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Abstract 

Background Despite the progress made in this decade towards malaria elimination, it remains a significant public 
health concern in India and many other countries in South Asia and Asia Pacific region. Understanding the histori-
cal trends of malaria incidence in relation to various commodity and policy interventions and identifying the factors 
associated with its occurrence can inform future intervention strategies for malaria elimination goals.

Methods This study analysed historical malaria cases in India from 1990 to 2022 to assess the annual trends 
and the impact of key anti-malarial interventions on malaria incidence. Factors associated with malaria incidence were 
identified using univariate and multivariate linear regression analyses. Generalized linear, smoothing, autoregressive 
integrated moving averages (ARIMA) and Holt’s models were used to forecast malaria cases from 2023 to 2030.

Results The reported annual malaria cases in India during 1990–2000 were 2.38 million, which dropped to 0.73 mil-
lion cases annually during 2011–2022. The overall reduction from 1990 (2,018,783) to 2022 (176,522) was 91%. The key 
interventions of the Enhanced Malaria Control Project (EMCP), Intensified Malaria Control Project (IMCP), use of biva-
lent rapid diagnostic tests (RDT-Pf/Pv), artemisinin-based combination therapy (ACT), and involvement of the Accred-
ited Social Health Activists (ASHAs) as front-line workers were found to result in the decline of malaria significantly. The 
ARIMA and Holt’s models projected a continued decline in cases with the potential for reaching zero indigenous cases 
by 2027–2028. Important factors influencing malaria incidence included tribal population density, literacy rate, health 
infrastructure, and forested and hard-to-reach areas.

Conclusions Studies aimed at assessing the impact of major commodity and policy interventions on the incidence 
of disease and studies of disease forecasting will inform programmes and policymakers of steps needed dur-
ing the last mile phase to achieve malaria elimination. It is proposed that these time series and disease forecasting 
studies should be performed periodically using granular (monthly) and meteorological data to validate predictions 
of prior studies and suggest any changes needed for elimination efforts at national and sub-national levels.
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Background
Malaria, a global public health issue, has been success-
fully eliminated from 41 countries through time-tested 
case management and vector control strategies. Despite 
these promising strides, in the year 2021, the World 
Health Organization (WHO) estimated an alarming 247 
million malaria cases and 619,000 deaths worldwide. 
Of these cases, the WHO South East Asia (SEA) region 
accounted for about 2% of the global malaria burden. 
Amongst the SEA countries, India contributed approxi-
mately 79% of the malaria cases and 83% of the malaria-
attributed deaths in the region [1].

Several countries in the WHO SEA region have 
eliminated malaria or are close to eliminating malaria. 
Maldives and Sri Lanka are malaria-free. Thailand, 
Timor-Leste, Bhutan and Nepal are referred to as “E2025” 
countries as they aim to achieve elimination by 2025. 
Countries of the Asia Pacific region have also committed 
to the malaria elimination goal of 2030, with the major-
ity of cases concentrated in the island nations of Papua 
New Guinea and the Solomon Islands, with an Annual 
Parasitic Incidence of 65 and 119, respectively [1]. There 
is a common concern of emergence and spread of drug 
resistance from the Greater Mekong Sub region, which 
combined with the insecticide resistance poses a threat 
to realizing the goals of malaria elimination in the region.

The WHO Global Technical Strategy has set the objec-
tive to achieve at least 90% case reduction in the global 
malaria burden and zero indigenous malaria cases by 
2030 [2]. Despite the commitment, not all countries 
are on track to meet the 2030 global target of reducing 
malaria case incidence and death rates by at least 90%. 
Certain countries in the region grapple with a complex 
interplay of socio-economic, ecological, and health sys-
tem-related factors, which have proven formidable obsta-
cles in their malaria elimination endeavours.

India’s malaria epidemiology is complex across diverse 
demography, topography, and socio-cultural landscapes, 
which presents a risk to sustain the reduction in malaria 
cases and achievements of the elimination goals in a 
timely manner [3]. The country has implemented the 
National Strategic Plan for Malaria Elimination 2017–22 
[4] and the National Framework for Malaria Elimina-
tion (NFME) in 2016–2030 [3], describing the strategies 
of early diagnosis and prompt treatment, vector control, 
community engagement, and inter-sectorial coopera-
tion, to achieve the national malaria elimination goal of 
2030. The national programme has emphasized special 
focus on 27 high-priority districts with moderate to high 
malaria transmission.

