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Abstract 

Over the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown 
to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown 
to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development 
and sexual commitment, but also in major biological processes like immune evasion, response to environmen‑
tal changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes 
involved in these regulating pathways represent a reservoir of potential therapeutic targets. This review focuses 
on epigenetic regulatory processes and their effectors in the malaria parasite, as well as the inhibitors of epigenetic 
pathways and their potential as new anti‑malarial drugs. Such types of drugs could be formidable tools that may 
contribute to malaria eradication in a context of widespread resistance to conventional anti‑malarials.
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Background
According to the latest World Health Organization 
(WHO) malaria report, an estimated 608,000 people 
died from malaria in 2022 [1]. Even though malaria cases 
are significantly lower than in 2000, and after years of 
increases until 2019, the number of deaths is falling again 
compared with 631,000 in 2021 [1]. Artemisinin-based 
combination therapy (ACT) has significantly helped 
to reduce malaria death toll since its introduction in 
2001. However, emergence of artemisinin resistance in 
Southeast Asia threatens the use of artemisinin-based 

combinations. The worst fears of the scientific com-
munity [2, 3] are beginning to manifest as evidenced by 
the recent emergence of artemisinin resistance in Africa 
[4–6], where the parasite already kills 95% of its victims 
[7]. Therefore, widening the drug portfolio by identify-
ing new anti-malarial drug targets is paramount. Among 
them, epigenetic mechanisms stand out because they 
are involved in the regulation of gene expression, which 
is closely linked to many key biological processes of the 
Plasmodium parasite [8]. Therefore, drugs targeting epi-
genetic pathways, or epidrugs, in the malaria parasite 
could be a winning strategy towards malaria eradication.

Epigenetics: some generalities
Epigenetics which literally means ‘‘outside the genome’’, 
has become a very trendy field of research in the past 
twenty years. However, its origin dates back to the 1940s, 
when Conrad Waddington coined the term of epigeno-
type to describe the link “between genotype and phe-
notype (that) lies a whole complex of development 
processes” [9]. Epigenetics was more precisely defined as 
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the study of the mechanisms regulating gene expression 
without causing any change in the DNA sequence while 
being transmissible to the following generations [10, 11]. 
The most studied epigenetic mechanisms, mainly his-
tone post-translational modifications (HPTMs) and DNA 
modifications, are thus involved in controlling the acces-
sibility of the coding genetic sequence to transcriptional 
effectors, and depend on three different sets of proteins: 
writer proteins that deposit modifications on histone 
or DNA, reader proteins that recognize and bind to the 
modifications and eraser proteins able to catalyze the 
removal of the modifications [10]. It is important to keep 
in mind that these levels of regulation of gene expression 
overlap with several other processes such as RNA modifi-
cations, RNA degradation or non-coding RNA [10] chal-
lenging the strict association between specific epigenetic 
marks and gene expression/silencing.

Histone post‑translational modifications
DNA is wrapped up around histone proteins (Fig.  1), 
forming the basic structural unit of genome packag-
ing, the nucleosome. Gene expression relies in part on 
the degree of compaction of chromatin, which depends 
on the state of the nucleosome. The histone protein is 
made up of two protein domains: a core structure whose 
main role is to mediate histone/histone interactions, 
and a N-terminal tail mediating histone/DNA electro-
phile interaction [12]. N-terminal tail of histones can 
also serve as a binding site for various proteins involved 
in chromatin remodeling, transcriptional regulation, 

and other cellular processes. These interactions can be 
modulated by the presence of specific post-translational 
modifications on the tail, allowing for dynamic and 
context-dependent regulation of gene expression. These 
post-translational modifications of histone tails are of 
several types and include acetylation, methylation, phos-
phorylation, ubiquitylation, citrullination, sumoylation, 
ADP-ribosylation, propionylation, butyrylation, formyla-
tion, proline isomerization and crotonylation of vari-
ous amino acid [13, 14]. When nucleosomes are tightly 
packed, the chromatin is in a condensed state called het-
erochromatin, which was originally thought to prevent 
gene expression. When nucleosomes are less compacted, 
the chromatin is in a loose state called euchromatin, 
which allows regulatory proteins (including transcrip-
tion factors) to easily access the DNA sequence and allow 
gene expression. However, it has been shown that gene 
expression can occur in heterochromatic domains, chal-
lenging the strict view of heterochromatin as a "silent" 
component of eukaryotic genomes [15].

The two most largely studied histone modifications are 
histone tail acetylation (on lysine residues) and meth-
ylation on both lysine or arginine residues [13] mainly 
located on the N-terminal part of histones H3 and H4 
[16] (Fig. 2). The addition of an acetyl moiety (CH3-CO-) 
on a positively charged lysine reduces the histone tail 
interaction with DNA leading to a more open chroma-
tin conformation and, therefore, favouring gene activa-
tion. Conversely, the electronic charge of the amino-acid 
side chain is not altered by the methyl moiety (CH3), 

