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Abstract 

Background Asymptomatic malaria transmission has become a public health concern across malaria-endemic Africa 
including Ethiopia. Specifically, Plasmodium vivax is more efficient at transmitting earlier in the infection and at lower 
densities than Plasmodium falciparum. Consequently, a greater proportion of individuals infected with P. vivax can 
transmit without detectable gametocytaemia. Mass treatment of livestock with macrocyclic lactones (MLs), e.g., iver-
mectin and doramectin, was suggested as a complementary malaria vector tool because of their insecticidal effects. 
However, the effects of MLs on P. vivax in Anopheles arabiensis has not yet been fully explored. Hence, comparative 
in-vitro susceptibility and ex-vivo studies were conducted to evaluate the effects of ivermectin, doramectin and mox-
idectin sub-lethal concentrations on P. vivax oocyst development in An. arabiensis.

Methods The 7-day sub-lethal concentrations of 25%  (LC25) and 5%  (LC5) were determined from in-vitro suscep-
tibility tests on female An. arabiensis in Hemotek® membrane feeding assay. Next, an ex-vivo study was conducted 
using P. vivax gametocytes infected patient’s blood spiked with the  LC25 and  LC5 of the MLs. At 7-days post-feeding, 
each mosquito was dissected under a dissection stereo microscope, stained with 0.5% (w/v) mercurochrome solu-
tion, and examined for the presence of P. vivax oocysts. Statistical analysis was based on a generalized mixed model 
with binomially distributed error terms.

Results A 7-day lethal concentration of 25%  (LC25, in ng/mL) of 7.1 (95% CI: [6.3;8.0]), 20.0 (95%CI:[17.8;22.5]) 
and 794.3 (95%CI:[716.4;1516.3]) were obtained for ivermectin, doramectin and moxidectin, respectively. Similarly, 
a lethal concentration of 5%  (LC5, in ng/mL) of 0.6 (95% CI: [0.5;0.7]), 1.8 (95% CI:[1.6;2.0]) and 53.7 (95% CI:[ 48.4;102.5]) 
were obtained respectively for ivermectin, doramectin and moxidectin. The oocyst prevalence in treatment and con-
trol groups did not differ significantly (p > 0.05) from each other. Therefore, no direct effect of ML endectocides on P. 
vivax infection in An. arabiensis mosquitoes was observed at the sub-lethal concentration (LC25 and LC5).

Conclusions The effects of ivermectin and doramectin on malaria parasite is more likely via indirect effects, par-
ticularly by reducing the vectors lifespan and causing mortality before completing the parasite’s sporogony cycle 
or reducing their vector capacity as it affects the locomotor activity of the mosquito.
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Background
Malaria is a life-threatening disease, especially in chil-
dren, with a high prevalence in sub-Saharan Africa. 
Globally, an estimated 247 million malaria cases and 
619,000 malaria deaths were reported in 2021, of which 
more than 95% of the cases and deaths were in Africa 
[1]. Interventions targeting both the vector and the par-
asite are vital for malaria control and prevention. Long-
lasting insecticidal nets (LLINs) and indoor residual 
spraying (IRS) are the principal malaria vector control 
tools which have been in use for decades [2, 3]. Together 
with the current growing population number in malaria 
endemic countries, the increasing price of the malaria 
control tools, such as LLINs and IRS creates a challenge 
on their universal access and use [4, 5]. In addition, the 
widespread insecticide resistance and behavioral adapta-
tions (a shift from indoor to outdoor feeding behaviour) 
by the Anopheles vectors threatens the effectiveness of 
the current vector control tools [6–9]. Currently, neither 
LLINs nor IRS are suited to target outdoor biting mos-
quitoes and reduce residual malaria transmission in dif-
ferent areas of Africa [10]. Consequently, most African 
countries are still far from achieving malaria elimination. 
Therefore, further progress towards malaria elimination 
requires complementary efforts of greater funding, uni-
versal access and use of the available control tools, and 
new more cost-effective tools.