Information obtained through disease forecasting and 
time series analysis of historical data presents an oppor-
tunity for the policymakers and programme managers 

to use curated intervention efforts in a context-specific 
manner for the high-burden areas that are posing prob-
lems for disease elimination. Several malaria forecasting 
studies have been conducted in India, China, Burundi, 
Mali, Afghanistan, Bhutan and Ethiopia [5–11]. However, 
the studies conducted in India either used hospital based 
passive malaria cases [12] or data from selected Indian 
states [13–15], which did not allow for the time series 
analysis and predictive malaria forecasting of the entire 
country.

The three inter-related objectives of this study were: 
(1) identification of the trends of malaria cases in India 
over the period 1990 to 2022 using time series analysis 
in order to forecast future malaria case burden for 2023 
and 2030; (2) perform segmented regression on inter-
rupted time series data to assess the impact of major 
interventions adapted in the national malaria programme 
over the period 1990 to 2022; and (3) conduct analysis 
to determine the association of extraneous independent 
factors with malaria incidence for the period of 2011 to 
2021.

For forecasting analysis and assessment of the impact 
of commodity and policy interventions, country-wide 
malaria data over 3 decades was used. For analysis of pre-
dictors of malaria, the state-wise annual malaria data was 
used.

Methods
Study design
This ecologic study employed an explanatory time-trend 
design to study the annual trend of malaria cases during 
1990–2022 and forecast future malaria cases, assessing 
the impact of major anti-malarial interventions during 
the study period and assessing the extraneous factors 
associated with malaria incidence in India.

Data sources
Retrospectively reported annual malaria cases for the 
period of 1990 to 2022 was obtained from the World 
Malaria Reports (WMRs) 2012 and 2023. State-wise 
annual malaria incidence data for the period of 2011 
to 2021 and the timelines of different interventions for 
malaria control in the country was obtained from the 
public domain of NCVBDC New Delhi [16]. The extra-
neous variables associated with malaria incidence were 
collected from Census of India, 2011; India State of For-
est Report 2021, Forest Survey of India; Rural Health Sta-
tistics, National Health Mission, Government of India; 
Monthly rainfall data series for districts, states, and sub-
divisions and all India, Additional Director General of 
Meteorology, Ministry of Earth and Science, India Mete-
orological Department [17–20].
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Estimation of trend and impact analysis 
of interventions
The annual trends of the time series data of malaria cases 
during 1990–2022 were plotted using centred moving 
averages, exponential, linear, and locally weighted regres-
sion lines. Over the last 3 decades, at different time-
points, several commodities and policy interventions 
have been introduced in India. Some of these interven-
tions were novel, and some helped in strengthening and 
scaling up the existing strategies. The major interven-
tions used in the present study were: (1) In 1997, the 
Enhanced Malaria Control Programme (EMCP) was 
operational in 181 selected tribal dominant districts 
of the country with the assistance of the World Bank. 
Under EMCP, case detection was improved with robust 
surveillance particularly in high endemic, hard to reach 
tribal dominated areas; (2) Further, in the year 2006, the 
World Bank-assisted Intensified Malaria Control Project 
(IMCP) was launched in inaccessible, high endemic and 
Plasmodium falciparum dominant areas of the country 
[21]. Emphasis was given to early diagnosis and prompt 
treatment; (3) On-spot diagnosis using monovalent rapid 
diagnostic test for P. falciparum (RDT-Pf) and arte-
misinin-based combination therapy (Artesunate + Sulf-
adoxine-Pyrimethamine (ACT-SP) as first-line treatment 
of P. falciparum introduced in 2005; (4) Accredited Social 
Health Activists (ASHAs) engaged to provide diagnosis 
and treatment of malaria cases at village level in 2009; (5) 
Bivalent RDTs for diagnosis of P. falciparum and Plas-
modium vivax (RDT-Pf/Pv) infections and long lasting 
insecticidal nets (LLINs) for vector control in 2009 [22]; 
(6) Revised national drug policy with introduction of 
artemether-lumefantrine combination (ACT-AL) as first-
line drug to treat confirmed P. falciparum cases in North 
Eastern states of the country in 2013; (7) Scaling up of 
LLINs coverage in malaria-endemic areas from 2015; and 
(8) Launch of NFME in 2016 [3, 4, 23].

The major change points have been identified in the 
years 1997, 2006, 2013, and 2016, to determine the 
impact of respective interventions using the General-
ized Least Square (GLS) model along with autocor-
relation via a corARMA function in R 4.3.2 (The R 
Project for Statistical Computing) to an Interrupted 
Time Series (ITS) malaria data by dividing into pre-
intervention and post-intervention segment periods 
(equation below) [24]. Two dummy variables such as 
a binary indication of whether the intervention has 
taken place at the  time(x) and time elapsed since the 
intervention were created. The slopes of the inter-
rupted time trends of malaria cases between these two 
segments were compared to the estimated quantum of 
change and their statistical significance. The immedi-
ate effect showed a decline in malaria cases during the 

year following the introduction of interventions along 
with the sustained effect showing a declining rate over 
the following years.