Fig. 1 Schematic view of a Plasmodium falciparum nucleosome organization. DNA is wrapped up around nucleosome, a histone core octamer 
structure, made of two H2A‑H2B dimers bound to an H3‑H4 tetramer [12]. Histone tails and in particular lysine and arginine residues, on which 
several post‑translational modifications can occur, are generally positively charged allowing strong binding to DNA which possesses negatively 
charged phosphate groups
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and histone methylation has been correlated to either 
gene repression or activation depending on the residue 
affected. Thus, trimethylation on the 9th lysine of histone 
3 (H3K9me3) is abundant in heterochromatic domains 
and correlates with gene repression while trimethylation 
on the 4th lysine of histone 3 (H3K4me3) is abundant 
in euchromatin and correlates with active transcription 
[17–19]. It is thought that reader proteins are able to rec-
ognize the different states of methylation and acetylation 
[20]. Acetylation and methylation on lysine residues are 

mutually and dynamically exclusive for the same amino 
groups depending on the cell cycle development. There-
fore, histone deacetylases/methyltransferases and his-
tone demethylases/acetyltransferases are tightly linked in 
order to fine-tune gene expression [21].

DNA modifications
DNA base modifications generally affect the accessibil-
ity of genomic regions for regulatory effectors of gene 
expression (Fig.  3). The most common modification 

Fig. 2 Relationship between acetylation and methylation levels for the switch from heterochromatin to euchromatin. Histone methylation 
as the tri‑methylated of the 9th lysine residue of histone 3 tail, via histone methyltransferases (HMT), is globally involved in gene silencing. These 
modifications tend to recruit histone binding proteins (such as heterochromatin protein 1 (HP1)) that avoid chromatin relaxation, thus preventing 
transcription factors from accessing DNA. This methylation state is reversible and mediated by histone demethylases (HDM) [12, 22, 23]. However, 
histone methylation is not always associated with gene silencing. Trimethylation on the 4th lysine of histone 3 (H3K4me3) is involved in gene 
expression [17–19]. When a histone tail is acetylated by histone acetyltransferases (HAT), this tends to neutralize the lysine positive charge 
interacting with the negative phosphate groups of DNA and pushes away histone cores therefore “opening” the chromatin. That allows transcription 
factors (TF) to recognize and bind to promoters and RNA polymerase II (RNA pol II) to initiate transcription. This acetylation level is reversible 
and mediated by histone deacetylases (HDAC)
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consists in the addition of a methyl group to the carbon 
5 of a cytosine (5mC) [24] and is generally associated 
with loss of gene expression [25]. DNA methylation is 
recognized and bound by specific methylated cytosine-
binding proteins, which can in turn recruit co-repressor 
complexes. Through steric hindrance, these protein com-
plexes could then prevent transcription factors from 
binding to promoter regions, thereby silencing down-
stream gene expression [26].

Epigenetic regulation in the malaria parasite
In a general framework, regulation of gene expres-
sion occurs at multiple levels: basal (or constitutive) 
transcription is assured by general transcription fac-
tors while sequence-specific transcription factors bind 
to cis-regulatory regions of genes (enhancers, promot-
ers) and allow individual genes to be turned on or off in 
specific cell types. Twenty-seven Apicomplexan-specific 
AP2 (ApiAP2) DNA-binding proteins have been identi-
fied in Plasmodium falciparum and they are the main 
factors regulating transcription. Although they are not 
as numerous as in other eukaryotic organisms with 
comparable genome sizes, such as yeast, their func-
tion is essential to the parasite’s life cycle and its ability 

to adapt to changes in its environment [27–30]. PfAP2-
P is involved in the regulation of gene expression during 
parasite development growth and pathogenesis [30] and 
PfAP2-G in the switch from asexual to gametocytes [31, 
32]. Thus, in Plasmodium, epigenetic regulations could 
represent a main form of regulation of gene expression 
close to those in ancestral eukaryotic groups [33] at each 
step of the parasite life cycle, either at the intra-mosquito, 
hepatic or intraerythrocytic stage [34–37]. Epigenetics 
regulates key processes of Plasmodium biology (recently 
reviewed [8, 38]) such as: (i) immune evasion through the 
“one at a time” expression of clonally variant genes cod-
ing for surface antigen like PfEMP1 [39], (ii) the “just in 
time” regulation of gene expression required for the cell 
cycle progression during the intraerythrocytic stage [40], 
(iii) DNA repair mechanisms [41, 42], (iv) sexual com-
mitment [43–46], or (v) adaptation to environmental 
changes [47]. While histone post-translational modifica-
tions in malaria parasites were described some 30 years 
ago [48, 49], DNA modifications in the parasite have 
been recently discovered, and although they are lowly 
abundant, their role in regulating the transcriptional 
state of the parasite genome is starting to be elucidated 
[50–52]. Two other epigenetic mechanisms, relying on 

Fig. 3 DNA methylation is mediated by DNA methyltransferases (DNMTs). Methylated cytosines have an impact on gene expression when they 
are located in promoter regions of genes. When present, this modification prevents transcription factors (TF) from binding to promoter regions 
and starting transcription and thus downstream gene expression. In the absence of DNA methylation (unmethylated cytosine), transcription factor 
can bind to the DNA strand and transcription of the gene concerned can proceed



Page 5 of 18Reyser et al. Malaria Journal           (2024) 23:44  

RNA modifications [53, 54] and on non-coding RNAs 
[55] also exist in the malaria parasite. In this way it has 
been recently shown the importance of long non-coding 
RNAs in pathogenicity and sexual differentiation [56, 57].