Anopheles arabiensis and Anopheles gambiae sensu 
stricto (s.s.) are the common malaria vectors in Africa, 
which are susceptible to Plasmodium vivax and Plas-
modium falciparum infections [11, 12]. The sibling spe-
cies can have different levels of vector competence and 
vectorial capacity. Anopheles gambiae s.s. is known for 
its high human blood feeding rate and indoor resting 
behaviors with high vectorial capacity and adaptability 
to humans [13]. But reports also showed that the host-
seeking behavior of An. gambiae s.s. has shifted to out-
door feeding and indoor resting and feed on cattle when 
humans are not accessible [9, 14, 15]. An. gambiae s.s. is 
associated with more humid climates than An. arabien-
sis, which has a greater tolerance for drier environments 
[16]. An. arabiensis feed preferentially on cattle and rest 
outside of human habitations; it is highly exophilic and 
zoophagic [8]. Hence, human exposure to An. arabiensis 
bites occurred mostly indoors for LLIN non-users and 
outdoors for LLIN users. Transmission of malaria relies 
on the successful development of Plasmodium parasites 
within the mosquitoes, a process termed as sporogony 
cycle [17]. An. gambiae s.s. is highly susceptible to P. fal-
ciparum infection [18]. The sporogony cycle begins when 
Anopheles mosquitoes ingest human blood containing 
male and female gametocytes. Sporogony events include 
gametogenesis, fertilization, zygote differentiation to 

ookinetes, ookinete passage across the midgut, and forms 
an oocyst beneath the midgut basal lamina. The oocysts 
grow, rupture, and release sporozoites, which make their 
way to the salivary glands of the mosquito. For P. vivax, 
oocysts or sporozoites can be detected at approximately 
7–9 or 14–16 days after blood feeding, respectively [19]. 
Successful mosquito infection rate and oocyst load could 
be influenced by the parasite density, vector, human fac-
tors (the state of gametocyte maturation, proportion of 
male and female gametocytes) and mosquito factors (age, 
genetic diversity, and microbiota) [20].

The timeline for sporogony of P. vivax is the shortest 
cycle of human malaria parasites. Within the mosquito 
abdomen, P. vivax sporogony development begins with 
gametogenesis and the formation of a zygote (within 48 h 
post-infection), to an ookinete (16–32  h post-infection) 
and an oocyst (6–9  days post-infection [dpi]), before 
developing into sporozoites (9–14 dpi). These sporozoites 
rupture from the abdominal oocyst and migrate through 
the haemolymph and the thorax to the salivary glands—
at this point the mosquito is considered to be infectious 
[17, 21]. After biting the human, inoculation of the sporo-
zoites into a new human host initiates the parasite exo-
erythrocytic and erythrocytic life cycle in humans [22]. 
The erythrocytic stage of the parasite is responsible for 
the signs and symptoms in humans. Whilst gametocyte 
maturation is a long process in P. falciparum, infectious P. 
vivax gametocytes appear in the bloodstream within 48 h 
of blood stage infection [11]. Compared to P. falciparum, 
gametocytes are more commonly observed in P. vivax 
infections, and they appear in blood smears much earlier 
in an infection [23].

There is a growing concern of P. vivax across sub-
Saharan Africa [24]. Plasmodium vivax represented most 
malaria infections in traveller to Ethiopia, Eritrea, and 
Mauritania. Chloroquine or artemisinin-based combina-
tions are the common drugs used against the blood stage 
P. vivax and P. falciparum infections. Immature game-
tocytes are inhibited by artemisinin-based combination 
therapy (ACT). However, the mature gametocytes of P. 
vivax are relatively insensitive to several anti-malarial 
drugs [25]. Plasmodium vivax is more efficient at being 
transmitted earlier in the infection and at lower densi-
ties than P. falciparum, and thus, a greater proportion of 
individuals infected with P. vivax can transmit without 
detectable gametocytaemia, before becoming ill enough 
to seek treatment [19, 26]. Furthermore, P. vivax appears 
particularly hard to eliminate [27], principally due to its 
ability to form dormant liver stages [22].

