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Abstract 

Background Early phase malaria vaccine field trials typically measure malaria infection by PCR or thick blood smear 
microscopy performed on serially sampled blood. Vaccine efficacy (VE) is the proportion reduction in an endpoint 
due to vaccination and is often calculated as  VEHR = 1–hazard ratio or  VERR = 1–risk ratio. Genotyping information can 
distinguish different clones and distinguish multiple infections over time, potentially increasing statistical power. This 
paper investigates two alternative VE endpoints incorporating genotyping information:  VEmolFOI, the vaccine-induced 
proportion reduction in incidence of new clones acquired over time, and  VEC, the vaccine-induced proportion reduc-
tion in mean number of infecting clones per exposure.

Methods Power of  VEmolFOI and  VEC was compared to that of  VEHR and  VERR by simulations and analytic derivations, 
and the four VE methods were applied to three data sets: a Phase 3 trial of RTS,S malaria vaccine in 6912 African 
infants, a Phase 2 trial of PfSPZ Vaccine in 80 Burkina Faso adults, and a trial comparing Plasmodium vivax incidence 
in 466 Papua New Guinean children after receiving chloroquine + artemether lumefantrine with or without pri-
maquine (as these VE methods can also quantify effects of other prevention measures). By destroying hibernating 
liver-stage P. vivax, primaquine reduces subsequent reactivations after treatment completion.

Results In the trial of RTS,S vaccine, a significantly reduced number of clones at first infection was observed, but this 
was not the case in trials of PfSPZ Vaccine or primaquine, although the PfSPZ trial lacked power to show a reduction. 
Resampling smaller data sets from the large RTS,S trial to simulate phase 2 trials showed modest power gains from  VEC 
compared to  VEHR for data like those from RTS,S, but  VEC is less powerful than  VEHR for trials in which the number 
of clones at first infection is not reduced.  VEmolFOI was most powerful in model-based simulations, but only the 
primaquine trial collected enough serial samples to precisely estimate  VEmolFOI. The primaquine  VEmolFOI estimate 
decreased after most control arm liver-stage infections reactivated (which mathematically resembles a waning vac-
cine), preventing  VEmolFOI from improving power.

Conclusions The power gain from the genotyping methods depends on the context. Because input parameters 
for early phase power calculations are often uncertain, these estimators are not recommended as primary endpoints 
for small trials unless supported by targeted data analysis.

Trial registrations: NCT00866619, NCT02663700, NCT02143934.

*Correspondence:
Gail E. Potter
gail.potter@nih.gov
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12936-023-04802-0&domain=pdf


Page 2 of 17Potter et al. Malaria Journal          (2023) 22:383 

Keywords Vaccine efficacy, Efficacy, Genotyping, Clone, Molecular force of infection, Molecular endpoints, Early 
phase, Trial efficiency, Efficiency

Background
Phase 3 malaria vaccine trials generally use clinical 
malaria as an endpoint as this is a relevant measure of 
how a patient “feels, functions, or survives” For small, 
early phase trials in malaria-experienced populations, 
rates of clinical malaria may be too low to have suffi-
cient power. Outcomes with higher event rates, such as 
malaria infection detected by thick blood smear micros-
copy or PCR testing on serial blood samples are more 
feasible. Vaccine efficacy is often measured as  VEHR = 1–
hazard ratio [2] or  VERR = 1–risk ratio. The HR approach 
is generally more powerful than the risk ratio approach 
since it incorporates information on the timing of events 
and allows detection of a treatment effect even when all 
participants become infected during follow-up. It is more 
informative for a vaccine that is “leaky” (conferring par-
tial protection on all individuals) than “all-or-nothing” 
(conferring complete protection on some individuals and 
no protection on others) [3, 4].

An alternative approach analyses multiple infections 
per person during follow-up by comparing the incidence 
rates of infections between vaccine and control arms. 
Counting distinct infections is challenging when malaria 
infection is measured by thick blood smear microscopy 
performed on serially sampled blood because this infor-
mation is insufficient to determine whether two consecu-
tive positive results are distinct infections. Genotyping 
can be used to distinguish different infections over time 
and can also count synchronous infection with different 
strains as multiple infections. The number of new clones 
acquired per year has been referred to as the “molecular 
force of infection” (molFOI) and was correlated with clin-
ical Plasmodium falciparum malaria (defined as febrile 
illness plus Pf parasitaemia > 2500/μL) in Papua New 
Guinean children [5]. Thus, an alternative efficacy meas-
ure is the proportion reduction in molFOI due to vacci-
nation, measured as

This efficacy measure has been proposed as a new 
measure for vaccine efficacy trials [6, 7], but it has not 
been applied or tested in clinical vaccine trials, although 
it has been applied in observational studies: one study 
compared molFOI and infection clearing times between 
males and females to better understand higher malaria 
prevalence in males in cross-sectional samples [8], and 

VEmolFOI = 1 −
molFOI of vaccinees

molFOI of controls

another used molFOI in exploring possible mechanisms 
by which sickle cell trait (HbAS) protects against P. falci-
parum malaria [9].

VEmolFOI has the potential to increase power by incor-
porating information from multiple events, but it dis-
cards information from the timing of infections. A 
second efficacy measure incorporating genotyping infor-
mation incorporates both time-to-event information and 
the number of clones present at the first infection. This 
measure was developed in the context of HIV (with viri-
ons measured instead of clones) [10] and has been 
applied to a Phase 3 trial of RTS,S malaria vaccine in 6912 
infants [11, 12], which was also analysed in this paper. 
Although the authors denoted this measure  VEV (V for 
“virion”), in this paper it is denoted  VEC (C for “clone”). 
 VEC is defined as the proportion reduction in number of 
infecting clones per exposure, due to vaccination. “Expo-
sure” is the instantaneous exposure over time and is 
modelled as a completely flexible (unspecified) function 
of time. The only assumption is that the exposure func-
tion is identical in vaccine and control arms, which is rea-
sonable for randomized controlled trials. To define  VEC, 
let X* denote the number of inoculated clones from a 
given exposure that develop into a blood stage infection, 
and let Z be a treatment indicator variable, so Z = 1 for 
vaccinees and Z = 0 for controls. Then, letting 
� = E(X∗|Z=1,exposed)

E(X∗|Z=0,exposed)
 , the efficacy measure is:

Zero values of X* are not observed because exposure 
events are not observed in malaria field trials, which only 
detect clones that develop into blood stage infections. Let 
X denote the observed number of clones, so X is a trun-
cated version of X* such that X > 0. Through algebra, Foll-
mann and Huang showed that  VEC can be estimated as:

where xv and xc are the mean number of clones at first 
infection in vaccinees and controls, respectively. While 
the estimand � is a ratio of untruncated population 
means, its estimator is a ratio of truncated means times 
the HR for the time to the first exposure that causes an 
infection. The intuition behind this is that if fewer expo-
sures lead to infection in the vaccine group, then there 
are more unobserved zeroes in that group, which is 

VEC = 1−� = 1−
E(X∗|Z = 1, exposed)

E(X∗|Z = 0, exposed)

V̂EC = 1−
xv

xc
HR,
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mathematically reflected in the HR < 1 for the first infec-
tion. Note that for this measure, the numbers of clones 
are measured at the time of first infection. However, 
in contrast to a simple comparison of mean number of 
clones at first infection,  VEC analyses all participants 
(both infected and uninfected).  VEC takes into account 
both the timing of the first infection and the number of 
clones for that infection.