Epigenetic marks in Plasmodium
Histone post‑translational modifications (HPTMs) 
in Plasmodium
At least 232 histone post-translational modifications have 
been identified in P. falciparum [58], including ubiquity-
lation and phosphorylation [59, 60], but the role of many 
of these marks remains unclear. P. falciparum has a very 
original epigenetic signature, with a significant number 
of activating histone marks yet only a handful of repres-
sive marks. Indeed, activating histone marks are abun-
dant and scattered throughout the genome, allowing the 
transcriptionally-permissive state of the genome along 
the intra-erythrocytic development cycle [60]. The num-
ber of HPTMs can vary, i.e., on average of 3 per histone 
tail but which can go up to 7 [61]. Among them, H3K9ac 
and H3K4me3 are the most abundant ones [62, 63] and 
their dynamic distribution is tightly linked with the “just 
in time” pattern of gene expression along the 48-h of the 
parasite intraerythrocytic developmental cycle, in other 
words only at a time it is required [40]. In this sense, a 
specific HPTM profile of gametocytes can also be seen, 
with a high abundance of acetylated histones H3 and H4 
[64].

Indeed, highly transcribed genes of P. falciparum are 
associated with enriched H3K9ac marks in their pro-
moter and 5’ coding sequences of active genes. H3K4me3 
is stage-specific i.e. low at early stages, peaking at late 
stages, does not appear to be correlated with gene expres-
sion [65] [63] as it is not dynamically enriched at active 
promoters, but is upregulated at intergenic regions espe-
cially at trophozoite and schizont stages [63]. Repressive 
histone marks, such as H3K9me3, are specifically asso-
ciated with clonally variant genes, such as var, rifin and 
stevor, that are localized on subtelomeric and some chro-
mosome internal regions [66].

Other repressive marks include H3K36me2, 
H4K20me3 and H3K27me3, identified in gametocytes 
[67]. Moreover, it has been shown that phosphorylation 
of the histone H2A on serine 121 occurs in case of DNA 
damage before the DNA repair systems are activated and 
removed once the repair process has started [41].

DNA modifications in Plasmodium
For a long time, the existence of methylated DNA within 
the parasite was highly debated. After its identification 
in 2013, its level was estimated at 0.01–0.05% to 0.58% of 
genomic cytosines in P. falciparum. 5-methyl cytosines 
(5mC) were later identified in Plasmodium berghei 

[50–52]. Very recent data have shown that 5mC is in 
fact at a level of 0.1–0.2% during the intra-erythrocytic 
cycle [68] close to that of other apicomplexans, such as 
Toxoplasma gondii (0.27–0.41%) [69], but far behind that 
of mammals and birds (5%), fish (around 10%) or plants 
(as high as 30%) [70]. Hydroxy-methylated cytosines 
(5hmC) have also been identified and seem to be corre-
lated with gene expression. They could represent 0.2 to 
0.4% of genomic cytosines in malaria parasites, signifi-
cantly more than the 0.03 to 0.06% in other organisms 
[50] but it is not confirmed in another study [68]. These 
DNA modifications could be also concomitant with his-
tone marks [51], similar to what has already been seen in 
model organisms such as Xenopus [26].

Epigenetic effectors in Plasmodium
Histone and DNA modifications are under the control of 
specific enzymes which are responsible for ‘writing’ and 
‘erasing’ a wide range of modifications on histone tails 
among which acetylation and methylation are the most 
studied ones.

Histone acetyltransferases/histone deacetylases
Histone acetylation is catalyzed by histone acetyltrans-
ferases (HATs) (Table 1). Four different HATs have been 
identified in the Plasmodium genome: PfHAT1, PfELP3, 
PfGCN5 and PfMYST [71], but only the activity of the 
last two was determined. PfGCN5, is a nucleolar enzyme 
[72, 73] also active in the regulation of clonally variant 
gene expression [74]. It has recently been shown that 
PfGCN5 can be found in different protein complexes 
especially in the later stages of the erythrocytic cycle of 
the parasite. Multiple variants of a PfGCN5-containing 
complex could be capable of performing different biolog-
ical functions [74]. PfMYST is essential for gene expres-
sion, cell cycle progression and DNA repair [42] and its 
over expression entails a significant hyperacetylation at 
H4K5, K8, K12 and K16 which is associated with short-
ened intra-erythrocytic developmental cycle and reduced 
growth rate [75]. However, this HAT is not specific to 
histones since it also acetylates cytoplasmic proteins [42].

Histone deacetylation is mediated by histone deacety-
lases (HDACs) (Table  1) [49, 76, 77]. Five HDACs have 
been identified in P. falciparum and subdivided in 3 cat-
egories based on their phylogenetic relationship to their 
yeast orthologues [71]. Class I and Class II enzymes 
have a zinc-dependent HDAC activity and act on intra-
chromosomal domains whereas class III HDACs are 
NAD + dependent and are involved in silencing genes 
in sub-telomeric regions [39, 78–80]. PfHDAC1 (class I) 
could be involved in the reversible changes of euchro-
matin mediating the intraerythrocytic developmental 
cycle of the parasite [81]. The class II includes PfHDA1 
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and PfHDA2 which are key players of gametocyte com-
mitment and play a role in irreversible changes of chro-
matin structure involved in this key step of the life cycle 
[45, 82–84]. In class III, PfSir2A has the ability to dea-
cetylate both histone 3 and histone 4. This SIR2 deacety-
lase activity is necessary for virulence gene silencing [85]. 
Conversely acetylation of histones, in particular H4, can 
occur when PfSIR2 is removed from the promoter region 
of the subtelomeric var gene [86]. PfSIR2A can be consid-
ered as a major var-associated deacetylase. Another his-
tone deacetylase Sir2 has been identified, PfSIR2B which 
like PfSIR2A regulates silencing of var genes in P. falci-
parum but for a different subset [84, 87, 88]. Similarly 

to their orthologs in other eukaryotes, these two sirtuin 
enzymes might also play a role in the adaptation of the 
parasite to its environment [89].