Hence, innovative tools with proven efficacy on inhi-
bition of Anopheles vector survival and disruption of 
the Plasmodium lifecycle are urgently needed. In this 
context, macrocyclic lactones (ML) endectocides were 
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suggested as a complementary tool to reduce residual 
malaria transmission [28–30]. ML endectocides are 
semi-synthetic derivatives of the natural avermectins and 
milbemycins commonly used in veterinary and human 
medicine against endo- and ectoparasites. Ivermectin 
and doramectin are avermectins, moxidectin is milbe-
mycin. The ML endectocides have a wide safety margin 
and the same mechanism of action as agonists of the glu-
tamate-gated chloride (GluCl) channels in invertebrate 
postsynaptic neurons and neuromuscular junctions [31].

Studies conducted in humans and livestock showed 
that ivermectin significantly inhibits the survival of 
Anopheles vectors that fed on treated hosts [28–30, 
32–41]. In a recent study, 0.2  mg/kg body weight (BW) 
of ivermectin and doramectin sustained the insecticidal 
efficacy on An. arabiensis up to 21 days post-treatment of 
indigenous zebu cattle in Ethiopia and was recommended 
for malaria vector control via treated livestock [42]. Like-
wise, a promising insecticidal effect against An. Gam-
biae [43] and Anopheles Colizzii [44] was also observed 
for ivermectin and doramectin in treated cattle. In-vitro, 
ivermectin and doramectin were lethal to An. arabiensis 
at low concentrations (LC50s of 7.9  ppb and 23.9  ppb, 
respectively), while the lethality of moxidectin was > 100 
fold less than for ivermectin [45].

From previous study, after single SC administration, 
the blood concentration of ivermectin and doramectin 
remains below lethal dose overtime (after 21 days) in cat-
tle [42]. Sub-lethal concentrations of ivermectin inhibited 
malaria parasite development in the vector as described 
in African, South American and Asian Anopheles spe-
cies [28, 46, 47]. The results were promising and would 
indicate a dual action of ivermectin. Nevertheless, data 
is scarce on potentially relevant Anopheles vectors and 
Plasmodium combinations, namely An. arabiensis and P. 
vivax [48]. Hence, the effects of the sublethal concentra-
tions of the MLs on P. vivax oocyst development in An. 
arabiensis mosquitoes should be investigated. Therefore, 
a comparative study assessing in-vitro effects on An. ara-
biensis followed by ex-vivo evaluation of ML endecto-
cides (ivermectin, doramectin and moxidectin) sublethal 
concentrations for their effects on P. vivax oocyst devel-
opment was performed to fill these gaps.

Methods
Study design and setting
Experiments were conducted at Jimma University Tropi-
cal and Infectious Diseases Research Center (JU-TIDRC) 
Sekoru district, Jimma zone, Oromia, Ethiopia. Sekoru 
district is located 240 km southwest of the capital Addis 
Ababa, Ethiopia  (7o54′50.0″N,  37o25′23.6″E). A paral-
lel study was conducted in three trials at different times 
between June 2022 and December 2022. Blood samples 

were collected from P. vivax gametocyte infected patients 
at the health centre nearby JU-TIDRC.

Ethical statement
This study was performed after receiving ethical approval 
(Approval Ref. No. IUC-JU/M45/12–2019) by Ethics 
Review Board (animal care and use ethics committee) of 
Jimma University, Ethiopia. A formal written consent (in 
local language, Afan Oromo) for voluntary participation 
of individual subjects was received. All subjects provided 
and signed written informed consent.