Prediction of malaria cases from 2023 to 2030
The data from WMR used in this study was from the 
years 1990 to 2022, which allowed for a robust non-
seasonal disease forecasting analysis to predict future 
cases of malaria. The dataset was divided into two sub-
sets: a training set and a testing set. The training set had 
been used to train the forecasting model, while the test-
ing set was reserved to assess the model’s performance 
on new and unseen data. The linear trend, quadratic, 
cubic, centred Moving Average (MA), LOWESS, Sim-
ple Exponential Smoothing (SES), Double Exponential 
Smoothing (ETS), Auto-correlation Integrated Moving 
Average (ARIMA), Holt’s additive and Holt’s multiplica-
tive regression models were used for forecasting analysis.

Evaluating the accuracy of time series forecasting mod-
els is essential to ensure that the predictions are reli-
able and trustworthy. Measuring performance of time 
series prediction model provides capability of the fore-
cast to the real values. The most common performance 
statistics used are: Mean Forecast Error (or Forecast 
Bias) indicates the tendency of a model to overestimate 
or underestimate where positive bias means the model 
tends to overestimate, while negative bias means it tends 
to underestimate; Mean Absolute Error (MAE) meas-
ures absolute average magnitude of error (difference 
between actual value and predicted value) in prediction 
without considering the direction; Mean Squared Error 
(MSE) measures the average of the squares of the errors, 
which gives more weight to the large errors; Root Mean 
Squared Error (RMSE) is the square root of the MSE 
which is easier to interpret. It provides an estimate of the 
standard deviation of the forecast errors; Mean Absolute 
Percentage Error (MAPE) measures the relative accu-
racy of a forecast by calculating the percentage difference 
between predicted and actual values; Mean Absolute 
Standard Error (MASE), Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC). The 
model accuracy was measured with the lowest Root 
Mean Square Error (RMSE), Akaike Information Crite-
rion (AIC) and Bayesian Information Criterion (BIC), 
Mean Absolute Percent Error (MAPE), Mean Absolute 
Standard Error (MASE) in the time series data for the 

outcome = gls(malaria cases ∼ time + intervention

+ postintervention time, data = xxx,method

= "ML", correlation = corARMA
(

p = n, q = n, form =∼ time
)

)
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test period. Accurate forecasting using ARIMA requires 
normally distributed stationary data with constant mean 
and variance over time. The present study used annual 
time series data points due to the non-availability of sea-
sonal malaria data. Therefore, a seasonality test was not 
performed. Augmented Dickey-Fuller test (ADF Test) 
was used to test whether a given time series is station-
ary or not. The regular differencing method was used to 
make stationary time series observations over the time 
period. In the differencing method, each observation 
was replaced by a difference between the current and 
previous observation [25]. The present study follows the 
EPIFORGE 2020 checklist for reporting forecasting and 
prediction research [26].

Association of extraneous factors with malaria 
incidence
The univariate and multivariate generalized linear 
regression model was used to determine the extraneous 
independent factors associated with state-wise annual 
parasite incidence (API) data from 2011 to 2021 as the 
trend of malaria over the study period was roughly lin-
ear. Homoscedasticity test with residual plot, normality 
test with Q-Q plot and multi-collinearity test were also 
performed. The multi-collinearity effect between the 
independent variables included in the model was tested 
using a pairwise correlation matrix. The analysis did not 
reveal any strongly correlated variables. Hence, all the 
independent variables were included in the multivariate 
model, such as the proportion of the tribal population 
and literacy rate as per the 2011 Census (in the demogra-
phy domain), vacant positions of ASHAs and peripheral 
health workers, number of health facilities (in the health 
infrastructure domain), and geographical areas under 

forest, hilly terrain and annual average rainfall (in geo-
climatic domain).

The API is the number of malaria-positive cases per 
thousand population. Since API is highly dependent on 
the annual blood examination rate (ABER), it was stand-
ardized with the 10% constant ABER in the analysis. The 
multicollinearity between the independent variables was 
resolved before applying the multivariate linear regres-
sion model. All the statistical analyses were performed in 
R 4.3.2 (The R Project for Statistical Computing).