Histone methyltransferases / histone demethylases
Methylation on histones can take place either on 
amino-groups of lysine or on guanido nitrogen atoms of 
arginine and is mediated by histone lysine methyltrans-
ferases (HKMT) or protein arginine methyltransferases 
(PRMT) (Table  1). Three putative PRMTs (PfPRMT1, 
PfPRMT5, PfCARM1), most likely involved in protein 
maturation than regulation of gene expression, have been 
identified in Plasmodium but only PfPRMT1 has been 

Table 1 Histone writers and erasers enzymes in P. falciparum 

Name PlasmoDB ID Inferred/Known activity

Histone acetyltransferases (HATs)

 PfGCN5 [72] PF3D7_0823300 H3K9, H3K14 acetylation

 PfMYST [75] PF3D7_1118600 H4K5, K8, K12, K16 acetylation

 PfHAT1 [71] PF3D7_0416400 Unknown

 PfELP3 [71] PF3D7_1227800 Unknown

Histone deacetylases (HDACs)

 PfHDAC1 (Class I) [81] PF3D7_0925700 Parasite’s progression through intraerythro‑
cytic developmental cycle

 PfHDA2 (Class II) [45] PF3D7_1008000 H3K9 deacetylation involved in gametocyte 
commitment, virulence gene silencer

 PfHDA1 (Class II) [82] PF3D7_1472200 Putative HDAC

 PfSIR2A (Class III) [85, 86] PF3D7_1328800 Telomere maintenance and var gene silencing

 PfSIR2B (Class III) [88, 143] PF3D7_1451400 Silencing of var genes

Histone methyltransferases (HKMTs) [90, 94, 144]

 PfSET1 PF3D7_0629700 H3K4 methylation

 PfSET2 PF3D7_1322100 H3K36 methylation

 PfSET3 PF3D7_0827800 H3K9 methylation

 PfSET4 PF3D7_0910000 H3K36 methylation

 PfSET5 PF3D7_1214200 Unknown

 PfSET6 PF3D7_1355300 H3K36 methylation

 PfSET7 PF3D7_1115200 H3K36, H3K9, H3K4 methylation

 PfSET8 PF3D7_0403900 H4K20 methylation

 PfSET9 PF3D7_0508100 H3K36 methylation

 PfSET10 PF3D7_1221000 H3K4 methylation

 PfPRMT1 PF3D7_1426200 H4R3 methylation

Histone lysine demethylases [91, 96]

LSD1 family

 PfLSD1 PF3D7_1211600 H3K4me1 and me2 demethylation

 PfLSD2 PF3D7_0801900 H3K4me1 and me2 demethylation

Jumonji‑related family

 PfJmjC1 PF3D7_0809900 Histone Lysine Demethylase

 PfJmjC2 PF3D7_0602800 Histone Lysine Demethylase

 PfJmjC3 PF3D7_1122200 Histone Lysine Demethylase

DNA methyltransferase (DNMT) [51, 53, 101]

 PfDNMT2 PF3D7_0727300 DNA and tRNA methylation



Page 7 of 18Reyser et al. Malaria Journal           (2024) 23:44  

characterized [90] and recently PfPRMT5 which plays a 
key role in merozoite invasion [56]. Ten PfHKMTs (also 
known as SET1 to SET10) have been identified by com-
putational analysis [91, 92]. It should be noted that these 
proteins do not only methylate histones but a large range 
of proteins, which can be found either in the nucleus or 
the cytoplasm. PfSET10 may play a role in the regulation 
of var genes expression through its ability to methylate 
the lysine K4 of histone H3 [92], but this remains a mat-
ter of debate [93].

Histone demethylation is mediated by histone lysine 
demethylases (HKDM) (Table  1). Five HKDMs have 
been identified and sub-categorized into two categories: 
LSD1 and Jumonji (JmjC) demethylases [91, 94]. While 
LSD1 demethylases can be involved in the removal of 
mono- and dimethylated groups from lysines [95], JmjC 
demethylases (PfJmjC1, PfJmjC2 and PfJmjC3) are the 
only family capable of the demethylation of trimethylated 
lysine residues like H3K4me3, H3K9me3 and H4K20me3 
in the parasite [96]. As previously mentioned, acetyla-
tion and methylation patterns of histones are linked. 
For example, sexual commitment regulation relies on 
a switch of H3K9me3 to H3K9ac depending on PfSET3 
and PfGCN5 [97, 98]. This leads to the dissociation of 
H3K9–HP1 (heterochromatin protein 1) complex and 
the subsequent triggering of parasite commitment to 
gametocytogenesis through de-repression of pfap2-g [99, 
100]. The return to a silencing state of this transcription 
factor depends on PfHDA2 responsible for deacetylation 
of H3K9ac tail prior to its methylation [45].

