97 – [45]

44 Quercetin‑7‑O‑hexoside‑ 3‑O‑(malonyl) 
hexoside

C30H32O20 27.43 711 – 0.44 – [44]

45 Salvianolic acid B isomer C36H30O16 27.86 717 – 0.98 – [53]

46 Luteolin derivative – 28.38 – 739 – 1.28 [47]

47 Scutellarein‑6‑O‑β‑D‑pentosylhexosyl 7‑O‑α‑L 
pentosylhexoside

C26  H28  O14 28.40 564 – 0.43 – [46]

48 Glycitein 7‑O‑hexouronide C22H20O11 28.63 459 – 1.24 – [42]

49 8,11,13‑Abietatriene‑3,11,12,16‑tetrol‑12‑O‑β‑
D‑hexoside

C26H40O9 28.85 597 – 1.04 – [60]

50 Propanoic acid, 2‑(3‑acetoxy‑4,4,14‑trimethyl‑
androst‑8‑en‑17‑yl)

C27H42O4 29.35 – 431 1.38 – [7]

51 3‑Methyl‑epigallocatechin gallate C23H20O11 29.41 471 – 2.84 – [57]

52 Quercetin‑3‑O‑hexouronide C21H18O13 29.69 477 – 0.54 – [23]

[39]

[49]

53 Hexa‑t‑butylselenatrisiletane C24H54SeSi3 30.04 505 564 0.95 – [6]

54 Fragment of trioleoylglycerol – 30.37 886 888 0.78 – [67]

55 Aglycone of bidesmosidic triterpene saponin – 30.50 776 – 0.71 – [62]

56 Fragment of chlorogenic acid – 30.61 311 313 0.61 – [23]

[54]

57 Taxifolin hexoside C21H22O12 31.07 465 – – 2.85 [49]

% Identification

 ESI −ve mode 88.15 99.00

 ESI + ve mode 26.30 26.96

0

5

10

15

20

25

Methanol Pet etherPeroleum ether

Fig. 3 Bar chart showing the main tentatively identified compounds 
from Galaxaura rugosa methanol and petroleum ether extracts
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Phenolic acids
Six phenolic acids were traced from the methanol extract 
in addition to only one from the petroleum ether extract 
of G. rugosa (Table 1) (Fig. 3). Compound 7 was traced at 
[M +  H]+ m/z 373 with a molecular formula of  C15H19O11 
and was tentatively assigned to acetyl-O-galloyl hexose 
[55]. Another hexoside derivative was shown at m/z 309 
in ESI negative mode and was identified as cinnamoyl 
hexose (only in the petroleum ether extract, 12.15%) [42]. 
Compound 13 showed a molecular ion peak at [M-H]− 
m/z 311 and a molecular formula of  C13H12O9 and was 
recorded to be caffeoyl tartaric acid (11.22% of the meth-
anol extract) [42]. Similarly, compound 22 with [M-H]− 
m/z 325 was tentatively identified as p-coumaric acid 
hexoside (7.57% of the methanol extract) [23]. Another 
glycoside derivative of a phenolic acid was spotted at 
m/z 355 in ESI negative mode and a molecular formula 
of  C15H16O10 and was assigned to caffeic acid 3-O-hexou-
ronide [42]. Another phenolic acid derivative was tenta-
tively identified at m/z 685 (ESI negative) and was linked 
to the presence of trimeric ferulic acid [56].

Tannins
Four tannins and tannin derivatives of both the hydro-
lyzable and the condensed types were only identified 
from the methanol extract of G. rugosa (Table 1) (Fig. 3). 
Compound 2 with a molecular ion peak at [M-H]− m/z 
269 and a molecular formula of  C17H34O2 was identi-
fied as 3-methyl-epigallocatechin gallate [57]. Similarly, 
3-methyl-epigallocatechin gallate showed a peak at m/z 
471 in ESI negative mode [57]. A fragment of dimeric 
procyanidin B showed a peak at m/z 407 in the negative 
ion mode [49]. Compound 32 showed a molecular ion 
peak at [M-H]− m/z 469 and was tentatively assigned to 
the hydrolyzable tannin valoneic acid dilactone [58].