Results
Annual trends of malaria during 1990–2022
During 1990–2000, 2001–2010 and 2011–2022, 2.38 
(95% CI 2.14, 2.63), 1.75 (95% CI 1.61, 1.89), and 0.73 
(95% CI 0.45, 1.01) million malaria cases were reported 
annually, respectively. The annual percent decline was 
0.64 (95% CI − 7.42, 8.69), − 2.15 (95% CI − 6.84, 2.54), 
and − 14.31 (95% CI − 27.67, − 0.95), respectively, during 
these 3 decades (Table 1). The per cent decline in malaria 
cases during the 3rd decade (2011–2022) was signifi-
cantly higher than in 1990–2000 (coefficient = −  14.94; 
95% CI − 27.95, − 1.94; p = 0.026); and 2001–2010 (coef-
ficient = − 12.15; 95% CI − 25.16, − 0.99; p = 0.05).

During the 3 decades i.e. 1990–2000, 2001–2010 and 
2011–2022, the annual mean P. falciparum and P. vivax 
cases were 1.00, 0.85, 0.42 and 1.38, 0.90, 0.30 million, 
respectively. The annual percent decline during 3 decades 
was 4.02, − 2.05, and − 12.51 in P. falciparum and − 1.57, 
− 2.11 and − 14.75 in P. vivax, respectively (Table 1). The 
mean percent change during 3 decades in P. falciparum 
and P. vivax did not differ significantly (p > 0.05). Simi-
larly, the difference in mean percent change between total 
malaria cases and two species (P. falciparum and P. vivax) 
was also not found significant statistically (p > 0.05).

Table 1 Trend of malaria during 3 decades of 1990–2000, 2001–2010, and 2011–2022

CI: confidence interval; Q1: first quartile; Q3: third quartile

Species Period Yearly malaria cases (millions) Yearly percent decline

Mean 95% CI Median Q1 Q3 Mean 95% CI Median Q1 Q3

Lower Upper Lower Upper

Malaria 1990–2000 2.38 2.14 2.63 2.22 2.12 2.66 0.64 − 7.42 8.69 2.19 − 11.07 4.89

2001–2010 1.75 1.61 1.89 1.80 1.56 1.87 − 2.15 − 6.84 2.54 1.34 − 5.16 2.45

2011–2022 0.73 0.45 1.01 0.86 0.26 1.09 − 14.31 − 27.67 − 0.95 − 17.76 − 21.80 − 0.46

P. falciparum 1990–2000 1.00 0.90 1.09 1.01 0.88 1.14 4.02 − 4.78 12.82 1.38 − 4.60 16.15

2001–2010 0.85 0.80 0.90 0.84 0.80 0.89 − 2.05 − 7.19 3.10 − 2.55 − 9.56 4.38

2011–2022 0.42 0.25 0.59 0.49 0.14 0.68 − 12.51 − 29.80 4.78 − 17.40 − 24.22 − 5.48

P. vivax 1990–2000 1.38 1.19 1.58 1.27 1.19 1.65 − 1.57 − 11.47 8.34 − 0.92 − 10.95 8.41

2001–2010 0.90 0.80 1.00 0.94 0.77 1.01 − 2.11 − 8.47 4.25 − 1.79 − 6.60 5.79

2011–2022 0.30 0.19 0.42 0.34 0.13 0.40 − 14.75 − 27.86 − 1.64 − 15.92 − 20.13 − 6.45
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The temporal trend in malaria over the period of 1990 
to 2022 revealed a 91.26% (95% CI −  91.29, −  91.22) 
reduction in the reported malaria cases. Overall, the 
average annual declining rate in the reported malaria 
cases was − 5.84% (95% CI − 11.56, − 0.12). Most of the 
annual decline was observed in 2017–2018 by 49%, which 
could be attributed to robust implementation of moni-
toring and evaluation frameworks of case management 
and vector control strategies that were part of the NFME 
2016–30 (Fig. 1).

Impact of major anti‑malarial intervention 
from 1990–2022
The analysis of ITS has revealed that EMCP, which 
focused on tribal-dominated hilly forests and P. falcipa-
rum-prone areas, had the most significant impact and 
effects sustained during the post-intervention period 
(p < 0.0001). IMCP provided early case detection and 
prompt treatment using RDT-Pf and ACT-SP, which 
contributed to a significant yearly cases reduction of 
malaria (p = 0.002). ASHAs (since 2009) and diagnosis 
using RDT-Pf/Pv (since 2013), and treatment with ACT-
AL (since 2013) in the North Eastern region states led to 
an additional reduction in malaria cases, which was sig-
nificant (p = 0.048). The NFME and scaling-up of LLINs 
distribution in hard-to-reach high malaria endemic areas 
had the highest impact in the reduction of malaria cases. 
However, in the GLS regression model, the coefficient 
was not found statistically significant (p = 0.101), possibly 

due to the fewer follow-up years after the change point 
(Table 2; Fig. 2).