Figures 1 and 2 illustrate information used in the four 
VE methods for a toy example. Figure 1 shows informa-
tion used in the two standard methods,  VERR and  VEHR. 
Panel A shows “true” infection durations for 8 hypotheti-
cal vaccine trial participants, with colours distinguishing 
different clones, and Panel B shows information gath-
ered when thick blood smear microscopy is performed 
on monthly samples.  VERR uses the presence/absence of 

infection during follow-up, while  VEHR uses the time to 
first infection. Figure 2 shows the calculation of the two 
VE measures incorporating genotyping data,  VEmolFOI 
and  VEC. Panel A is included again for reference, and 
Panel B shows calculation of  VEmolFOI. In this example, 
repeat observations of the same clone are counted as new 
infections if they were separated by at least one sample 
for which that clone was not observed. Panel C shows 
calculation of  VEC, which uses the time to first infection 
and number of clones present at first infection.

This paper systematically explores the feasibility of 
these two VE measures in small trials by testing their 
operating characteristics in a comprehensive set of simu-
lation studies and applying them to data from three ran-
domized, placebo-controlled trials. The mean, variability, 
and statistical power of the VE measures are compared to 

Fig. 1 Infection durations for 8 hypothetical trial participants (Panel A), information recorded by monthly sampling (Panel B), information 
incorporated into  VERR (Panel C), and information incorporated into  VEHR (Panel D)
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standard VE estimators in model-based simulations and 
by resampling. Implications of their adoption for the trial 
pipeline are discussed. Although this paper refers to these 
measures as VE (for “vaccine efficacy”), they can equally 
be considered and applied to trials of other malaria pre-
vention measures.

Data
The following three data sets were analysed:

(1) RTS,S data: In this Phase 3 trial, participants in 7 
African countries enrolled from March 2009 – Jan 
2011 and were randomized 2:1 to receive either 3 
doses of RTS,S/AS01 malaria vaccine or placebo 

Fig. 2 Infection durations for 8 hypothetical trial participants (Panel A), observed genotyping data and information contributing to  VEmolFOI (Panel 
B), and information incorporated into  VEC (Panel C)
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[11] (NCT00866619). Clinical malaria from P. falci-
parum infection was tracked for 12 months. Thick 
blood smear microscopy was performed on sam-
ples collected at the first clinical malaria episode, 
defined as temperature of 37.5  °C or higher and 
P. falciparum asexual parasitaemia at more than 
5000 parasites/μL or severe malaria. Serial blood 
samples were not collected. The data set analyzed 
in this paper comprised 6912 participants aged 
5–17 months who completed their dosing regimen 
and were included in the per-protocol population 
[12, 13]. Of these, 2391 developed clinical malaria 
during the follow-up period, and genotyping results 
were obtained for 2089 (87%) of these first clinical 
malaria episodes. 908 (39%) of controls and 1181 
(26%) of vaccinees experienced clinical malaria with 
non-missing genotyping results.

(2) PfSPZ data: This Phase 2 trial included 80 Burkina 
Faso adults who enrolled in March 2017 and were 
randomized 1:1 to receive 3 doses of PfSPZ Vaccine 
or placebo [14] (NCT02663700). Thick blood smear 
microscopy was performed on blood samples col-
lected monthly and when ill with malaria symptoms 
to detect P. falciparum infection, and genotyping 
was performed on the first positive sample only. 
There were 37 first infections by thick blood smear 
microscopy: 14 of 39 (36%) vaccinees and 23 of 41 
(56%) controls. Genotyping results were obtained 
for 33 of the 37 first infections (89%).

(3) Primaquine data: This randomized controlled 
trial tracked molecular force of Plasmodium vivax 
blood stage infection in children randomized 1:1 
to receive either blood + liver stage treatment 
(chloroquine (CQ) + artemether-lumefantrine 
(AL) + primaquine (PQ)) or blood stage treat-
ment only (CQ + AL + placebo) at enrollment [15] 
(NCT02143934). P. vivax parasites can hibernate 
unobserved in the human liver (without causing 

symptoms in their host) for months or years and 
then “reactivate” to cause an observable and poten-
tially symptomatic blood stage infection. The goal 
of primaquine treatment was to clear hibernating P. 
vivax parasites from the liver. Thus, P. vivax infec-
tions in controls included relapses and new infec-
tions, while in treated participants, new infections 
were assumed to be unchanged while a portion of 
relapses were prevented. The aim of the trial was 
to test whether the addition of primaquine to the 
CQ + AL regimen at baseline could reduce P. vivax 
infections in the subsequent 8-month follow-up 
period. 529 children aged 5–10 years enrolled from 
17 August to 11 September 2009 in six villages in 
Maprik district, East Sepik Province, Papua New 
Guinea. Treatment was given over 28 days, with CQ 
for the first three days, PQ for 5 days per week, and 
AL for Days 11–13. After the end of the treatment 
period, blood was collected biweekly for 3 months, 
then monthly for 5 more months. The data set ana-
lysed in this paper includes genotyping data from 
the 466 children who completed the full course of 
treatment [16, 17]. Of these, 48% tested positive 
for P. vivax by PCR before study treatment, and 1% 
tested positive after treatment. The extent of miss-
ing genotyping results is unclear because the pub-
lic data set provides limited information: it reports 
P. vivax parasitaemia by PCR and the number of 
new P. vivax clones detected during an interval, so 
a positive P. vivax PCR can be consistent with zero 
new P. vivax clones (if the clones detected were pre-
viously observed). However, 31 (14%) of 229 first 
post-baseline infections were PCR-positive for P. 
vivax and had zero new P. vivax clones detected—
an inconsistency between the two tests. Thus, one 
might expect that for about 14% of subsequent P. 
vivax PCR positive results, genotyping failed to 
detect the P. vivax clone that was present.