Diterpenes
One diterpene was tentatively identified as compound 
10 (Table  1) from the petroleum ether extract, and it 
showed a molecular ion peak at [M +  H]+ m/z 316 and 
was reported to be tanshinone V [59]. Another diterpene 
was assigned to 8,11,13-abietatriene-3,11,12,16-tetrol-
12-O-β-D-hexoside with m/z 597 in ESI negative mode 
(methanol extract only) [60].

Triterpenes
Two diterpenes were traced from the extracts of G. 
rugosa and three other triterpenes (Table  1 and Fig.  3). 
The three identified triterpenes were only traced from the 
methanol extract (compounds 41, 50, and 55, Table  1). 
Compound 41 was represented with a molecular ion peak 
at [M-H]− m/z 486 for 3-hydroxy-12-oleanene-28,29-di-
oic acid [61], while compound 50 showed its peak in the 

positive ion mode at m/z 431 and was assigned to pro-
panoic acid, 2-(3-acetoxy-4,4,14-trimethylandrost-8-en-
17-yl). In addition to that, compound 51 was tentatively 
identified at m/z 776 for the aglycone of bidesmosidic 
triterpene saponin [62].

Alkaloids
Two alkaloids were recorded from the extracts of G. 
rugosa (Table 1) (Fig. 3). In the ESI positive mode, com-
pound 19 showed a molecular ion peak at m/z 344 and 
was tentatively identified as 2,3-dimethyl-(-)-demecol-
cine (4.57% of the petroleum ether extract) [63]. Com-
pound 20 had a molecular ion peak at [M +  H]+ m/z 357 
(methanol extract only) and was assigned to menisperine 
[59].

The activity of Galaxaura rugosa tested extracts 
against Anopheles pharoensis
The highest larval mortality (93.33 and 90.67%) was 
recorded at the highest concentrations (80 and 35 ppm) 
of G. rugosa methanol and petroleum ether extracts, 
respectively in compared to 81.33% mortality at 0.1 ppm 
for positive control. Meanwhile, the lowest larval mortal-
ity values (9.33 and 10.67%) were achieved by the lowest 
concentrations (10 and 15 ppm), respectively when com-
pared with 0.0% for the control group. Also, pupal mor-
tality was recorded at 44.44 and 22.48% at 35 and 30 ppm 
of G. rugosa petroleum ether extract, respectively, com-
pared with 0.0% for the control group (Additional file 1: 
Table S1, and Fig. 4).

Methanol and petroleum extract varied significantly 
(P < 0.05) in comparison to the negative control but didn’t 
vary differently with the positive control (P > 0.05) with 
regard to larval mortality and adult emergency. While 
methanol extract didn’t vary statistically with the positive 
control (P > 0.05), petroleum ether extract varied with the 
positive control (P < 0.05) regarding pupal mortality. It 
has been observed that, as concentration increases, more 
significant (P < 0.05) mortality increases and the opposite 
for adult emergency (Fig. 4).

Methanol and petroleum ether extracts of G. rugosa 
prolonged larval and pupal durations at all concentra-
tions. The larval duration was prolonged from 4.19 days 
in the control groups to 5.31 and 5.64 days for the meth-
anol and petroleum ether extracts at 80 and 35  ppm, 
respectively. Both extracts showed a suppressive impact 
on the growth index throughout the board. Growth index 
recorded 6.05 and 8.75 by 35 and 30 ppm of petroleum 
ether extract, compared with 15.6 for the control congers 
(Additional file 1: Table S1).