Prediction of malaria from 2023 to 2030
The statistical accuracy was found highest in ARIMA 
(1,2,2) model, with the lowest RMSE (64,631), AIC 
(774.15), BIC (779.48), MAPE (32.57), and MASE (0.34) 
indicator scores. The next lowest values of these param-
eters were in Holt’s additive and followed by Holt’s 
multiplicative models (Table 3). The MASE in Holt’s mul-
tiplicative model is more than 50% (0.51) which showed 
it to be an inappropriate model of forecasting for the pre-
sent time series data. However, the 95% confidence inter-
val in the predicted malaria cases was wider in ARIMA 
(1,2,2), as compared to both Holt’s models. The forecast-
ing of the malaria cases for the next eight years (2023–
2030) showed that the rapid decline from 2017–2022 was 
likely to continue, assuming the extraneous factors would 
be constant and there are no outbreaks. These obser-
vations imply that the target level of zero indigenous 
malaria cases would be achieved by 2027–2028 (Fig. 3).

Factors associated with malaria incidence
Univariate and multivariate linear regression analy-
sis revealed that populations classified under Sched-
uled Tribes (indigenous people in India) were positively 
associated, and literacy rate was inversely associated 
with the API, both of which were statistically signifi-
cant (p ≤ 0.001). Health infrastructure, which included 

Fig. 1 Trend of malaria cases in India from 1990 to 2022 showing time series (red line) and smoothing curves: (1) Centred moving average (black 
line); (2) Exponential curve (green line); (3) Linear curve (grey line); and (4) Lowess curve (blue line)
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the vacant position of ASHA workers (community-level 
health provider) per 1000 population and the vacant 
position of health workers at peripheral health facilities 

such as sub-centres, primary health centres, community 
health centres, and district hospitals (facility-level health 
provider) per 1000 population was positively associated 

Table 2 Interrupted time series segmented regression analysis showing the impact of major anti-malarial interventions from 1990 to 
2022

* EMCP: enhance malaria control programme; IMCP: intensified malaria control programme; RDT: rapid diagnostic test; Pf: plasmodium falciparum; Pv: plasmodium 
vivax; ACT: artemisinin combination therapy; SP: sulfadoxine pyrimethamine; ASHA: accredited social health activist; AL: artemether lumefantrine; NFME: national 
framework of malaria elimination; LLIN: long lasting insecticidal nets

Year of 
change point

Interventions* Factors Beta coefficient Standard error t P value

1997 EMCP Intercept − 366,103,779 63,332,205 − 5.781  < 0.0001

Year 184,914 31,777 5.819  < 0.0001

Immediate effect − 406,760 133,185 − 3.054 0.005

Sustained effect − 274,754 32,080 − 8.565  < 0.0001

2006 IMCP + RDT(PF) + ACT (ASP) Intercept 67,536,474 30,212,557 2.235 0.033

Year − 32,693 15,125 − 2.161 0.039

Immediate effect − 70,923 194,286 − 0.365 0.718

Sustained effect − 70,867 20,480 − 3.460 0.002

2013 ASHA + RDT(PF + PV) + ACT(ASP/AL) Intercept 112,158,649 18,390,013 6.099  < 0.0001

Year − 55,050 9190 − 5.990  < 0.0001

Immediate effect − 77,516 232,003 − 0.334 0.741

Sustained effect − 69,221 33,475 − 2.068 0.048

2016 NFME + RDT(PF + PV) + ACT(ASP/
AL) + LLIN (scale-up)

Intercept 122,813,847 15,355,727 7.998  < 0.0001

Year − 60,384 7668 − 7.875  < 0.0001

Immediate effect − 58,668 271,886 − 0.216 0.831

Sustained effect − 94,662 55,948 − 1.692 0.101

Fig. 2 Segmented regression analysis in interrupted time series to assess the impact of major anti-malarial Interventions change point from 1990 
to 2022. The four major change points are depicted in the graph. EMCP: enhance malaria control programme; IMCP: intensified malaria control 
programme; RDT: rapid diagnostic test; Pf: Plasmodium falciparum; Pv: Plasmodium vivax; ACT: artemisinin combination therapy; SP: sulfadoxine 
pyrimethamine; ASHA: accredited social health activist; AL: artemether lumefantrine; NFME: national framework of malaria elimination; LLIN: long 
lasting insecticidal nets
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with API (p ≤ 0.001). Whereas the number of health facil-
ities per square km of geographical area was inversely 
associated with API (p = 0.04). Further analysis revealed 
that geographical areas under forest cover, hilly terrain, 
and annual average rainfall (mm) were positively associ-
ated with API (p < 0.0001). In the multivariate model, 37% 
of the variance in the API was attributed to the above 
independent factors included in the analysis (Table 4).