Anopheles mosquitoes
The An. arabiensis strain originally collected from Bish-
oftu area colonized at JU-TIDRC was used in the pre-
sent study. This strain is known to be susceptible to the 
insecticide classes of pyrethroids, carbamates, organo-
chlorines, and organophosphates [49]. The An. arabien-
sis mosquito colony larvae were reared and maintained 
as previously described [50]. The larvae were raised on 
ground Tetramin® fish meal and the adults were provided 
with 10% (w/v) sugar solution ad libitum at 25 ± 2 °C and 
80 ± 10% RH, and 12 h light: 12 h dark photoperiod. Adult 
female An. arabiensis mosquitoes aged 3–5  days were 
randomly grouped in cups (~ 30 mosquitos per cup) for 
membrane feeding experiments. Adult female An. ara-
biensis mosquitoes in each group were starved for 6-8 h 
prior to the membrane feeding experiments.

Artificial membrane feeding assay
Artificial membrane feeding was conducted using a 
Hemotek® membrane feeding system (Hemotek Ltd, 
Accrington, UK) equipped with four Hemotek® feeders. 
Each feeder contained 1  mL of blood meal with a thin 
collagen membrane supplied with Hemotek® membrane 
feeder for mosquito feeding. In both in-vitro susceptibil-
ity and ex-vivo effects on P. vivax infection, 1 mL of whole 
blood spiked with endectocide (ivermectin, doramectin, 
and moxidectin) at various concentrations was trans-
ferred to a Hemotek® feeder maintained at 37 ± 0.1  °C. 
The feeders were put on top of the paper cups contain-
ing the mosquitoes. The mosquitoes were allowed to 
feed on the blood for a period of 20 min in a dark room. 
Afterwards, the unfed mosquitoes were removed from 
the cups by using mouth aspirator and killed by putting 
them in deep freezer for 20  min. Fully fed mosquitoes 
were maintained securely in a separate room for 7-days 
by providing 10% (w/v) sucrose solution soaked in cotton 
balls twice daily.

Drug standards and blood meal preparation
Ivermectin, doramectin and moxidectin chemi-
cal reference standard powders were obtained from 
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Sigma-Aldrich (Bornem, Belgium). All the standards 
were stored at ≤  − 15 °C. A fresh working solution (WS) 
of 40, 20, 4, 2, 0.4, 0.2, and 0.04  µg/mL of the analyte’s 
concentration were prepared in phosphate buffer solu-
tion by serial dilution from the stock solution (1 mg/mL 
in dimethyl sulfoxide).

For the in-vitro study, 1000, 500, 100, 50, 25, 10, 5, and 
1  ng/mL concentrations of the endectocide were pre-
pared by transferring 25 µL of 40, 20, 4, 2, 1, 0.4, 0.2, and 
0.04  µg/mL of analyte’s working solution, respectively 
into a tube containing 975 µL cattle whole blood (see 
Additional file  1: Table  S1). Control blood meals con-
sisted of dimethyl sulfoxide diluted (DMSO) in phos-
phate buffer solution (PBS) to match the concentration 
found in the highest drug group.

In‑vitro susceptibility experiment
Zebu calves with no prior drug history during the last 
2 months were used as a blood donor for the in-vitro test. 
Venous blood samples were collected from jugular vein of 
Zebu calves using 5 mL disposable syringe with a gauge 
size of the needle between 22 and 23G. on the day of the 
experiment using EDTA vacutainer tubes. To assess the 
in-vitro susceptibility of An. arabiensis mosquitoes to 
macrocyclic lactone endectocides, various concentra-
tions (1–1000  ng/mL) of the compounds were spiked 
into cattle blood and fed (for 20 min) to adult female An. 
arabiensis in the treatment group using Hemotek® mem-
brane feeder. The mosquitoes in the control group were 
fed with blood without the drug MLs. All the unfed and 
partially fed mosquitoes were gently aspirated, trans-
ferred in another cup and killed. Mosquitoes with red 
distended abdomens were considered as fully fed. Then, 
the fully fed mosquitoes were provided with 10% (w/v) 
sugar for 7-days at room temperature. Mosquito survival 
was monitored for 7  days. Every day, dead mosquitoes 
were removed and recorded. On day 7, all remaining 
mosquitoes were frozen and counted as alive.