DNA methyltransferases
Only one gene with a predicted DNA methyltransferase 
activity has been identified in P. falciparum genome (PfD-
NMT2) coding for an enzyme related to the DNA methyl 
transferase 2 family but with a low methylation activity 
on DNA cytosines in vitro [51, 53] (Table 1). Expressed 
all along the intraerythrocytic cycle with a peak at the 
trophozoite stage, PfDNMT2 is able to methylate tRNA 
cytosine including C38 of  tRNAAsp [68, 101]. The tRNA 
methylation participates in maintaining stable protein 
synthesis by protecting tRNAs from endonucleolytic deg-
radation during stress situations experienced by the para-
site [53].

Plasmodium epigenetic effectors as a source 
of therapeutic targets
Case of parasite resistance to anti‑malarials
The first demonstrations that epigenetics could be 
involved in anti-malarial drug resistance processes in 
Plasmodium was obtained in relation to the antibiotic 
blasticidin S [102, 103] and the bis-thiazolium salts T3 
and T16 [104]. Blasticidin S, an antibiotic, with an  IC50 

of 530  nM against the Plasmodium 3D7 strain, and 
T3 and T16 with  IC50 values of 26 and 10  nM, respec-
tively, all enter into the parasite through the solute trans-
porter plasmodial surface anion channel (PSAC) [104]. 
This transporter is formed by a CLAG3 protein, either 
CLAG3.1 or CLAG3.2 with different solute uptake effi-
ciency [47, 105]. Within a clonal population, clag3.1 and 
clag3.2, localized head-to-tail in the same locus, are sto-
chastically and mutually exclusively expressed in each 
parasite. When one is expressed, depending of H3K9ac, 
the other one is repressed (marked with H3K9me3) [106, 
107]. The subset of parasites stochastically expressing 
no clag3 gene or only CLAG3.1 (which has a low solute 
uptake efficiency) is able to withstand exposure to blas-
ticidin S and T3 illustrating how epigenetics can mediate 
drug resistance in Plasmodium within isogenic parasite 
population where only few individuals can survive to the 
drug exposure [102, 104]. This is reminiscent of para-
site resistance to artemisinins, since only a subpopula-
tion within a clonal population, mutated for the pfk13 
gene involved in the endocytosis of haemoglobin from 
the host cell by the parasite [108, 109], can resist expo-
sure to these anti-malarial drugs by entering quiescence 
[110, 111] (Fig.  4). It has also recently been shown that 
PfGCN5, a histone acetyl transferase, is involved in the 
resistance of P. falciparum to artemisinins by increasing 
the unfold protein response pathway (UPR) and controls 
300–400 genes involved in stress responses [112, 113]. 
On this basis, it could be hypothesized that resistance to 
artemisinins in P. falciparum may also rely on epigenetic 
regulation.

Given the alarming increase in resistance to known 
available treatments finding new anti-malaria com-
pounds is urgent. It has already been shown for many 
years that apicidin is able to inhibit histone modifying 
enzymes such as HDACs in all the stages of the P. falcipa-
rum intraerythrocytic cycle leading to parasite death [35, 
49]. Moreover, chaetocin, a histone methyl transferase 
inhibitor, is able to reverse blasticidin S resistance [114]. 
Targeting histone modification thus appears to be an 
effective way to eliminate the malaria parasite, including 
resistant forms associated with diverse resistance mecha-
nisms. Therefore, epigenetic drugs are very promising 
candidates because they target both the mechanisms of 
adaptability of the parasite to variations in its environ-
ment and its cell cycle regulation system. Interestingly, 
this approach can be extended at any stage of the parasite 
development cycle since epigenetics plays a crucial role 
throughout the parasite life cycle.
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Targeting histone modification
Targeting histone acetyltransferases/histone deacetylases
Inhibition of P. falciparum HATs has been largely 
described with anacardic acid, curcumin and embelin, 
resulting in hypoacetylation of lysine residues (Table 2). 
However, these inhibitors are highly unspecific since 
they can have many other effects such as on lipoxygenase 
activities, reactive oxygen species production, disrup-
tion of chaperone expression [115, 116]. At the opposite 
CB3717 was identified as showing strong selective inhibi-
tion of PfGCN5 (which differs strongly from its human 
orthologue [74]) leading to a decrease of H3 acetyla-
tion level at K9 position. This compound with an  IC50 
at 200 nM range in parasite growth assay is tenfold less 
active against human cancer cells and shows no effect 
against mammalian fibroblast cells up to 20  µM [117]. 
PfMYST is potentially another interesting target as it 
also differs significantly from its human orthologue and 
NU9056, a thiazole derivative, inhibiting PfMYST cata-
lytic activity is lethal for the parasite at a micromolar 
range [118] (Table  2). Although few Plasmodium HAT 
inhibitors have been described to date, new compounds 
designed to target HATs, involved in different patholo-
gies, remain to be evaluated on the parasite and may pro-
vide interesting chemical starting points [119].