Table 1 VE (vaccine efficacy) methods, interpretation, and formulas

RR,  risk ratio; pv , proportion of vaccinees infected; pc , proportion of controls infected;

HR,  hazard ratio for time to first infection

molFOI, incidence of new clones acquired over time = 

Number of new clones acquiredover follow − up, summed

over all members of the group
Total time in follow−up in group

xv , number of clones at first infection in vaccines; xc , number of clones at first infection in controls

Method Meaning Formula

VERR Vaccine-induced proportion reduction in probability of infection during follow-up VERR = 1− RR = 1− pv
pc

VEHR Vaccine-induced proportion reduction in hazard of first infection during follow-up VEHR = 1 – HR

VEmolFOI Vaccine-induced proportion reduction in molecular force of infection (molFOI) VEmolFOI = 1− molFOI of vaccinees

molFOI of controls

VEC Vaccine-induced proportion reduction in mean number of clones per exposure that develop 
into a blood stage infection

VEC = 1− xv
xc
HR
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Methods
Table 1 summarizes the four VE methods studied in this 
paper. The first two are standard approaches (Fig.  1), 
while the second two incorporate molecular data (Fig. 2). 
These four methods are tested in simulation and in data 
analysis.

Simulation study 1
To compare power between the four VE methods, a 
malaria vaccine randomized controlled trial was simu-
lated with 1:1 randomization and a 168-day follow-up 
period. Exposure events with equal rates in the two arms 
were simulated via a Poisson process, which is equiva-
lent to sampling exponential times to exposure for each 
person and allowing multiple events per person during 
follow-up. An “exposure event” was defined as exposure 
sufficient to cause a blood-stage infection in a control 
participant, so the event may correspond to multiple 
infectious bites. Note that this is different from the stand-
ard conceptualization of exposure, which does not always 
lead to an infection in unvaccinated people. Each expo-
sure event may transfer multiple P. falciparum clones, an 
assumption based on work suggesting that co-transmis-
sion of multiple clones from a single mosquito is more 
common than superinfection (infection with multiple 
clones from different mosquitoes) [18, 19]. Each clone 
may then be blocked by the vaccine. The simulations 
assumed that 10 clones are circulating in the community, 
and for each exposure event, the number of clones trans-
ferred  (nc) was sampled from a Poisson random variable 
truncated to lie between 1 and 10. Separate simulations 
were performed for a mean of 1, 2, or 3 clones trans-
ferred per exposure. Then, the identities of the  nc clones 
transferred during the bite were sampled from the set 
of 10 circulating clones with equal probability. Differ-
ent simulations implemented different vaccine blocking 
mechanisms:

1. Scenario 1: Each clone was blocked independently 
with probability 0.5.

2. Scenario 2: A prespecified set including half of the 
circulating clones were blocked with probability 
100% (when transferred to vaccinees), and the other 
half were never blocked.

3. Scenario 3: The prespecified set of half of the cir-
culating clones were blocked with probability 75% 
(when transferred to vaccinees), and the other half 
were blocked with probability 25%.

4. Scenario 4: To estimate Type 1 error (the probably 
of incorrectly rejecting the null hypothesis when the 
null hypothesis is true), an ineffective vaccine was 
simulated.

For each clone that developed into a blood stage infec-
tion, an infection duration was sampled from an expo-
nential distribution with a mean of 303 days for females 
and 167  days for males [8]. Biweekly sampling for 
168 days was simulated, and hypothesis tests for the four 
VE measures for each simulated trial were performed. 
Power was estimated as the proportion of simulations in 
which the null hypothesis was rejected. Further details 
are in the Additional file (Additional file  1: Supplemen-
tary Methods Sect. 1). The simulation was repeated with 
500 circulating clones instead of 10 circulating clones, 
but still assumed that a maximum of 10 clones could be 
transferred per exposure.

Data analysis
For each of the four VE methods, an efficacy estimate, 
95% confidence interval (CI), and p-value were calculated 
for each data set. Risk ratios were estimated by modified 
Poisson regression [20] in the primaquine and RTS,S vac-
cine trials. This approach models the outcome as binary 
(infected vs. not infected) using a Poisson distribution, 
which gives a valid estimate of the risk ratio. Since a Pois-
son distribution is not a good fit for the Bernoulli distri-
bution, variance estimates would be inaccurate by this 
approach, a problem corrected through the use of robust 
“sandwich” standard errors [20]. In the PfSPZ Vaccine 
trial, the risk ratio was estimated based on Kaplan Meier 
estimated survival probabilities, as this method was pre-
specified as the primary analysis method. Their variances 
were calculated by Greenwood’s formula, and the delta 
method was applied to obtain the VE CI [21]. In all tri-
als, hazard ratios were from Cox regression with Wald 
tests, and VEC was calculated by estimating � as xvxcHR , so 
V̂EC = 1− xv

xc
HR. Analogous to Cox regression, � is esti-

mated on the log scale. The standard error for the estima-
tor for log(� ) is given by the below formula [10]:

where SE
l̂ogHR

 is the standard error of the log hazard ratio 
from Cox regression, s2v and s2c denote the variances of 
number of clones at first infection in vaccinees and con-
trols, respectively, and  Iv and  Ic denote numbers of vac-
cinees and controls infected. Confidence intervals and 
p-values for VEC are calculated based on normality of the 
test statistic. In all trials, the ratio of molecular force of 
infection was estimated by quasi-Poisson regression with 
the total number of clones acquired over follow-up per 
person as the response variable and the log-transformed 
time-at-risk as an offset.

Time-at-risk was the end of follow-up in the pri-
maquine data set because the genotyping results from 

SElog�̂ =

√

SE
l̂ogHR

2 +
s2v

Ivxv
2
+

s2c

Icxc
2
,
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serially sampled blood allow observation of repeat infec-
tions. Intervals of 42  days or more with no study visits 
were subtracted from time-at-risk for consistency with 
previous analyses [16]. In the other two data sets, time-
at-risk was truncated at the first infection since genotyp-
ing results from subsequent infections were not obtained. 
In calculating time-at-risk, time receiving antimalarial 
medication was not subtracted. Because time-at-risk 
in the RTS,S and PfSPZ Vaccine trials was based on the 
first malaria infection, there was likely little or no anti-
malarial medication received during the at-risk interval. 
In the primaquine trial, this analysis approach was taken 
for consistency with prior analyses. Although medica-
tion data during the follow-up period is not available 
in the public data set, clinical episodes (defined as fever 
and a positive malaria infection by light microscopy) are 
in the data set, and there were few in this trial: 27 con-
trols (12%) and 18 PQ recipients (8%) experienced clini-
cal malaria. In the primaquine data set, 31 (14%) first 
infections were PCR positive for P. vivax but had no P. 
vivax clones reported. These were analysed as zero clones 
when calculating  VEmolFOI. Of these 31, 27 had zero and 4 
had missing new clones; these were analysed as zero and 
missing, respectively, when calculating the mean number 
of clones at first infection. A sensitivity analysis was per-
formed imputing each of these events to have 1 new P. 
vivax clone. In the Burkina Faso data set, 4 first infections 
were missing a genotyping result. These were analysed as 
no new clones when calculating  VEmolFOI and as miss-
ing when calculating the mean number of clones at first 
infection. In the RTS,S trial, only clinical malaria events 
with non-missing genotyping information were analysed, 
for consistency with previous analyses [12].