Discussion
The use of longitudinal historical data for assessing the 
impact of intervention and forecasting studies is crucial 
for identifying interventions that have the most impact 
on achieving malaria elimination goals at national and 
sub-national levels. For conducting malaria forecasting 
analysis, the data quantity, quality, timelines, and con-
sistency in reporting are key requirements. Generalized 
linear, ARIMA, and Holt–Winter’s models are the most 
commonly used statistical models in malaria forecast-
ing studies. The selection of the appropriate forecast-
ing model depends on the predictive accuracy, which 
is largely determined by RMSE, MAPE, MASE, MAE, 
MAD, 95% confidence intervals, and visual observation. 
In addition, AIC and BIC are also used as model-fitting 
criteria [12, 27, 28].

This study has used reported malaria cases data from 
the WMRs instead of the controversial estimated cases 
data. In India, efforts are being made to bridge the gap 
between reported and estimated cases with the increased 
community level awareness about the significant value of 
accessing public health systems. The mandatory report-
ing of malaria cases data by the private sector in almost 
all states of the country in the last 18  months and the 
introduction of newer data reporting tools such as the 
Integrated Health Information Platform are expected to 
shrink this gap.

The experiences from the Malaria Elimination Dem-
onstration Project (MEDP) conducted for four years in 
Mandla, Madhya Pradesh have confirmed that treat-
ments that are home-based or use alternate systems 
of medicine do not add significantly to the case data of 
state national programs. Through active surveillance 
and RDT-based diagnostics, it was  found that malaria-
attributable fever never went beyond 1%, so the individu-
als who receive treatment at home or receive treatment 
through alternative systems will not add significantly to 
the malaria case burden [29].

The present study has revealed a linear declining 
trend of malaria cases in India, with about a 91% reduc-
tion from 1990 to 2022. Between 1990 and 2000, there 

Table 3 Measuring the accuracy of ten prediction models using nine summary statistics criteria

ME: mean error; RMSE: root mean square error; MAE: mean absolute error; MPE: mean percent error; MAPE: mean absolute percent error; MASE: mean absolute scaled 
error; ACF: auto correlation function; AIC: akaike information criterion; BIC: bayesian information criterion

Models (n = 10) Summary statistics (n = 9)

ME RMSE MAE MPE MAPE MASE ACF1 AIC BIC

Linear Training − 2.71e−11 305,647.6 224,512.4 − 6.74 17.31 1.34 0.65

Test − 4.33e + 05 436,429.1 433,277.9 − 248.19 248.19 2.59

Quadratic Training 2.72e− 11 250,728.0 189,867.5 − 1.92 11.90 1.13 0.66

Test 8.41e + 04 148,494.2 122,609.9 49.43 70.07 0.73

Cubic Training − 2.52e− 11 262,603.7 191,917.9 − 2.08 11.82 1.15 0.67

Test 1.38e + 05 197,841.6 155,947.6 80.50 90.17 0.93

Moving average Training − 70,280.17 183,319.75 145,459.7 − 10.08 13.57 1.05 0.51

Test 5797.66 11,713.42 10,721.0 2.98 6.02 0.08

Loess Training − 7111.25 47,878.78 21,823.28 − 0.65 1.34 0.32 − 0.12

Test 342,636.37 355,731.07 342,636.37 197.43 197.43 5.06

Simple Exponential Training − 67,907 216,932 164,871 − 10.29 15.6 1.05 0.25

Test − 2,009,565 2,015,929 209,565 − 1147.84 1147.84 932.35 936.84

Double Exponential Training − 68,756 216,914 164,812 − 10.56 15.36 0.97 0.23

Test − 2,113,922 2,122,632 2,113,922 − 1213.69 1213.69 932.34 936.83

ARIMA(1,2,2) Training − 47,088 197,391 157,307 − 3.96 11.62 0.94 − 0.06

Test − 43,021 64,631 57,451 − 24.39 32.57 0.34 774.15 779.48

Holt’s additive Training − 54,609 213,525 162,359 − 5.72 11.74 0.97 0.24

Test 24,779 77,470 63,311 14.82 35.48 0.38 852.06 857.67

Holt’s multiplicative Training − 42,161 225,610 172,941 − 6.12 13.15 1.03 0.35

Test − 86,303 90,667 86,303 − 49.43 49.43 0.51 855.31 860.92
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was an approximately 0.64% yearly increase in malaria 
cases. From 2001 to 2010, there was an annual malaria 
case reduction of about 2%, which could be attributed 
to the combination of several policy and commodities 
interventions such as the introduction of monovalent 
RDTs, replacement of chloroquine with ACT-SP for 