Plasmodium vivax infected patients volunteer recruitment
Recruitment of P. vivax patients was conducted from 
October to December 2022 in Deneba health center 
of Sekoru district. All study participants signed the 
informed consent for voluntary participation after 
a brief explanation. Plasmodium vivax gametocyte 
infected patients were diagnosed using light microscopy 
of Giemsa-stained blood samples. The patients infected 
with P. vivax were consented if they met the follow-
ing inclusion criteria: age > 18  years, history of previ-
ous malaria episodes, no signs of severe disease and no 
previous antimalarial treatment history during the last 
4 weeks. Venous blood (3 ml) was collected with a 5 mL 
gauge syringe into EDTA vacutainer tubes. After blood 

collection, the patients were treated for P. vivax infection 
following the standard treatment guidelines.

Ex‑vivo P. vivax infection of mosquitoes
The ex-vivo evaluation of the endectocides effects on P. 
vivax oocyst development in An. arabiensis mosquito 
was performed as previously described [28, 46] with 
some modifications. After enrollment, P. vivax-infected 
venous blood (3  mL) was drawn on site and pooled for 
the experiments at JU-TIDRC. The blood samples collec-
tion and transport of was based on the method previously 
reported [51, 52]. Initially the airtight thermos flask was 
validated for maintaining the temperature at 37 ± 2  °C 
during transport. Accordingly, the fresh patient’s blood 
samples in EDTA vacutainer tubes were put in airtight 
thermos flask maintained at 37  °C in a water. The tubes 
were positioned to float on top of the flask and tightened 
very well. Then, it was taken to the nearby JU-TIDRC and 
transferred into the tubes and spiked with the endec-
tocides followed by immediate mosquito feeding. The 
control groups were fed with untreated infected blood. 
The P. vivax infection experiment in mosquitoes was 
conducted in a separate and secured laboratory set-up 
at room temperature (25–27  °C) and a 12:12 light: dark 
cycle. The experiment was conducted at the Arthropod 
Containment Level-1 (ACL-1) Lab in the JU-TIDRC with 
restricted human access throughout the experiment. 
Anopheles arabiensis mosquitoes were allowed to feed on 
P. vivax-infected venous blood spiked with the endecto-
cides at  LC25,  LC5 concentrations (see in Additional file 1: 
Table S2) and the control. An average of 25 mosquitoes 
per cup (previously grouped and starved for 6-8 h) were 
put under a Hemotek® membrane feeder device (at 37˚C) 
containing 1  mL of the endectocide with the P. vivax 
gametocyte infected blood for 30  min. Fully engorged 
mosquitoes were left in the paper cups, and securely 
maintained at mosquito infection insectary room and 
provided with 10% (w/v) sugar solution ad  libitum for 
7-days. On day 7, all the surviving mosquitoes were dis-
sected and examined. The study was conducted in three 
replicates.

Mosquito dissection and oocyst examination
The dissection and oocyst examination was based on 
the previous described method by Ouedraogo et al. [53]. 
After 7-days post-feeding, the mosquitoes were killed by 
placing them in the freezer at − 20 °C for 10 min. Then, 
for mosquito dissection, each mosquito was held on a 
non-frosted slide under a dissection stereo microscope. 
Mosquito dissection was conducted by pulling the abdo-
men apart with forceps until the midgut was exposed. The 
midgut stained with 0.5% (w/v) Mercurochrome (Sigma-
Aldrich, USA) solution for 10 min followed by covering 
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with coverslips. Plasmodium oocysts were examined at 
400-fold magnification and enumerated using compound 
microscope (Optical Microscopy, Olympus, Germany). 
Infection prevalence was expressed as percentage of 
mosquitoes with at least one oocyst.