Statistically, positive control varied significantly 
(P < 0.05) with the methanol extract and did not differ 
(P > 0.05) with the petroleum ether extract regarding 
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larval, pupal duration, developmental times, and 
growth index. Concentration has a significant effect 
(P < 0.05) on larval and pupal duration as developmen-
tal time is required and the growth index observed for 
insects (Additional file 1: Table S1).

In addition, the tested methanol and petroleum ether 
extracts decreased the AChE activity of 3rd instar lar-
vae of An. pharoensis, as it recorded 6.42 and 6.20 U/L, 
compared with 6.95  U/L for the untreated group. 
The tested extracts promoted GST activity, increas-
ing from 0.79  U/g tissue for the control group to 1.32 
and 1.41  U/g tissue for the methanol and petroleum 
ether extracts, respectively (Additional file  1: Table  S2 
and Fig.  5). Overall, both extracts had significantly 
(P < 0.05) affected the studied enzyme in comparison 
to positive control. The same was observed with nega-
tive control, except methanol extract, which did not 

affect Superoxide dismutase (SOD) U/mg normal levels 
(Fig. 5).

Also, the petroleum ether extract of G. rugosa recorded 
the highest repellent activity (85.26%) at 6.67  mg/cm2, 
respectively; meanwhile, the methanol extract provided 
77.85% protection from An. pharoensis females bites 
at the same dose, in comparison to 100.0% protection 
recorded by the positive control (DEET) at 1.8 mg/cm2, 
respectively. Statistically, positive control varied sig-
nificantly (P < 0.05) with both extracts (Additional file 1: 
Table S3 and Fig. 6).

Effect on non‑target organisms
Zebrafish (and Daphnia magna were the two non-tar-
get organisms’ models used for this research. Obtained 
results showed that  LC25 values were 829.5 and 377.4 µg/
mL against Zebrafish for methanol and petroleum ether 

Fig. 4 Larval and pupal mortality of Anopheles pharoensis induced by methanol and petroleum ether extracts of Galaxaura rugosa 
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extracts of G. rugosa, while the  LC50 values were 1988.8 
and 1365.1  µg/mL, respectively. Also,  LC75 values 
recorded 4768.7 and 4937.4 µg/mL by G. rugosa metha-
nol and petroleum ether extracts against Zebrafish, 
respectively (Table 2).

On the other hand,  LC25 values of 8.25 and 10.09  µg/
mL against Daphnia magna were recorded by the metha-
nol extract and the petroleum ether extracts, respectively 
while  LC50 values were 11.65 and 14.36  µg/mL, respec-
tively. Finally,  LC75 values were 16.44 and 20.45  µg/mL 
against Daphnia after 48 h of the exposure recorded by 
G. rugosa methanol extract and petroleum ether extracts, 
respectively (Table 3).

The ratio of the Zebrafish toxicity values to the mos-
quito larvae toxicity values for the investigated extracts 
was statistically significant. The concentration values 
compared at the  LC25 level were 18.4 and 829.5 (folds, 
percent change); at the  LC50 level, they were 43.03 and 
1988.8, and at the  LC75 level, they were 67.9 and 4768.7 
(folds, percent change), and at the  LC75 level, they were 
31.71 and 4947.4. (Mosquito larva: zebrafish). These find-
ings corroborate the low toxicity of the investigated com-
pounds against mosquito larvae, suggesting that their 
toxicity to other organisms was similarly low (Figs. 7, 8, 
9).

Fig. 5 Gradient column chart represents the effect of Galaxaura rugosa methanol and petroleum ether extracts on Acetylcholinesterase (AChE), 
Glutathione‑S‑transferase (GST), and Superoxide dismutase (SOD) activity in 3rd instar larvae of Anopheles pharoensis 

Fig. 6 Gradient column chart of repellent activity of Galaxaura 
rugosa methanol and petroleum ether extracts against Anopheles 
pharoensis starved females

Table 2 LC25,  LC50, and  LC75 of Galaxaura rugosa methanol and petroleum ether extracts against Zebrafish and Daphnia magna after 
48 h of exposure

