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Abstract 

Background Gabon still bears significant malaria burden despite numerous efforts. To reduce this burden, policy‑
makers need strategies to design effective interventions. Besides, malaria distribution is well known to be related 
to the meteorological conditions. In Gabon, there is limited knowledge of the spatio‑temporal effect or the environ‑
mental factors on this distribution. This study aimed to investigate on the spatio‑temporal effects and environmental 
factors on the distribution of malaria prevalence among children 2–10 years of age in Gabon.

Methods The study used cross‑sectional data from the Demographic Health Survey (DHS) carried out in 2000, 2005, 
2010, and 2015. The malaria prevalence was obtained by considering the weighting scheme and using the space–
time smoothing model. Spatial autocorrelation was inferred using the Moran’s I index, and hotspots were identified 
with the local statistic Getis‑Ord General Gi. For the effect of covariates on the prevalence, several spatial methods 
implemented in the Integrated Nested Laplace Approximation (INLA) approach using Stochastic Partial Differential 
Equations (SPDE) were compared.

Results The study considered 336 clusters, with 153 (46%) in rural and 183 (54%) in urban areas. The prevalence 
was highest in the Estuaire province in 2000, reaching 46%. It decreased until 2010, exhibiting strong spatial cor‑
relation (P < 0.001), decreasing slowly with distance. Hotspots were identified in north‑western and western Gabon. 
Using the Spatial Durbin Error Model (SDEM), the relationship between the prevalence and insecticide‑treated 
bed nets (ITNs) coverage was decreasing after 20% of coverage. The prevalence in a cluster decreased significantly 
with the increase per percentage of ITNs coverage in the nearby clusters, and per degree Celsius of day land surface 
temperature in the same cluster. It slightly increased with the number of wet days and mean temperature per month 
in neighbouring clusters.

Conclusions In summary, this study showed evidence of strong spatial effect influencing malaria prevalence 
in household clusters. Increasing ITN coverage by 20% and prioritizing hotspots are essential policy recommenda‑
tions. The effects of environmental factors should be considered, and collaboration with the national meteorological 
department (DGM) for early warning systems is needed.
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Background
In recent years, epidemiological data have highlighted 
the global impact of malaria. This has led to an estimated 
of 241 million cases and 627,000 deaths attributed to the 
disease worldwide [1]. In Africa, the sub-Saharan region 
accounts for approximately 90% of the malaria cases 
and mortality with Plasmodium falciparum. Gabon is 
one of the African countries with a high prevalence of 
malaria among children under five years of age [2], with 
high impact on population health and socio-economic 
levels. Following the sustainable development goals for 
good health and well-being of Gabon, there is need to 
reduce the mortality rate of children under-five from 41 
to 2.6% [3]. To contribute towards such a goal, reduc-
ing the burden of malaria is an important point to target 
since, in Gabon, malaria is the main cause of consulting, 
hospitalization, and deaths in children [4]. To contribute 
towards this objective, Gabon, through its national pro-
gramme, is committed in the initiative of taking action 
against malaria to mitigate the substantial impact of 
malaria in the coming years. In the previous years, sev-
eral control strategies were already implemented. This 
included (i) vector control, such as the distribution of 
insecticide-treated nets (ITNs), long-lasting insecti-
cidal nets (LLINs), and indoor residual spraying (IRS); 
(ii) chemoprevention; (iii) diagnosis and treatment, such 
as the introduction of rapid diagnostic tests (RDTs) and 
microscopy help diagnose malaria quickly and accurately, 
and the use of anti-malarial drugs according to national 
treatment guidelines help cure infected individuals and 
prevent the spread of drug-resistant malaria strains; (iv) 
community engagement and education, such as health 
promotion by educating communities about malaria 
transmission, prevention measures, and the importance 
of seeking prompt treatment. Community participation 
where local communities are involved in malaria control 
programmes, fostering ownership and sustainability; (v) 
research and surveillance; or (vi) the integrated approach: 
implementing multiple interventions simultaneously 
(e.g., using ITNs alongside IRS) to create synergistic 
effects and improve overall effectiveness. For many of 
them, their effectiveness was reported in different areas 
of Gabon [5, 6].

From previous studies, children under 5  years of age 
were shown to be the most affected [7]. Recently, some 
studies suggested a shift in the high-risk age group [2]. 
However, the P. falciparum parasite rate (PfPR) in chil-
dren between 2 and 10  years old is used as the stand-
ardized measure for malaria endemicity. In fact, three 
reasons have driven this choice when considering malaria 
intensity transmission [8]: (i) the constant PfPR in this 
age group; (ii) the PfPR may be least influenced by drug 
treatment and not affected by immunity and it’s reflecting 

stationary state predicted from mathematical model in 
terms of clinical malaria in this group; (iii) the PfPR is 
aligned with the historical approaches of endemicity 
statement. PfPR is generally considered as the best indi-
cator of the intensity of the transmission, given its asso-
ciation with incidence of clinical malaria episodes [9].