Simulation study 2
The purpose of this simulation is to assess whether the 
three data sets are consistent with the model underlying 
the simulation process. The model operationalizes the 
vaccine mechanism as a per-clone blocking probability. 
From this, reductions in all outcomes (risk of infection, 

hazard ratio, mean number of clones per infection, and 
molFOI) are affected simultaneously, so treatment effects 
on all outcomes are correlated. In this second simulation 
study, the simulation inputs were recalibrated to match 
the probability of at least one infection during follow-
up in each group and the mean number of clones per 
infection in the control group for each of the three tri-
als analysed. The inputs adjusted were the exposure rate, 
the mean number of clones transferred per exposure, 
and the clone blocking probability. The mean number 
of clones per infection in the vaccine group is induced 
by the distribution of clones in the control group, the 
clone blocking probability, and the blocking mechanism. 
The exposure rate was mathematically derived (assum-
ing exponential time-to-event distributions) so that 
the simulated control group infection rate matched the 
observed rate. Blocking probabilities were then estimated 
by looping through different blocking probability values 
until the simulated treatment group event rate matched 
the observed rate. Table  2 shows these infection rates 
for each trial and the values of input parameters used to 
simulate them. The actual total number of clones circu-
lating in the community was not available, so 50 circulat-
ing clones were assumed with a maximum of 10 clones 
transferred per exposure. For each set of inputs, 1000 tri-
als of size 500 were simulated, and the average VE esti-
mator values, infection rates in each arm, and the mean 
and variance of the number of clones at first infection in 
each arm were tracked.

Simulation study 3 and analytic power
Because the Phase 3 RTS,S data set is very large, it pro-
vides a population from which smaller trials can be resa-
mpled, which are hypothetical early phase trials. This 
third simulation study entailed resampling 10,000 trials of 
size 80, 150, and 250 from the RTS,S data set with equal 
numbers of participants in each arm.  VEHR and  VEC were 
calculated with 95% confidence intervals, and power was 
estimated as the proportion of simulations for which the 
interval excluded zero. Since the RTS,S trial had a lower 

Table 2 Target infection rates and inputs used to generate them in Simulation Study 2

Parameter RTS,S/AS01 trial Primaquine trial PfSPZ Vaccine trial

Infec-
tion rates 
observed 
in each trial

Proportion of controls infected during follow-up 0.39 0.71 0.56

Proportion of subjects in treatment arm infected during follow-up 0.26 0.28 0.36

Inputs 
to simula-
tion study

Exposure rate 1/741 1/182 1/204

Clone blocking probability 0.61 0.80 0.76

Mean number of clones at first infection in control group 2.26 1.46 3.00

Follow-up duration 12 months (364 days) 8 months (224 days) 6 months (168 days)
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event rate than what is usually seen in early phase tri-
als, another resampling study was performed imposing a 
higher event rate by first simulating infection status for 
each control by tossing a weighted coin with infection 
probability 0.6, and doing the same for vaccinees with 
infection probability 0.3. For each infected vaccinee, the 
paired values of the time-to-event and number of clones 
at first event were sampled from the set of infected RTS,S 
vaccinees. For each uninfected vaccinee, the time to cen-
soring was sampled from the set of uninfected RTS,S vac-
cinees. Values were sampled analogously for controls. 
To provide further context for Simulation Study 3, ana-
lytic power formulas were derived for two of the efficacy 
methods:  VEHR and  VEC and are in the Additional file 1: 
Supplementary Methods Sect. 2. These experiments and 
derivations were not performed for  VEmolFOI because the 
information in the RTS,S data set for this estimator is 
limited due to the lack of serial sampling.

Results
Simulation Study 1 found that Type 1 error is controlled 
for all methods and shows similar power for each method 
under the three vaccine-blocking scenarios (Additional 
file  1: Fig. A1). This is because while the different sce-
narios implement different preferential blocking for dif-
ferent clones, the mean number of clones is reduced by 
the same amount. An exception is that for small sample 
sizes and large average number of clones transferred per 
exposure, the molecular force of infection method is 
more powerful in Scenario 2 (perfect blocking of half the 
clones and no blocking of the other half ) than in other 
scenarios. That is because 10 circulating clones were 
assumed and reducing this to 5 among vaccinees reduces 
the variability of the number of clones, which reduces the 
variability of the VE estimator. Because the three scenar-
ios of interest gave similar power, power is displayed only 
for Scenario 1 in Fig. 3 to facilitate comparison between 
methods. The simulations result in an infection rate of 
75% in the control arm and 50% in vaccinees when a sin-
gle clone is transferred per exposure. All panels show that 
the hazard ratio approach is more powerful than the risk 
ratio approach.

When a single clone is transferred per exposure,  VEHR 
and  VEC perform identically since the mean number 
of clones at first infection is 1 in both groups. When 2 
clones are transferred per exposure (on average), the 
value of the HR is reduced because the vaccine must 
block two clones (each with probability 0.5) to prevent 
an infection, so  VEHR loses power, as does  VERR, but the 
genotyping methods do not lose power. This pattern con-
tinues when the mean number of clones per exposure is 
increased to 3. The lower panel shows that the expected 
values of estimators are constant across sample sizes, but 

variability of the estimator decreases as the sample size 
increases.

When the simulation was repeated with 500 circulat-
ing clones, power and VE estimates were nearly identical 
to those obtained when there were 10 circulating clones 
(Additional file 1: Figs. A2 and A3) for each scenario, esti-
mator, and mean number of clones. This is because the 
mean number of clones is reduced by the same amount, 
regardless of which clones were transferred. There was 
only one difference from the previous set of simulations: 
with 500 circulating clones,  VEmolFOI did not have higher 
power in Scenario 2 than in the other scenarios because 
there is no truncation on the number of clones vaccinees 
can experience. In general, communities with more cir-
culating clones tend to have higher transmission. These 
two experiments produced similar results because, in the 
simulation model, the parameters driving differences in 
transmission levels are the exposure rate and the mean 
number of clones transferred per exposure, and these had 
the same values for the two simulations. For this reason, 
the simulations calibrated to each of the three analysed 
trials (which all assumed 50 circulating clones) capture 
differences in community transmission levels (by varying 
these two parameters) even if these communities actually 
have different numbers of circulating clones.