LCL Lower 95%Confidential Limit, UCL Upper 95% Confidential Limit. All values are represented by µg/mL

Organism Extract LC25 (LCL‑UCL) LC50 (LCL‑UCL) LC75 (LCL‑UCL)

Zebrafish
(Danio rerio)

Methanol extract 829.5 (530.6–2927.7) 1988.8 (1009.1–26320.7) 829.5 (530.6–2927.7)

Petroleum ether extract 377.4 (233.3–752.6) 1365.1 (702.6–8566.7) 377.4 (233.3–752.6)

α‑Cypermethrin 0.475 (0.422–0.541) 0.413 (0.388–0.465) 0.383 (0.349–0.426)

Daphnia magna Methanol extract 8.25 (5.72–10.18) 11.65 (9.25–13.89) 8.25 (5.72–10.18)

Petroleum ether extract 10.09 (8.96–11.08) 14.36 (13.28–15.44) 10.09 (8.96–11.08)

α‑Cypermethrin 0.004 (0.003–0.008) 0.007 (0.005–0.011) 0.010 (0.008–0.014)
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Discussion
Red algae represent a biologically important part of 
marine life; they carry many phytoconstituents with 
potent biological activity. The Genus Galaxaura is chem-
ically under-studied, and scarce scientific literature was 
traced concerning the phytoconstituents of its mem-
bers. In this study, the methanol and petroleum ether 
extracts of G. rugosa were analysed through UPLC/ESI/
MS, and 57 secondary metabolites were identified and 
quantified, as discussed before in the results section. 
Flavonoids were the most abundant class, followed by 
phenyl propanoids, phenolic acids, and tannins. When 
comparing the two G. rugosa extracts, the methanol 
extract was richer in flavonoids, tannins, coumarins, and 
phenolic acids than the petroleum ether extract, while 

both showed the same number of identified phenyl pro-
panoids. The extract of G. rugosa showed antioxidant 
 (IC50 = 81.00 μg GAE/ml), antityrosinase and antielastase 
activities  (IC50 = 88.00  μg GAE/ml and  IC50 = 243.00  μg 
GAE/ml, respectively) [64–68]. Silver nanoparticles pre-
pared from G. rugosa methanol extract had antibacte-
rial activity against multidrug-resistant bacteria [69]. 
Moreover, chloroform extract of G. rugosa had antibac-
terial activity against Klebsiella pneumoniae (24  mm, 
0.15  mg/ml) and antifungal activity against Aspergillus 
fumigatus, Aspergillus niger and Candida tropicalis with 
(inhibition zones of 21, 22, and 25 mm,  IC50 = 1.25, 0.312, 
and 0.156 mg/ml), respectively. The extract also showed 
both antioxidant (80.96%,  IC50 = 27.8  μg/ml) and cyto-
toxic activities  (IC50 = 15 ± 1.7) [6]. In addition to that, 

Table 3 Effect of Galaxaura rugosa methanol and petroleum ether extracts on different developmental times of Anopheles pharoensis 

Means that do not share a letter are significantly different. Growth index has been calculated according to Shehata et al. [12]

Extract Conc (ppm) Larval duration 
(Days ± SD)

Pupal duration 
(Days ± SD)

Developmental time 
(Days ± SD)

Growth index

Methanol extract 80 5.31 ± 0.032a 3.32 ± 0.028a 8.64 ± 0.032a 9.64 ± 2.72bc

60 5.10 ± 0.024b 3.25 ± 0.029a 8.35 ± 0.036b 8.94 ± 0.27c

40 4.77 ± 0.096c 3.07 ± 0.029b 7.84 ± 0.125c 10.98 ± 0.56abc

20 4.54 ± 0.061d 2.76 ± 0.037c 7.30 ± 0.061d 13.69 ± 0.11ab

10 4.47 ± 0.045d 2.45 ± 0.044d 6.92 ± 0.09e 14.43 ± 0.18a

Petroleum ether extract 35 5.64 ± 0.047a 3.52 ± 0.049a 9.17 ± 0.096a 6.05 ± 0.79c