Statistical analysis
The statistical analysis for both mosquito mortality and 
oocyst prevalence was based on a generalized mixed 
model with binomially distributed error term using 
SAS version 9.4 (SAS Institute, Inc., USA). Mortality at 
day 7 is the response variable where the drug dose was 
considered as a continuous fixed effects factor and rep-
licate number as a random effects factor. The effect of 
endectocides  LC25 and  LC5 on the presence and abun-
dance of P. vivax oocyst was analysed statistically. The 
variables include the proportion of mosquitoes infected 
with P. vivax oocyst (oocyst prevalence) and the number 
of oocysts per mosquito midgut (oocyst intensity). The 
relationship between the sublethal doses and the endec-
tocides on the binary response variables of oocyst preva-
lence (absent or present) was analysed from the three 
replicates. Results are expressed in terms of the odds 
ratio for one log unity increase in concentration, and 
further interpreted by visualization of the dose response 
curve.

The sub-lethal concentrations  (LC50,  LC25 and  LC5) 
were estimated based using logistic regression together 
with probit analysis. The oocysts intensity in treatment 
and control groups were compared using the nonpara-
metric Kruskal Wallis test and the Mann–Whitney U test 
for single comparisons.

Results
In‑vitro susceptibility and LC25 and LC5 determination 
in Anopheles arabiensis
In the present study, a total of 1,417 female An. arabi-
ensis mosquitoes imbibed the three macrocyclic lactone 
(ML) endectocides in 8 different concentrations (1000, 
500, 100, 50, 25, 10, 5, 1  ng/mL) in cattle to estimate 
lethal concentrations for each compound. The mortality 
of An. arabiensis within 7-days of post-feeding showed 
that there were significant dose–response curves for the 
three drugs (P < 0.001) (Fig. 1). At the lower doses, a sig-
nificant (P < 0.001) dose-dependent insecticidal effect was 
obtained in both ivermectin and doramectin. The highest 
mortality was found for ivermectin, while the lowest was 
registered for moxidectin. The odds ratio for one log unit 
increases in concentration of 2.07 (95% CI: [1.85;2.33]) 
for ivermectin, 2.05 (95% CI: [1.83;2.31]) for doramectin, 
and 1.26 (95% CI: [1.12;2.41]) for moxidectin, and all dif-
fered significantly from 1 (P < 0.001).

The  LC50, the concentration that kills 50% of the mos-
quitoes, was determined from the mortality within 7-days 
of post-feeding using the logistic regression results.  LC50 
(ng/mL) of 40.7 (95% CI: [36.4;45.8]), 91.2 (95% CI: 
[81.4;102.8]) and 5128.6 (95% CI: [4625.6;9790.3]) were 
obtained, respectively, for ivermectin, doramectin and 
moxidectin. Accordingly, the  LC25 and  LC5 sub-lethal 
concentrations were determined as described below 
(Table 1).

During the 7-days of post-blood feeding, the survival 
probability was significantly different from the control at 
all concentrations above 10  ppb in both ivermectin and 
doramectin groups. The survival probability of mosqui-
toes dropped by more than 30% starting from the day 1 
post-feeding of ivermectin and doramectin except in 
the lower concentrations (Fig. 2). The insecticidal effects 
induced by moxidectin was not significantly different 
from the control.

Fig. 1 Anopheles arabiensis mosquito mortality (in percentage) 
including the biological death after ingestion of cattle blood spiked 
with different concentrations (in ng/mL) of ivermectin, doramectin 
and moxidectin

Table 1 Ivermectin, doramectin, moxidectin  LC50,  LC25 and 
 LC5 after Hemotek® membrane feeding of animal blood 
reconstituted with different dose or concentration (in ng/mL)) of 
ivermectin, doramectin and moxidectin

Key: The number in bracket indicates the 95% CI;  LC50,  LC25 and  LC5, corresponds 
to the concentrations that kill 50%, 25% and 5% of the mosquitoes respectively

Sub-lethal 
concentrations

Ivermectin Doramectin Moxidectin

LC50 40.7[36.4–45.8] 91.2[81.4–102.8] 5128.6[4625.6–
9790.3]