Among antiplasmodial epidrugs, HDAC inhibitors are 
the most numerous with a wide variety of chemical struc-
tures (cyclic tetrapeptides, 2-aminosuberic acid deriva-
tives or L-cysteine derivatives) (Table  3). Most of them 
were initially designed to target human cancer cells, and 
were later found to have high activities against P. falci-
parum with  IC50 values ranging from low nanomolar 
to sub-micromolar but low selectivity for most of them 
[120, 121]. SAHA and CTP-NPDG 19, a cyclic tetra-
peptide like apicidin display better activities against P. 
falciparum than towards cancer cells but the selectivity 
index remains weak [78, 122]. Use of HDAC inhibitors, 
such as trichostatin A and apicidin results in a signifi-
cant increase in H4K8ac and H4Ac4 levels across the 
Plasmodium genome, both in asexual and sexual stages 
of Plasmodium [35, 123]. These changes in histone marks 
lead in turn irreversibly to a collapse of the tightly regu-
lated transcriptional cascade in the early hours of drug 
exposure and ultimately to parasite death upon longer 
exposures [35, 122]. FNDR-20123, a hydroxamate deriva-
tive like SAHA and trichostatin A, appears to be a very 
promising HDAC inhibitor in a nanomolar range, with 
a good PK/PD and excellent safety profile [124]. Deriva-
tives of the clinical anticancer drug candidate quisinostat, 
such as JX21108, a PfHDAC1 inhibitor, present a good 

Fig. 4 Role of epigenetics in the acquisition of drug resistance, a parallel between resistance to blasticidin S and artemisinin resistance. Upon 
the exposure of a trophozoite population to Blasticidin S, a majority of them dies because most of them express the CLAG3.2 protein at their 
cell surface. Only a subset of parasites expresses the CLAG3.1 protein, which allows them to withstand drug exposure at the cost of a slower 
metabolism. This regulation of CLAG3 genes is epigenetically‑mediated, allowing a stochastic number of parasites to survive drug pressure [102, 
103]. Following exposure to artemisinins, a subset of ring‑stage parasites can enter a quiescent state by slowing down their metabolism. After drug 
removal, the parasites can resume their life cycle [110]
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antimalarial activity and promising selectivity in vitro as 
in  vivo in the P. yoelli mouse malaria model [125, 126]
(Table 3).

Targeting histone methyltransferases/histone demethylases
The inhibition of HKMTs and HKDMs has been signifi-
cantly less studied than the inhibition of HATs or HDACs 
in P. falciparum, probably due to their late identification. 
Nevertheless, some HKMT inhibitors have shown prom-
ising results with largely better selectivity index than the 
above-mentioned molecules and have gone so far as to be 
tested in vivo [127, 128] (Table 4). BIX-01294 and TM2-
115 were shown to affect particularly H3K4me3 [127]. 
Although TM2-115 and BIX-01294 had a long-lasting 
effect on both P. berghei and P. falciparum parasites in 
mice models, they did not completely cure mice. Because 
of their oral bioavailability and their rapid ability to kill 
parasites, they nevertheless represent a good starting 
point for further development of the diaminoquinazoline 
compound series [128]. TM2-115 was also shown to acti-
vate dormancy exit of hypnozoites in Plasmodium vivax 
[129]. Collectively, these results suggest that HKMT 
inhibitors are very promising since they seem to target 
most of the life-cycle stages of the parasite. A medicinal 
chemistry approach could help to improve their efficacy 
and their pharmacokinetic profiles. There are currently 
few reports of drug discovery efforts specifically targeting 

arginine methylation in P. falciparum [90]. The search for 
new chemical starting points by an orthologue approach 
is not always successful as a recent study has shown on 
the evaluation of human histone demethylase inhibitors 
on their P. falciparum counterparts [130](Table 5).

Targeting DNA modifications
For a time, targeting DNA methylation was generally 
overlooked in P. falciparum, mostly because of its low 
abundance [50]. Recently however, several quinazo-
line derivatives identified as human DNMT3 inhibitors 
were found to be active in  vitro against P. falciparum 
and in  vivo against P. berghei infected mice [131]. In a 
same way, series of quinoline-quinazoline bisubstrate 
analogues (Table  6), with an inhibitory activity towards 
human DNMT3a and DNMT1, has shown promising 
activities in the nanomolar range on P. falciparum strains 
[132].

Targeting transcription factors
The twenty-seven main factors regulating transcription 
in P. falciparum can also be considered as very interest-
ing targets. Their binding domains are different from 
human homologs which can be a guarantee of specific-
ity for an inhibitor of these transcription factors. In sil-
ico prediction combined with biochemical and genetic 
studies have led to the identification of compounds with 

Table 2 Histone acetyltransferases (HAT) inhibitors in P. falciparum 

Inhibitors Structure P. falciparum  IC50 in µM Specificity CC50 on mammalian 
cells in µM (Cell type)

Anacardic Acid

OH

OH

O
C14H29 30 [115] Targets lipoxygenase activity [116]  > 100 (HeLa) [145]

Curcumin OH

O

O OH

HO

O

CH3 CH3

25 [97] No specificity, targets all HATs 
and involved in production of ROS 
[97]

4 (HL60) [146]

Embelin
OH

C11H23

O

O

HO

10 [73] Specific towards GCN5  > 40 (mammalian) [73]