Figure  4 displays VE estimates and 95% CIs for the 
three trials analysed. Numeric values are in Additional 
file 1: Table A2, and Additional file 1: Table A3 provides 
summary statistics for each trial. The blue triangles show 
the average VE values induced by the simulation model 
that matches the event rates in each group and mean 
number of clones at first infection among controls. 95% 
confidence intervals for the mean VE from simulations 
are smaller than the plotting symbols. Note that these are 
different from the percentiles shown in Fig. 3, which dis-
plays variability between trials of the observed VE. The 
intervals in Fig. 4 display uncertainty in estimation of the 
true VE induced by the model (which can be made arbi-
trarily small by increasing the number of simulations). By 
design, the mean  VERR from simulations is very close to 
the observed  VERR. The leftmost panel summarizes RTS,S 
trial results, which show that  VEHR is larger than  VERR, 
with a confidence interval farther from the null value of 
zero, and that  VEC and  VEmolFOI are similar and are both 
higher than  VEHR.  VEC has a confidence interval farther 
from the null value than  VEHR, but  VEmolFOI does not and 
has a wider interval. Information in this trial for  VEmolFOI 
is limited because only the first infection was genotyped. 
The CIs are wider in the primaquine trial and much wider 
in the PfSPZ Vaccine trial due to the smaller sample sizes 
of these trials. In all three trials, the blue triangles show 
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that the values of  VEC and  VEmolFOI predicted by the sim-
ulation model are higher than those estimated from the 
data. Moreover, the model-predicted value of  VEC is sig-
nificantly higher in RTS,S and PfSPZ (as the triangle lies 
to the right of the CI), but not the primaquine trial. The 
model-predicted value of  VEmolFOI is significantly higher 
in the primaquine trial. The discrepancy between the 
simulation-predicted VE values and those from the data 
suggest that the simulation model tends to overestimate 
the VE measures incorporating genotyping data, which 
would cause it to overestimate the power gain from these 
approaches.

The following analyses were performed to explore pos-
sible reasons for the discrepancies between the simula-
tion model results and estimates from the data:

RTS,S Trial: Summary statistics from the RTS,S data 
set were compared to those from simulations. Although 
the simulations match the event rates in each group, they 
predict a larger reduction in mean number of clones at 
first infection (from 2.26 in controls to 1.44 in vaccinees; 
while the actual vaccinees had a mean of 1.94 clones 
(95% CI [1.86, 2.02]) (Additional file  1: Table  A4). The 
simulations also underestimate variability of the num-
ber of clones. The simulation was revised to match the 

Fig. 3 Estimated power by the four different VE methods by mean number of clones transferred per exposure (Panel A) and mean VE estimator 
values across simulations (Panel B) with variability represented by 2.5th and 97.5th percentiles. VE methods were calculated for the same sample 
sizes; the displayed intervals are staggered to distinguish them visually
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entire distribution of clones in controls instead of using 
a truncated Poisson distribution that matches only the 
mean. This revision only slightly reduced the discrepancy 
between the data and the simulation summaries, so is not 
the source of the difference (Additional file 1: Table A4). 
Although the ordering of the RTS,S VE estimates is con-
sistent with the simulation outputs (unlike the other esti-
mates for the trials), the discrepancy between the data 
and the simulation summaries indicate that the simula-
tions overestimate power for this data structure.

Primaquine trial: The treatment tested in this trial 
prevents reactivations of liver stage infections and is not 
expected to prevent new infections or reinfections from 
an outside source. Thus, the mechanism is different from 
that in the malaria vaccine simulation model. However, 
it is similar to the second scenario considered above—a 
vaccine that blocks half of all clones with 100% probabil-
ity and no blocking for others. Although the set of clones 
to be blocked would differ between individuals in this 
trial, the model might be an adequate approximation.

The observed treatment effect in this trial on molFOI 
will eventually decline because after all liver-stage infec-
tions in controls have been reactivated, susceptibility to 
new P. vivax infections will be similar between controls 
and treated participants. The declining treatment effect 
is mathematically similar to a waning VE for a malaria 
vaccine, although the biological mechanism is differ-
ent. Additional file 1: Fig. A4 shows monthly molFOI by 
treatment arm during follow-up. Control arm P. vivax 
molFOI surged in Months 2 and 3 post-enrollment, but 
the treated arm did not surge similarly. Hofmann et  al. 
[16] conjectured that the surge could be due to a trigger-
ing of relapses from the blood-stage treatment or that 
relapses may have occurred soon after treatment (while 
anti-malarial drug levels were low), then were suppressed 

from detection as drug levels rose and were finally 
detected after drug levels waned. The molFOI for this 
group dropped steeply in Month 4 but remained larger 
than the molFOI in the treated arm for the rest of follow-
up (Additional file  1: Fig. A4), possibly because reacti-
vations continued at a slower rate among controls. This 
pattern is consistent with models of P. vivax recurrence 
in other studies [22–24]. Further modelling to under-
stand the mechanisms influencing P. vivax reactivation is 
needed and is beyond the scope of this paper. The simula-
tion model does not implement waning, and the power 
gain from the molecular force of infection approach is 
less when waning occurs because this measure incorpo-
rates information from all infections and does not incor-
porate the time to first infection.

VEC, however, is based on the time to first infection 
and number of clones present at first infection. The mean 
number of clones at first infection was 1.46 in controls 
and 1.49 in treated participants, making  VEC smaller 
than  VEHR. When the analysis was repeated with only the 
first three months of follow-up, the genotyping VE esti-
mates were larger than  VEHR with confidence intervals 
farther from the null value (Additional file 1: Table A2), 
but the mean numbers of clones at first infection were 
1.51 and 1.44 in control and treated arms, which do not 
differ significantly or substantively. The simulation model 
induces a relationship between the risk reduction and the 
mean ratio, which is why the simulation-predicted value 
for  VEc is greater than that for  VEHR. The combination of 
a dramatic risk reduction and null mean ratio observed 
in this trial are not what one expects from the model, but 
the model-predicted values of both  VEc and  VEHR are 
within the confidence intervals generated from this trial.

The simulations used exponential infection durations, 
which may result in too many short durations, giving 

Fig. 4 VE estimates (red circles) with 95% confidence intervals from three clinical trials. The blue triangles show expected values of the VE estimates 
from simulation models calibrated to match the event rates in both arms and the mean number of clones at first infection in controls
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too many opportunities for new infections. To test if 
this was causing the model to overestimate power, the 
original simulation study was revised assuming all infec-
tions lasted longer than the follow-up period. Results 
were similar (Additional file 1: Tables A5 and A6), so this 
assumption was not the root of the problem. Finally, a 
sensitivity analysis in which new post-baseline P. vivax 
infections with zero new P. vivax clones detected were 
imputed to have 1 new clone gave nearly identical results 
to the primary analysis (Additional file 1: Table A2).