30 5.44 ± 0.046b 3.41 ± 0.012a 8.86 ± 0.042b 8.75 ± 0.58b

25 5.26 ± 0.037c 3.35 ± 0.016ab 8.61 ± 0.049b 11.61 ± 0.06a

20 5.11 ± 0.021c 3.22 ± 0.072b 8.33 ± 0.084c 12.0 ± 0.12a

15 4.93 ± 0.074a 3.02 ± 0.087c 7.95 ± 0.089d 12.56 ± 0.14a

Positive control
(α‑ Cypermethrin)

0.1 5.77 ± 0.082a 3.67 ± 0.054a 9.45 ± 0.106a 5.66 ± 1.57b

0.08 5.41 ± 0.153b 3.63 ± 0.032ab 9.04 ± 0.179b 7.69 ± 0.67b

0.06 5.35 ± 0.062b 3.53 ± 0.021bc 8.88 ± 0.057bc 8.25 ± 0.5b

0.04 5.19 ± 0.036b 3.45 ± 0.032 cd 8.65 ± 0.037 cd 11.56 ± 0.04a

0.02 5.15 ± 0.028b 3.34 ± 0.036d 8.50 ± 0.065d 11.76 ± 0.09a

Negative Control 4.19 ± 0.131 2.21 ± 0.044 6.41 ± 0.086 15.6 ± 0.21

Fig. 7 Comparison between lethal concentration values of methanol and petroleum ether extracts against mosquito larvae and the non‑target 
models (Zebrafish and Daphnia magna)
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the dichloromethane (DCM) extract of G. rugosa was 
phytochemically evaluated and tested for an inflamma-
tion model in rats (ear edema model). The DCM extract 
was rich in fatty acids, steroids, tritepenoids, and car-
bohydrates; besides, it displayed potent anti-inflam-
matory activity by reducing writhing (> 75% at the dose 
of 6  mg/kg) [70]. The metabolic profiling of other red 
algae belonging to genus Galaxaura viz. G. elongata was 
reported in the literature. The analysis was accomplished 
through GC/MS, where G. elongata methanol extract was 
rich in flavonoids, steroids, terpenoids, saponins, tan-
nins, and phenols. The main identified compounds were 
3R*,4S*-3-(2-nitro-4-methoxy phenyl)-4-(4-hydroxy phe-
nyl) hexane (7.97%), cyclopropane nonanoic acid, methyl 
ester (2.29%) and di isooctylphthalate (2.25%). The red 
algae extract showed potent antimicrobial activity against 
Candida albicans (16.07 ± 0.21 mm, inhibition zone) [6].

Based on the solvent utilized for extraction and the 
strength of the extract, the current investigation found 
that G. rugosa extracts exhibited particularly effective 
larvicidal activity against An. pharoensis third instar. The 
 LC50 results indicated that petroleum ether extract was 

more effective than methanol extract against the test lar-
vae. Extracts evaluated at all concentrations were also 
shown to increase the length of both the larval and pupal 
stages. It has been hypothesized that triterpenes compo-
nents contribute to the larvicidal action of the studied 
extracts [71, 72]. Recorded larvicidal activity confirms 
the previous findings where chloroform and methanol 
extracts of seaweed, Bryopsis pennata, recorded larvi-
cidal activity  (LC50 = 82.55 and 160.07  mg/mL) against 
Aedes aegypti larvae, as well as inducing a strong pro-
longation in larval period (1.5-fold longer than control) 
[73]; ethyl acetate extract of Caulerpa racemosa exhib-
ited larvicidal activity against Ae. aegypti with  LC50 and 
 LC90 values of 579.9, 1255.4 and 495.4, 1073.9  ppm at 
24 and 48  h, respectively [74]; methanol crude extract 
of Halymenia palmata and its fractions (Hpf-1 and Hpf-
2) induced mortality in Ae. aegypti larvae with  LC50 and 
 LC90 values of 42.73 and 95.48 μg/mL for crude extract; 
91.95 and 709.04 μg/mL for Hpf-1; 23.69 and 233.49 μg/
mL for Hpf-2, respectively [75]; ethanolic extracts of 
Chaetomorpha linum, Ulva intestinalis, and Sargassum 
dentifolium algae showed larvicidal activity against Culex 
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pipiens 3rd instar with  LC50 equal to 224.45, 231.06 and 
241.79 ppm at 48 h exposure, respectively [76].