CB3717 O

N
H

HO

O

HO O

N

N

NH

O

NH2

0.225; 1 [117] Specific towards PfGCN5  > 20 (NIH3T3) [117]

NU9056
N

S S
S

N
S

0.9 [118] Specific towards PfMyst ‑
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Table 3 Histone Deacetylase (HDAC) inhibitors in P. falciparum 

Targeting Class I and II HDACs

Inhibitors Structure P. falciparum 
 IC50 in µM

Specificity Development 
stage

CC50 on mammalian 
cells in µM (Cell type)

Cyclic tetrapeptides

 Apicidin

N

H3CO

HN

O

H
N

O

N

H

O
H
N

O

C2H5OC

0.03; 0.04 [76, 
147]

Targets class I and II 
HDACs [76]

– 10 (Jurkat) [148]

 CTP‑NPDG 19
N
H
HN

ONHO

N

O

O

O

O

AcO
OAc

0.3 [122] Targets class I 
HDACs

–  > 25 (HepG2) [122]

 Romidepsin

O N
H

S S

NH

NH
O

O

O

HN
O

O 0.09 [149] Targets class I and II 
HDACs

FDA‑approved 
in cancer therapy

0.001 (NFF) [149]

 HC‑toxin

HN
H
N

NH

O

O

N

O

O

O

O

 < 0.01 [49] Targets class I and II 
HDACs

– 0.9 (TFK‑1) [150]

 FR235222

N
H

NH

N

HN

OO

O O

O

OH

0.01 [151] Targets class I 
HDACs

– 0.13 (HFF) [152]

Hydroxamates

 Trichostatin A

N

O

N
H

O

OH
0.03; 0.08 [122, 
147]

Targets class I and II 
HDACs

– 0.2 (HeLa) [153]

 SAHA (Vorinostat)

N
H

O
H
N

OH

O

0.2; 0.5 [76, 147] Targets class I and II 
HDACs

FDA‑approved 
in cancer therapy

5.5 (NFF) [149]

 JAHA
H
N

N
H

O

O

OH

Fe

0.5 [147] Targets class I and II 
HDACs[154]

– 2.4 (MCF7) [154]

 SBHA

HO

H
N

N
H

OH

O

O 1 [120] Targets class I and II 
HDACs

– 12 (HEK) [155]
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sub-micromolar antiparasitic properties, demonstrating 

Table 3 (continued)

Targeting Class I and II HDACs

Inhibitors Structure P. falciparum 
 IC50 in µM

Specificity Development 
stage

CC50 on mammalian 
cells in µM (Cell type)

 WR301801

H2N

S

N
H
N

N
H

OH

O

O 0.001 [156] Targets class I and II 
HDACs

Tested in vivo 0.6 (RAW) [156]

 Belinostat

N
H

S

O

N
H

OH

0.06 [149] Targets class I and II 
HDACs

FDA‑approved 
in cancer therapy

2.37 (NFF) [149]

 Panobinostat

HN

H
N

N
H

O

OH

0.01 [149] Targets class I and II 
HDACs

FDA‑approved 
in cancer therapy

0.07 (NFF) [149]

 FNDR‑20123
N

N

N
N

O

HN OH
0.04 [124] Targets class I 

HDACs
–  > 100 (HepG2 & THP‑1) 

[124]

 JX21108

N
N

N

N

N N
H

OH

NC

O 0.004 [125] Targets class I 
HDACs

–  > 4 (HepG2) [125]

 Compound 29
N
H

N

HN O

N

S

N NH

H
N

O

0.45 [139] Targets class I 
HDACs

– 17 (Hela) [139]

 Peptoid‑based 
hydroxamic acids 2h

O

H
N

OH

N

O

NHO

0.005 [138] HDACs – 4.6 (HepG2) [138]

2‑aminosuberic acid derivatives

 2‑aminosuberic acid 
derivatives

OH

NH

O
R2

NH

HN

R1

O

O

0.01; 0.3 [120] Targets class I 
HDACs

– 0.2–5.8 (NFF) [120]

L‑cysteine derivatives

L‑cysteine derivatives OH

NH

S

O
R2

NH

HN

R1

O

O

0.05; 0.34 [120] Targets class I 
HDACs

– 0.35–2.2 (NFF) [120]
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the relevance of this approach [29]. Epidrugs: a promising future?
Despite the fact that seven epidrugs such as DNMT 
(5-azacytidine) and HDAC inhibitors (SAHA) [133, 134] 
have been approved by government agencies (e.g. the 
FDA) in cancer therapies, lack of selectivity towards Plas-
modium has been the major Achille’s heel in the devel-
opment of antiplasmodial epidrugs. While a very good 

Table 3 (continued)

Targeting Class I and II HDACs

Inhibitors Structure P. falciparum 
 IC50 in µM

Specificity Development 
stage

CC50 on mammalian 
cells in µM (Cell type)

Targeting Sir2 HDAC (Class III)

 Surfactin

NH

HO

O

NH

O

HN

O

NHO

HN O

OHO

O

O

H
NH

N

O

H

O
O

9.3 [79] Unknown off‑
targets since it 
induces apoptosis

– 9.6 (MCF‑7) [157]