PfSPZ vaccine trial: The small sample size of this trial 
creates a large amount of uncertainty in estimates. The 
mean number of clones at first infection was higher 
among vaccinees than controls (3.46 vs. 3.00), but the dif-
ference was not statistically significant (t-test p = 0.30). 
The ratio of mean number of clones at first infection for 
vaccinees to controls is 1.15. The RTS,S trial showed the 
opposite pattern: there were significantly fewer mean 
number of clones in vaccinees (1.94) vs. controls (2.26) 
at first infection. When 10,000 data sets of size 80 were 
resampled from the RTS,S data set, vaccinees had fewer 
clones than controls in only 71% of resampled data 
sets. They had more clones than controls in 29% of resa-
mples, and the ratio of means was ≥ 1.15 in 14% of resa-
mpled daets. This means that 14% of trials of size 80 of a 
vaccine that reduces the number of clones at first infec-
tion as much as the RTS,S vaccine did will give a ratio of 
means ≥ 1.15.  Therefore, it is difficult to draw a conclu-
sion about what the PfSPZ Vaccine is doing, in terms of 
number of clones at first infection, from this trial.

Simulation study 3
The third simulation study entailed resampling data sets 
of smaller sizes from the RTS,S data to estimate power 
with a realistic data structure and no model assumptions. 
The first three rows of Table 3 show that power estimated 
by this approach is modestly higher with  VEC than  VEHR. 

The fourth row shows power estimated by imposing arti-
ficially higher event rates but preserving the time-to-
event distributions among people who became infected 
as well as the distribution of number of clones. With 
these higher event rates and a higher risk ratio, power is 
lost rather than gained when genotyping data is added. 
This is because although the addition of genotyping data 
can add information, it also adds variability to the esti-
mator because the two means are being estimated, so the 
confidence intervals are wider.

The increased uncertainty by adding genotyping infor-
mation can be seen directly from the formula for the 
standard error of the estimator derived in [10]. The esti-
mator is V̂Ec = 1− xv

xc
HR = 1− �̂.  As noted previously, 

the standard error for the estimator for log(� ) is:

Thus, the variance of the estimator for log(� ) is always 
greater than the variance of the log-transformed hazard 
ratio. Since 95% confidence intervals for the log-trans-
formed estimands are calculated as Estimate ± 1.96 √
Var(Estimator), the above variance formulas mean that 

the confidence interval for log(Δ) is always wider than 
that for log(HR). Adding genotyping information into the 
efficacy estimator can improve power when the reduc-
tion in mean clones is large and added variability is small, 
but can decrease power when the reduction in mean 
clones is small and added variability is large. Analytic for-
mulas for power were derived to try to establish a thresh-
old beyond which power is lost rather than gained by 
adding genotyping information (Additional file 1: Appen-
dix, Additional file  1: Sect.  2). However, these formulas 
show that power depends on the sample size in each 
group, the numbers infected in each group, the hazard 
ratio, and the means and standard deviations of numbers 
of clones at first infection in each group. The threshold at 
which  VEC starts to have less rather than more power 
than  VEHR depends on all these parameters and cannot 
be reduced to a simple formula. Figure  5 shows power 
curves for sample sizes 80 and 250 for three different risk 
ratios. To reduce the number of input parameters for the 
power curves and create a simpler visualization, an expo-
nential distribution was assumed for the time to first 
infection. In this case, the HR is defined by the infected 
proportions in each group as HR = log(1−pv)

log(1−pc)
.  The simu-

lation results in Table 3 and power curves in Fig. 5 show 
that with a greater risk reduction, the extra information 
from the relatively small mean reduction observed in 
RTS,S is outweighed by the additional uncertainty added 
from estimating two means.

SElog�̂ =

√

SE
l̂ogHR

2 +
s2v

Ivxv
2
+

s2c

Icxc
2

Table 3 Power estimated by resampling smaller trials from the 
RTS,S data

The first three rows show estimated power from direct resamples of the RTS,S 
data. The fourth row shows power from an artificially imposed higher control 
group event rate and larger risk ratio reduction but matches the mean clones 
and time-to-even distributions among infected participants in each group. 
Because time-to-event distributions match only those among infected RTS,S 
participants but fewer people escape infection than in the RTS,S data, the hazard 
ratio for the fourth row does not match that in the RTS,S data

Control arm 
event rate

Vaccine arm 
event rate

Sample size VEHR power VEC power

0.38 0.26 80 0.29 0.33

0.38 0.26 150 0.52 0.56

0.38 0.26 250 0.75 0.78

0.60 0.30 80 0.85 0.80
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The derivations in the Additional file  1: Appendix 
show that the threshold reversing the power gain from 
 VEC does not depend on the sample size. The threshold 
occurs in the same place in the left and right graphs. For 
a risk ratio of 0.65, the threshold occurs at a control arm 
event rate of 0.74. The magnitude of the power difference 
between the two methods does depend on the sample 
size, however.

Discussion
This paper compared two new malaria vaccine estima-
tors incorporating genotyping data to the standard esti-
mators by evaluating their operating characteristics in 
simulations and applying them to data from three trials. 
Both genotyping estimators were more powerful than 
standard estimators in model-based simulations, but 
analysis of the three trials suggests that the simulation 
model overestimates power. Despite this limitation, the 
simulation model gave insight into the performance of 
the two new VE methods. They control Type 1 error in all 
settings considered. In addition, the simulations showed 
that power from the genotyping methods generally did 
not differ when the vaccine blocked certain clones differ-
entially as long as it blocked the same number of clones 
on average. An exception is a vaccine that completely 
blocks a subset of clones when there are a relatively small 
number of circulating clones, because this can reduce the 
variability of the estimator. The simulations also showed 

that the potential power gain increases with number of 
clones transferred per exposure, so there is less potential 
benefit in communities with few circulating clones, and 
 VEc showed no benefit with a single clone transferred 
per exposure. Communities with more circulating clones 
tend to have a higher exposure rate and more clones 
transferred per exposure. When these parameters are 
fixed, however, results are similar if the number of circu-
lating clones increases.