LC25 7.1[6.3–8.0] 20.0[17.8–22.5] 794.3[716.4–1516.3]

LC5 0.6[0.5- 0.7] 1.8[1.6–2.0] 53.7[48.4–102.5]



Page 6 of 10Zeleke et al. Malaria Journal           (2024) 23:26 

Ex‑vivo evaluation of endectocides on P. vivax oocyst 
development
A total of 13 P. vivax infected gametocyte carrier patients 
fulfilling the inclusion criteria were enrolled in the pre-
sent study. The oocyst prevalence did not change sig-
nificantly as a function of dose, i.e., control,  LC5 and 
 LC25 (Fig.  3), with odds ratios equal to 1.06 (95% CI: 
[0.65;1.72]), 0.99 (95% CI: [0.64;1.56]) and 0.76 (95% CI: 
[0.47;1.22]) for ivermectin, doramectin and moxidectin. 
The oocyst intensity in the treatment groups were also 
not significantly (p > 0.05) different from each other and 
from control (Fig. 4).

Discussion
Plasmodium vivax is more efficient at being transmitted 
at an earlier stage and a greater proportion of individu-
als infected with P. vivax can transmit without detectable 
gametocytaemia. Plasmodium vivax infected persons 
are more likely to transmit before seeking treatment, 
compared to P. falciparum [26]. In addition to killing 

Fig. 2 Kaplan–Meier survival curves showing the survival probability of Anopheles arabiensis mosquitoes as a function of time after feeding 
on cattle blood spiked with different concentration (ng/ml)) of the ML endectocides ivermectin (IVER) (A), doramectin (DORA) (B) and moxidectin 
(C)

Fig. 3 Plasmodium vivax oocyst prevalence (in percentage) 
versus dose administered in Anopheles arabiensis mosquitoes 
in the ivermectin, moxidectin, doramectin treated and control 
groups. Control refers to those administered with P. vivax infected 
blood without drug
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the mosquitoes, reducing the infectivity of zoophagic 
mosquito population by the sublethal concentrations of 
the endectocides in treated human or livestock may pre-
vent malaria transmission[54]. In Ethiopia, ivermectin 
mass drug administration (MDAs) are being performed 
for onchocerciasis and scabies [55]. Ivermectin MDA to 
humans also has an insecticidal effect on Anopheles mos-
quitoes and may contribute to the suppression of malaria 
transmission. Livestock, mainly cattle, serve as adequate 
blood source for An. arabiensis allowing vector popula-
tions to persist [14]. Previous studies showed that treat-
ment of livestock with the subcutaneous formulations of 
the endectocides ivermectin and doramectin led to an 
insecticidal effect up to 3 weeks for An. arabiensis mos-
quitoes [42, 56] and on repeated treatment in humans 
[39]. A similar evidence is also available from previous 
in-vitro study of ivermectin on An. arabiensis [57]. How-
ever, the effects of the endectocides on P. vivax is not well 
investigated. Doramectin and moxidectin are the other 
endectocides recently introduced into African market for 
use in livestock. Therefore, this study is the first to report 
the comparative evaluation of the sub-lethal concentra-
tion of the ML endectocides effects on P. vivax oocyst 
development in An. arabiensis on concomitant ingestion 
with the parasite.

In the present study, a significant mortality of An. 
arabiensis was induced in-vitro by both ivermectin and 
doramectin, with ivermectin having the largest effect 
and moxidectin the least. A similar finding was reported 
previously [34, 42, 43, 45]. No effect of pig moxidectin 
treatment [58] or cattle moxidectin treatment was also 
previously reported [43, 59]. A concentration-dependent 
insecticidal effect was observed in both ivermectin and 
doramectin. At lower concentrations there was a delayed 
mortality effect. This may be attributed to the fact that 
endectocides reduce the locomotion of the mosquitoes 
due to their action on glutamate-gated chloride channels 
in neuromuscular tissues which increases their chance 

of death or reducing the vector capacity regardless of 
the mortality [60]. As a result, especially on human 
mass drug administration, the sub-lethal concentrations 
of ivermectin and doramectin could potentially reduce 
malaria transmission by preventing the vector from tak-
ing another blood meal. A delay in re-feeding would 
reduce likelihood of future infectious bites to the human 
population [46, 47].