 Sirtinol

OH

N

O N
H

10 [120] No off‑targets 
known
Inhibits 
both PfSir2A and B

–  > 25 (NFF) [120]

Table 4 Histone methyltransferase (HKMT) inhibitors in P. falciparum targeting lysine methylation

Inhibitors Structure P. falciparum  IC50 in 
µM

Specificity Development stage CC50 on mammalian 
cells in µM (Cell 
type)

UNC0638

N O N

N

HN

N CH3

CH3

H3CO

0.028 [130] Targets G9a methyl‑
transferases in mam‑
malian cells

– 23 (HL‑60) [158]

BIX‑01294

N

NH

N

N N
N CH3

H3CO

H3CO

0.056; 0.075 [127, 147] No target properly 
identified but inhibits 
H3K4me3

Tested on a humanized 
mouse model

6.1 (HFF) [127]

TM2‑115
O

N

N N
N CH3

NH

N
H3C

H3CO

0.130; 0.137 [127, 147] Identical to BIX‑01294 Tested on a humanized 
mouse model

5.7 (HFF) [127]

Chaetocin

N
H

N

NS

S

O

O OH

N

H
NH

OOH

S

S
H3C CH3

0.64; 0.95 [147, 159]; 
14 [90]

No target properly 
identified but inhibits 
H3K9me2/me3

– 0.13 (HL‑60) [158]
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activity has been observed in  vitro, in the nanomolar 
range on the parasite, the in vivo results in the P. berghei 
infected mouse model are often more than modest and 
administration of these compounds cannot cure the 
mice completely [135]. Nevertheless, as more and more 
efforts are being made to understand the mechanisms of 
epigenetic regulation of P. falciparum, the repositioning 
of anti-cancer drugs in the context of the search for new 
anti-malarial drugs remains very topical [125, 136].

In silico approaches, through molecular docking, also 
led to the discovery of a new portfolio of parasite spe-
cific HAT inhibitors [77, 117] and quantitative struc-
ture–activity relationship (QSAR) models have been 
developed as useful tools for in silico screening of Plas-
modium HDAC inhibitors [137]. However, recent pro-
gress has been made in the field of malaria epidrugs in 
order to overcome potential toxicity issues in the mam-
malian host. SAR studies in vitro have led to the discov-
ery of parasite specific compounds targeting HDACs and 
DNMTs with inhibitory values in sub-micromolar and 
nanomolar ranges and good selectivity indexes (> 100) 
[124, 132, 138, 139]. A recent review of inhibitors target-
ing Plasmodium HDACs and DNMTs lists the best com-
pounds based on scaffold from a screening of epidrug 
libraries or from molecular docking studies. It highlights, 
in particular, the interest for in silico studies to optimize 

selectivity, pharmacokinetic properties and cost of goods 
[140].

Combining two different inhibitors in the same mol-
ecule is a very interesting approach, especially if they 
have a strong synergy. The hybrid compound procainain-
amide-SAHA, which combines a DNMT inhibitor (Pro-
cainamide) with an HDAC1 inhibitor (SAHA), has been 
shown to be highly active against P. falciparum multid-
rug-resistant field strains and lacks cytotoxicity against 
human cancer cells [141].

Therefore, epidrugs present several characteristics that 
are very desirable for an anti-malarial drug. Indeed, they 
can be fast-acting and could have high parasite-killing 
rates, probably due to the need for continual gene acti-
vation along the life-cycle stages. Pharmaco-modulation 
work has allowed notable increase of selectivity against 
Plasmodium. Moreover, due to the high conservation of 
histone modification enzymes and their assumed con-
served role in transcriptional regulation across Plas-
modium species, epidrugs are likely to be efficient on 
all human malaria pathogens, among which P. falcipa-
rum and P. vivax [72, 91, 142] and one could envisage 
a unique compound to treat all types of malaria. Epid-
rugs are very promising candidates because their inter-
est lies in their ability to target both one of the major 
mechanisms of adaptability of the parasite to variations 

Table 5 Histone Demethylases (HKDM) inhibitors in P. falciparum targeting lysine demethylation

Inhibitors Structure P. falciparum  IC50 
in µM

Specificity Development 
stage

CC50 on mammalian cells 
in µM (Cell type)

Tranylcypromine

NH2

 > 10 [160] Inhibits human LSD1 
[161]

FDA‑approved 
monoamine oxi‑
dase inhibitor

 > 200 (HEK293) [162]

GSK‑J1

N

N N

H
N

O

OH

N

 > 10 [130] Inhibits human 
Jumonji demethylases

– 9 (Human primary mac‑
rophages) [163]

IOX 1
N

OH

OHO

1; 10 [160] Inhibits human 
Jumonji demethylases 
[164]

– 86.5 (HeLa) [164]

JIB‑04

N

N

H
N

N
Cl

0.6; 1.6; 0.47 [96, 147, 
160]

Inhibits human 
Jumonji demethylases 
[96, 165]

–  > 10 (Human mesenchy‑
mal stem) [166]
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in its environment and its cell cycle regulation system. 
Whether during the intraerythrocytic cycle (pathogenic-
ity), the induction of gametocytogenesis (transmission) 
or even in the DNA repair mechanisms following stress 
due to a change in the environment, epigenetics offers 
new opportunities for therapeutic targets covering all the 
different states of the parasite.
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