The second simulation study entailed resampling 
smaller trials from the RTS,S vaccine trial. This does not 
rely on any model assumptions. This study showed that 
 VEC has moderately higher power than  VEHR in some 
realistic scenarios and lower power in others because 
there is a balancing act between adding data that can be 
informative about the vaccine and the additional vari-
ability in estimation contributed by estimating the two 
means. In data resembling the RTS,S trial, a power gain 
of 3 to 4 percentage points in small trials was found. 
The reduction in mean number of clones outweighs the 
increase in variability of the test statistic, and power is 
gained. When the risk reduction is larger than that seen 
in RTS,S, incorporating the mean reduction adds rela-
tively more variability, and power is lost. In early phase 
trials, there is typically have a lot of uncertainty around 
the inputs going into the power calculation, so this 
estimator is not recommended as a primary efficacy 
approach.

Fig. 5 Power curves for sample sizes 80 and 250 for  VEHR and  VEC. The calculations assume exponential time-to-event distributions, and the means 
and standard deviations of number of clones at first infection in each group match those in the RTS,S data. The black dots correspond 
to combinations of input parameters in Table 3. The analytic power estimates differ slightly from those in Table 3 because the RTS,S time-to-event 
distribution is not exponential, but they show the same general pattern
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There is less information in the three trials for under-
standing  VEmolFOI than  VEC since only the primaquine 
trial included genotyping results from serially sampled 
blood, and this one was a treatment trial rather than 
a vaccine trial and so it has a different mechanism of 
action.  VEmolFOI performed well in power simulations, 
but the treatment trial had a declining treatment effect 
for this endpoint, and the temporal decline decreases the 
size of the estimator and makes this method less powerful 
than  VEHR. In the RTS,S trial, the value of  VEmolFOI was 
higher than that of  VEHR, but the confidence interval was 
much wider since only the first infection was genotyped. 
In RTS,S, the mean number of clones at first infection 
was significantly lower in vaccines than controls (1.94 vs. 
2.26; p < 0.0001, t-test), unlike the other two trials. Fur-
thermore, trials of RTS,S administered with AS02A or 
AS01B adjuvant also found the vaccine to reduce num-
ber of clones at first infection detected by microscopy on 
biweekly blood samples in children under five in Mozam-
bique [25] and to reduce number of clones in all infec-
tions detected by weekly microscopy during a 3  month 
period in adults in western Kenya [26]. Depending on 
the extent of waning of the RTS,S vaccine in 12 months 
and the ratio of mean number of clones at each infection, 
it is possible that the  VEmolFOI would be more powerful 
than  VEHR in trials with similar control arm event rate 
and vaccine mechanism but with genotyping results from 
serial samples. In the PfSPZ Vaccine trial analysed in this 
paper, vaccinees had more clones at first infection than 
controls (3.46 vs 3.00, p = 0.30), but the difference was 
not statistically significant, and simulations showed that 
this difference is a plausible value even if the true effect is 
actually the reduction observed in the much larger RTS,S 
trial. The sample size of the PfSPZ trial is too small to 
draw conclusions about  VEmolFOI. Genotyping measures 
from serially sampled blood from a much larger malaria 
vaccine trial would help determine if  VEmolFOI may be 
helpful.

A major consideration of early phase endpoints is their 
performance in distinguishing which vaccines will be 
most likely to demonstrate an effect on the clinical end-
point of interest when they are tested in later phase tri-
als. If a reduction in the number of clones does not also 
reduce the risk of clinical malaria, then adding genotyp-
ing information to VE estimators is just adding noise 
that could obscure the ability to distinguish performance 
between different vaccine candidates in early phase trials 
rather than adding information that will help differenti-
ate their performance. Many individuals with polyclonal 
infections do not have symptomatic malaria, so vaccines 
which reduce their number of clones may have larger VE 
estimators by the genotyping approaches than other vac-
cines, even though they may not do as well at preventing 

clinical malaria. Therefore, even if  VEmolFOI can increase 
the size of VE estimators for some vaccines, the risk of 
adopting this measure as a primary outcome should be 
carefully considered. It would be safer to include it as a 
secondary or exploratory outcome to better understand 
its relationship to clinical malaria as well as to the epi-
demiology and natural history of the disease. Such data 
could also help with understanding the mechanism of 
action of vaccines and treatments. Molecular data is 
often collected in malaria vaccine trials to test for speci-
ficity to certain parasite genotypes, but sampling schemes 
vary. The specification of genotyping VE endpoints as 
secondary or exploratory endpoints can help ensure the 
needed data will be collected.

A necessary condition for either of these genotyping 
endpoints to be a good surrogate is a positive relation-
ship to clinical malaria. Molecular force of infection was 
positively related to clinical malaria in studies of infants 
and children [5, 16] and of a broader age population 
[27]. For  VEC, a positive relationship would be needed 
between clinical malaria and the number of clones (also 
called the multiplicity of infection, MOI) at first infec-
tion, and evidence for this is mixed. The RTS,S trials 
cited earlier (including the one analysed here) support a 
positive relationship, as do some longitudinal studies of 
children [28, 29]. However, cross-sectional studies have 
found similar MOI between asymptomatic and sympto-
matic participants [30], and lower MOI in symptomatic 
than asymptomatic infections [31, 32]. This could be 
because the higher density of one dominating strain driv-
ing the infection makes it harder to detect the presence 
of other strains. It could also be due to the confounding 
effect of immunity: only immune individuals can have 
asymptomatic infections, and in a cross-sectional sam-
ple MOI will go up with increasing suppressive immu-
nity (lower immunity will lead to clinical symptoms with 
the first infecting strain). For this reason, results from 
cross-sectional studies are difficult to interpret. A longi-
tudinal analysis of pooled individual data found baseline 
MOI in asymptomatic people to be related to subsequent 
clinical malaria in children under 5, but that the relation-
ship varied by transmission setting for children over 5 
[33] and was negative for children over 5 in high trans-
mission settings. Baseline MOI in asymptomatic peo-
ple is likely related to MOI of the first infection during 
follow-up because multiple clones can be transferred per 
bite [18] and asymptomatic people with higher baseline 
MOI may have higher exposure. Therefore, potential sur-
rogacy of  VEC may depend on the age of the population 
and the transmission setting. It is also unclear how this 
would differ from vaccine clinical trials where antima-
larial treatment is frequently used at the beginning of the 
observation period, creating a situation where each clone 
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detected represents a new infection. An association with 
clinical malaria is a necessary but not sufficient condi-
tion for a good surrogate outcome. A surrogate must also 
lie in the disease process pathway on which the inter-
vention acts and capture all relevant on-target and off-
target effects of the intervention on the disease process 
[1]. Generally, this comprehensive understanding of the 
disease process is impossible, and surrogacy is instead 
validated by a meta-analysis relating the treatment effect 
on the surrogate to the treatment effect on the clinical 
outcome in multiple trials [34]. Although this validation 
is not typically required for early phase trial endpoints, 
these issues are discussed here to point out the risk of 
substituting one early-phase trial endpoint with another.