No evidence of reduction in P. vivax oocyst preva-
lence in An. arabiensis was observed when ivermectin 
 (LC25 = 7.1  ng/mL and  LC5 = 0.6  ng/mL), doramectin 
 (LC25 = 20.0 ng/mL and  LC5 = 1.8 ng/mL), or moxidectin 
 (LC25 = 794.3  ng/mL and  LC5 = 53.7  ng/mL) sub-lethal 
concentration were ingested compared to the control 
groups. Among the infected mosquitoes, the P. vivax 
oocyst intensity in the treatment groups was not sig-
nificantly (P > 0.05) different from the control groups. 
Therefore, the sublethal concentrations  (LC25 and  LC5) 
of ivermectin, doramectin and moxidectin do not seem 
to induce relevant effects on P. vivax oocyst develop-
ment on concomitant ingestion with the parasite in An. 
arabiensis. A similar finding was reported for ivermectin 
on P. vivax oocyst development in An. darlingi on experi-
ments [28, 46] with a slight increased  LC50 values. In 
addition, the species related factor, the experiment setup 
and the method used in the present study contributed 
to the observed difference. The findings in the present 
study showed the effects of endectocides at lower con-
centrations on concomitant administration with P. vivax-
infected blood to mosquitoes. Nevertheless, the effects 
on non-concomitant exposures to endectocides and P. 
vivax-infected blood in mosquitoes were not included. 
This is considered as a limitation. Hence, future research 
could investigate the effect of the higher concentrations 
and metabolites. It takes 7–10 days for the P. vivax oocyst 
to develop from the gametocyte stage in the mosquito 
[61]. The action of endectocides on glutamate-gated 
chloride channels in neuronal and neuromuscular tissues 
of invertebrates [60], such as Anopheles mosquitoes, was 
suggested for their insecticidal effects [42]. However, this 
molecular target is absent in Plasmodium species which 
might explain that the endectocides lack effects on P. 
vivax oocyst development in the present study.

The mode of action of ivermectin MDA is most likely 
through a reduction in daily survivorship/longevity of 
adult females. According to the Ross-Macdonald model, 
reductions in survivorship/longevity have substantial 
impacts on vectorial capacity, suggesting ivermectin 
MDA could substantially reduce malaria transmission  
[62]. In a previous study [42], the endectocides iver-
mectin and doramectin significantly shortened the 
lifespan of An. arabiensis (in-vivo) in treated cattle, as 
was observed in the present in-vitro membrane feeding 
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assay. Glutamate-gated chloride channels (GluCl) are 
abundantly found in Anopheles mosquitoes. The insecti-
cidal effects of ML endectocides were mainly due to the 
pseudo-irreversible effect in opening these channels to 
the influx of chloride ions. In the same mechanism, the 
sub-lethal concentrations of ivermectin and doramectin 
potentially reduce the daily probability of mosquitoes 
feeding on humans by affecting the functionality of the 
mosquito’s locomotion and their re-feeding potential [43, 
59].

Conclusion
In conclusion, the endectocides ivermectin and doramec-
tin significantly reduced An. arabiensis survival dem-
onstrating their potential for malaria vector control. No 
direct effect of ML endectocides on P. vivax infection in 
An. arabiensis mosquitoes was observed using the  LC25 
and  LC5 values. the effects of ivermectin and doramectin 
on malaria parasite transmission are most likely attrib-
uted to their indirect effect on An. arabiensis by reducing 
adult lifespan thereby causing their death before com-
pleting the sporogony cycle.
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