Also, a depression in acetylcholinesterase (AChE) level 
in An. pharoensis third larval instar was recorded. As a 
biomarker of exposure to certain classes of pollutants, 
AChE activity measurements have become commonplace 
[77]. On the other hand, an elevated glutathione-S-trans-
ferase (GST) level in An. pharoensis larvae was recorded 
by the tested extracts; Biotransformation of foreign 
chemicals, drug metabolism, and protection from oxida-
tive damage are all aided by GST [78]. While superoxide 
dismutase (SOD) of An. pharoensis larvae, a major com-
ponent of mosquitoes’ antioxidant defense system [79], 
was not affected by tested extracts, respectively. Gener-
ally, the effect of G. rugosa methanol and petroleum ether 
extracts on AChE, GST, and SOD confirmd the results 
recorded using different plant extracts against Cx. pipiens 
larvae [80, 81].

A correlation was also found between the extract’s 
repellent properties, the solvent it was extracted with, 
and the amount of extract utilized. The complexity of the 
chemical makeup of the examined extracts’ components 
is reflected in their repellant action [82]. All concentra-
tions of G. rugosa extracts effectively deter female An. 
pharoensis from feeding on their dead. Repellant activity 
measured varied with dosage and extraction solvent. In 
general, the repellent efficacy of petroleum ether extract 
was greater against An. pharoensis starving females 
than methanol extracts. The repellent activity of tested 
extracts can be due to the presence of phenolic acids, ter-
penoids, and alkaloids, which exist in the tested extracts; 
these compounds may jointly or independently contrib-
ute to producing a repellent activity [83]. The repellent 
activity of the tested extracts was consistent with that 
reported using different plant extracts against Cx. pipi-
ens, Ae. aegypti, Anopheles stephensi, Culex quinquefas-
ciatus, and An. pharoensis starved females [10, 84, 85].

Zebrafish are useful for studying natural insecticides 
because they share some biological and ecological fea-
tures with mosquitoes, such as being aquatic, diurnal, 
and having a short life cycle.

Zebrafish, a sensitive non-target organism bioindicator, 
and Daphnia magna, a highly important environmental 
bioindicator, show no signs of toxicity to the extracted 
components. The same results were previously recorded, 
as isolated compounds derived from the stem bark of 
Annickia chlorantha showed mosquitocidal activity 
against Cx. pipiens and did not cause significant mortal-
ity or malformations in Zebrafish, indicating their safety 
for non-target organisms [86]. Daphnia is sensitive to 
various natural and synthetic insecticides [87]. The acute 
toxicity to daphnids varied less than tenfold across seven 
alkaloids compared with crude plant extracts [88].

Conclusion
Galaxaura rugosa was studied for its action against the 
malarial vector Anopheles pharoensis and non-target 
species Danio rerio and Daphnia magna and its UPLC/
ESI/MS profile using methanol and petroleum ether 
extracts. In addition, further research is required to 
clarify whether or if G. rugosa is effective against mos-
quitoes of other species. However, research into the 
separated chemicals’ insecticidal action should accom-
pany the extracts’ in-depth isolation and structural 
elucidation. Finally, replacing synthetic pesticides with 
compounds from red algae for mosquito control may 
have less of an impact on the environment and save 
money.
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