Although infection detected by microscopy is a stand-
ard early phase outcome, its relationship to clinical 
malaria as a surrogate is also unclear since the develop-
ment of disease from blood-stage infection depends 
on immunity and exposure, which differ between indi-
viduals but tend to be correlated since past exposure is 
a predictor for current immunity. For example, a vac-
cine that blocks blood stage infections only in the most 
robust individuals (who would not have developed clini-
cal malaria anyway), could reduce malaria infection but 
not reduce clinical malaria in individuals. Genotyping 
data can help explain these relationships. For example, 
one study found that antibody levels were associated with 
increased risk of clinical malaria in children aged 1–4 in 
Papua New Guinea, but adjustment for molFOI removed 
most of the association, indicating that the antibody lev-
els were a proxy for exposure [35]. When the analysis was 
repeated on a cohort aged 5–14  years, antibody levels 
were associated with protection from clinical malaria, 
suggesting that a threshold level of antibody levels is 
needed to reduce the risk of disease. Collection and anal-
ysis of genotyping data on a large scale is needed to fur-
ther disentangle these relationships [36].

Even if they are not good surrogates for clinical end-
points, genotyping VE endpoints may serve other pur-
poses. A vaccine which reduces the rate of acquisition 
of new clones but not clinical malaria (for example, by 
reducing molFOI only in robust people who would not 
have become ill) can reduce the malaria caseload in a 
community and therefore have a beneficial community-
level effect. Regulatory approval generally requires an 
endpoint representing how a person “feels, functions, or 
survives” or a validated surrogate of such an endpoint. 
This requirement helps ensure that the direct individual 
benefit outweighs the risks of the intervention. An inter-
vention with a community benefit but no direct individ-
ual benefit to recipients may need a different approval 
pathway [37]. Such a pathway and the use of alternative 
Phase 3 endpoints would increase efficiency of Phase 3 

trials of interventions in malaria-experienced popula-
tions whose clinical malaria rate is too low to provide 
adequate power for feasible sample sizes.

This study has limitations. Although the simulation 
model gave insight into the performance of the two 
new estimators, it overestimated the increase in the 
VE value for the VE methods incorporating genotyp-
ing data. Thus, it may also overestimate the power gain 
from these methods. The model-based simulations cali-
brated to the RTS,S trial estimated a larger reduction 
in number of clones at first infection than what was 
observed. The simulation model assumed a purely leaky 
vaccine, meaning that the vaccine reduces the probabil-
ity of infection equally for all vaccinated participants. 
The RTS,S vaccine may instead be a combination of 
all-or-nothing and leaky. Models have been developed 
to test whether a vaccine is all-or-nothing, leaky, or 
combination, but require genotyping data from mul-
tiple malaria exposures [38], which were not available 
in this data set. Another possible explanation for the 
discrepancy is that the model assumed equal distribu-
tions of the clones in circulation, perfect sensitivity 
in detecting all clones, and no competition between 
clones. It is possible that in infections with larger num-
bers of clones (e.g., in controls), the clones present in 
lower frequencies may be harder to detect. “Competi-
tive release”, in which clearance of some clones creates 
space for others to flourish [39], could also water down 
the vaccine-induced reduction in number of clones. 
The observed 10–15% missing genotyping results in the 
three trial data sets analysed indicates imperfect sensi-
tivity, which could explain some of the discrepancy. The 
simulation model did not include antimalarial treat-
ment blackout periods (removal of time not-at-risk 
during antimalarial treatment). For an effective vaccine, 
more controls will become ill than vaccinees, so sub-
tracting blackout periods would reduce the time-at-risk 
(the denominator for molFOI) more for controls than 
for vaccinees, inflating the treatment effect estimates. 
However, this approach is consistent with the analysis 
of the trials, and in the RTS,S and PfSPZ Vaccine trials, 
antimalarial medication was likely not given before the 
first detected malaria infection.

Another limitation is that two of the three trials meas-
ured genotyping data only at the first observed infection 
by thick blood smear microscopy. Only the primaquine 
trial followed the optimal sampling scheme for the pro-
posed VE estimators: PCR testing of serially sampled 
blood with genotyping performed on all PCR positive 
samples. Because microscopy is less sensitive than PCR, 
some first infections may have been missed in the PfSPZ 
Vaccine trial. The RTS,S trial used clinical malaria as a 
trigger for both microscopy and genotyping analysis, so 
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asymptomatic first infections would have been missed. 
The trial’s population was infants, who generally have 
fewer asymptomatic infections than older participants. 
Since genotyping was not performed on repeated sam-
ples, power for  VEmolFOI was limited in these two trials, as 
was information about the molFOI time trend.

A third limitation is that the primaquine trial was not 
a vaccine trial, but these genotyping efficacy estimators 
could be useful for trials of any malaria prevention inter-
vention. The primaquine treatment mechanism differed 
from our simulation model, but it resembles the simula-
tion scenario in which some clones were always blocked. 
The deviations between model-predicted and data-esti-
mated statistical summaries were similar between the 
three trials, suggesting that the operating characteristics 
of the estimators are similar for this type of treatment trial 
and for vaccine trials. Since the primaquine treatment 
was completed before the follow-up period began, wan-
ing was inevitable after all sequestered P. vivax infections 
among controls were reactivated. The similar (rather than 
improved) performance of  VEmolFOI and  VEC in this trial 
compared to the standard estimators was due in part to 
waning. This performance can be expected for any inter-
vention with waning, including vaccines in development.

Conclusion
This is the first paper to explore the potential benefit of 
incorporating genotyping data into VE measures for early 
phase trials by systematically studying their operating 
characteristics in a range of settings and vaccine mecha-
nisms and applying them to three clinical trials. The analy-
ses suggest that  VEC is not likely to systematically improve 
upon the widely-used  VEHR in early phase malaria vac-
cine trials.  VEmolFOI was most powerful in simulations, 
but data analyses suggest that it may not improve power 
in trials with waning VE. Because there were limited data 
available to evaluate this measure, it merits further explo-
ration, which would require genotyping data from serially 
sampled blood for one or more large malaria vaccine tri-
als. Such data would be used to explore multiple scientific 
questions [40] and to determine the scenarios in which 
 VEmolFOI will be most useful and informative.
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months for females; 10 months for males). Table A6. Simulation results 
with durations longer than follow-up period (all durations = 200 days for a 
168 day follow-up). Figure A5. Analytic and simulation-estimated power 
curves for  VEHR and  VEC for trials with data structure matching the RTS,S 
data, assuming exponential time-to-event distributions.
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