P. falciparum infections, enhanced surveillance under 
the IMCP, introduction of LLINs, and ASHAs. Com-
plimenting the interventions done during the above 
period, in 2011–2022, the addition of NFME, bivalent 
RDTs, AL, and scaling-up of LLINs further contributed 
to about 14% yearly decline in malaria cases.

Fig. 3 Forecast analysis using time series data from 1990 to 2022 and prediction of malaria cases from 2023 to 2030 using (A) ARIMA and B Holt’s 
additive models. The various interventions from 1990 to 2022 are depicted in both models
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EMCP had the highest impact, possibly because in 
the year 1996, the number of malaria cases was higher. 
The impact of EMCP was due to a number of interven-
tions introduced through EMCP, particularly in tribal-
dominated high-burden areas of the country. RDTs for P. 
falciparum in the national programme. While the terms 
EMCP or IMCP are not mentioned now, but the compo-
nents of the intervention have been continued with the 
addition of various new tools and methodologies.

ARIMA and Holt’s time series regression models are 
the most common tools for disease forecasting [30]. In 
the present study, the ARIMA (1,2,2) was the most fitted 
model to predict malaria cases compared to nine other 
models. The ARIMA (1,2,2) model predicted that zero 
malaria cases might be achieved in the year 2028. How-
ever, there was a wide range of 95% Confidence Inter-
val (CI). Further, Holt’s additive model predicted the 
achievement of zero malaria cases by the year 2026 to 
2028. In a state-wide study done in Odisha, the authors 
found that Holt’s Winter was the most fitted model across 
varying endemicities, which predicted a slowing down of 
the decline in 2014–2016, hence, missing the state elimi-
nation goal [13].

The present study has found that the vacant positions 
of health providers at the community and facility levels 
were associated with an increased risk of malaria inci-
dence. It has also revealed that if the health care facilities 
per square kilometre were to be increased, particularly in 
hard-to-reach malaria high-endemic areas, the incidence 
of malaria could decrease. However, while assessing the 
relationship between healthcare facilities and malaria 
incidence in remote areas, studies have found that 

increased travel time and distance to healthcare facili-
ties significantly affect the likelihood of seeking care. For 
instance, a study in Uganda indicated that as travel time 
to a health facility increased, the probability of seeking 
care for malaria symptoms decreased [31]. Circular asso-
ciations may arise if, for example, high malaria incidence 
deters healthcare professionals from working in these 
areas, further exacerbating staff shortages and weaken-
ing the healthcare infrastructure. Consequently, this can 
lead to a vicious cycle where increasing malaria incidence 
and decreasing healthcare provision could reinforce each 
other.

The present study has also found that tribal-dominated, 
hilly and forested areas have a greater risk of malaria 
infection. This finding is complemented by a study done 
in the state of Madhya Pradesh, where it was found that 
communities with high literacy had a lower burden 
of malaria, possibly because of better health-seeking 
behaviour [32]. The phenomenon of high literacy and 
low malaria burden is supported by the national trends 
where most malaria burden is found in inaccessible hilly 
forested terrains and tribal-dominated areas with poor 
healthcare infrastructure and low levels of literacy [33].

The Goalkeepers Report 2021 by the Bill and Melinda 
Gates Foundation (BMGF) has predicted that the global 
malaria cases would be 32 new cases per 1000 people in 
2030, which is almost the same as the reported malaria 
burden of 31 new cases per 1000 people in 2020. The 
report gives a range of 21–42 cases per 1000 popula-
tion as the best and the worst situations in 2030, respec-
tively. A similar trend has been predicted for South East 
Asia + East Asia + Oceania, predicting zero to one case 

Table 4 Regression analysis of factors associated with the Annual Parasite Incidence (standardized with annual blood examination 
rate) 

FACTORS Univariate Multivariate  (R2 = 0.37)

Beta coefficient (95% CI) P value Beta coefficient (95% CI) P value

Demographics

Scheduled Tribe (%) 0.04 (0.03, 0.05)  < 0.0001 0.02 (0.01, 0.03) 0.001

Literacy (%) − 0.10 (− 0.13, − 0.08)  < 0.0001 − 0.09 (− 0.012, − 0.07)  < 0.0001

Health infrastructure

Proportion of vacant position of ASHA worker/000 pop 10.98 (8.65, 13.30)  < 0.0001 5.75 (2.27, 9.24) 0.001

Proportion of vacant position of health worker*/000 pop 7.73 (6.84, 8.61)  < 0.0001 8.95 (7.26, 10.63)  < 0.0001

Number of Health Facilities (SC, PHC, CHC, SDH, DH)/sq km − 3.87 (− 5.22, − 2.51)  < 0.0001 − 1.46 (− 2.85, − 0.06) 0.04

Geography

Forest covered (%) 0.04 (0.03, 0.05)  < 0.0001 0.02 (0.01, 0.03)  < 0.0001

% of Hilly Districts 0.01 (0.05, 0.01)  < 0.0001 0.02 (0.02, 0.03)  < 0.0001

Climate

Annual Rainfall mm 0.0004 (0.0001, 0.0007) 0.002 0.0005 (0.0003, 0.0008)  < 0.0001

Constant 5.54 (3.88, 7.20)  < 0.0001
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per 1000 population as the best and the worst situations 
in 2030, respectively. In comparison, in sub-Saharan 
Africa, 68 to 195 malaria cases per 1000 population are 
predicted as the best and worst-case scenarios in 2030. 
For India, the prediction showed one to four cases per 
1000 population in 2030, indicating a potential miss of 
the national malaria elimination goal [34]. However, the 
present study has suggested that India might be able to 
achieve the national malaria elimination goal, subject to 
the absence of disease outbreaks, climatic changes, emer-
gence of anti-malarial drug resistance, and other inde-
pendent factors. It is also critical to use context specific 
and curated elimination protocols for each of the 27 high 
burden districts in India to eliminate indigenous trans-
mission. If this is accomplished in three to four years, as 
was demonstrated in Mandla through MEDP, and there 
are no disease outbreaks and issue related to climate 
change and drug resistance a malaria free India in 2030 
is possible.

A study conducted in Odisha state reported about 
three times higher annual declining rates in malaria inci-
dence during the intensified post-intervention period 
(2009–2013) compared to the pre-intervention period 
(2003–2008). This study attributed the drop to integrated 
vector control measures, rapid diagnosis and prompt 
treatment, service decentralisation, inter-sectoral con-
vergence, and behaviour change communication (13). 
LLINs, RDTs with ACT and biological vector control 
interventions helped in a significant reduction in malaria 
cases during 2011–2021 in the Karnataka state [35]. The 
present study has also found that optimal coverage of 
ITNs/LLINs effectively decreased the malaria caseload. 
Similarly, ITNs/LLINs were found to be a cost-effective 
intervention tool in Bangladesh [36] and Sri Lanka, 
which have been malaria-free since 2016 [37].

This study used reported annual malaria cases in the 
absence of granular and monthly malaria data of the 
country in public domain. Therefore, seasonality and 
geographical variability in malaria cases could not be 
analysed in the time series modelling. Further, in the pre-
sent forecasting model, the effect of climatic variables 
such as rainfall, humidity, and temperature have not been 
quantitated, although these are significant covariates of 
malaria as reported by other studies [38]. The data in the 
context of roads and telecommunications infrastructure 
were also not analysed in the present study.

Conclusion
The significant decrease in malaria incidence in India 
from 1990 to 2022 highlights the successful implemen-
tation of various anti-malarial strategies and interven-
tions. This study reveals a significant negative trend in 
malaria cases over the past 3 decades, with a remarkable 

reduction of 91%. Factors contributing to this substantial 
decrease include focused interventions such as EMCP, 
IMCP, ASHAs’ contribution, RDT-Pf/Pv and ACT 
deployment, the NFME, and scaling-up of LLINs 
distribution.

Out of these predictive models, the ARIMA and Holt’s 
additive have shown reliable predictive capabilities, indi-
cating that the decreasing malaria cases are likely to 
continue, forecasting zero indigenous malaria cases by 
2027–2028. The study also identified the most impactful 
combination of intervention packages. Disease modelling 
studies will have the most impact during the last mile of 
disease elimination, provided the information is used in 
real-time by the programmes and policymakers. It is pro-
posed that such time series and disease modelling efforts 
should be repeated periodically to validate prior predic-
tions of recent years and suggest any changes needed in 
the interventions required for a malaria-free India.
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