In Gabon, some studies observed a decline in the preva-
lence of malaria, which was noticed after the improvement 
of the anti-malarial policy since 2002, through interven-
tions including impregnated bed nets, and artemisinin-
based combination therapy (ACT) [6]. A cross-sectional 
survey conducted in Libreville, Port-Gentil, Melen and 
Oyem, based on health facilities, showed that between 
2005 and 2008, the prevalence fell from 31 to 18% for chil-
dren under 11  years of age. Another study conducted in 
Libreville in 2009, using a large number of febrile children, 
showed a decrease of malaria between 2000 and 2008 [2, 
10]. After 2008, several studies conducted separately sug-
gested there was no evidence of decline of the prevalence 
up to 2012 or 2013 [5, 11, 12]. However, the conclusion 
has remained in some way ambiguous partly because of 
the scarcity of the available data. Furthermore, the factors 
often considered as related to the prevalence in Gabon 
were the level of education, the type of house, the open 
water body, and the source of drinking water. These were 
mainly investigated at a local scale [5, 10, 12]. However, 
some factors act differently on the vector, the parasite 
and the host-vector interaction, such as the temperature. 
The optimal temperature is between 25 and 27 °C, and is 
important for the duration of the development of the para-
site in the vector [13]. Below 16 °C, parasites stop growing, 
and above 28 °C or 30 °C there is a fast decrease of Anoph-
eles prevalence [14, 15]. The mean, minimal and maximal 
day and night land surface temperature are widely used in 
such analyses. Moreover, rainfall, humidity and arid con-
ditions, are also implied in the egg laying, multiplication 
and the survival of the vector. The land coverage can also 
be important since it can locate mosquito abundance and 
allow the interaction between vector and host [13].

In the context of malaria transmission and other infec-
tious diseases, the assumption of independence among 
observations may not be met. Factors such as envi-
ronmental conditions, vector behaviours, and human 
interactions can create spatial dependencies, where 
neighbouring households or clusters may influence each 
other’s health outcomes due to shared exposures or 
similar environmental conditions. Considering spatial 
dependency with time is essential to gain a more accu-
rate understanding of the distribution and dynamics 
of malaria prevalence. By incorporating spatio-tempo-
ral effects, it is possible to account for the influence of 
nearby locations and the temporal evolution of malaria 
distribution. Bayesian methods are well-suited for this 
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type of analysis due to their flexibility. For example, they 
were used in a study in Rwanda for the estimation of 
incidence without including any covariates [16], and in 
Burundi, Uganda, Nigeria and Tanzania, to describe the 
relationship between malaria distribution, climatic fac-
tors, and anti-vector interventions [14, 17].

Despite progress in malaria vaccine developments, 
there is need to better understand malaria and its risk 
factors using different approaches. These include incor-
porating spatial components and environmental factors 
in the modelling in order to understand disease preva-
lence patterns and to help in the formulation of research 
hypothesis for future research and to identify appropriate 
interventions. This study aimed to provide a description 
of the spatio-temporal distribution of malaria prevalence 
(PfPR) over time and its relationship with environmen-
tal factors adjusted for known anti-vector intervention 
(ITNs coverage), population density and household 
wealth index for children between 2–10  years based on 
data from household clusters.

Methods
Study design
This study used secondary data from the DHS program, 
consisting of a series of cross-sectional surveys carried 
out on 4 time points (2000, 2005, 2010 and 2015) to pro-
vide a representative estimate at the national or regional 
level [19]. The malaria measure in these data was the 
prevalence of P. falciparum malaria (PfPR) in children 
between 2–10  years of age per cluster as measured by 
rapid diagnostic tests or microscopy test. Although the 
DHS program continues to collect data after 2015, only 
these time points were used, since no recent relevant data 
were available for Gabon after 2015 due to the emergence 
of COVID-19 infection during the year 2020.

Study site
The DHS study was conducted in Gabon which is situ-
ated on the West coast of Central Africa. It is bordered by 
the Atlantic Ocean at the west part, Equatorial Guinea and 
Cameroon in the north, and Republic of the Congo in south 
crossed by the Equator. The rainy season extends from Octo-
ber to May with a dry season from June to August [20]. 
Gabon has a total of 9 provinces with Libreville as its capital 
city. The whole area is subdivided in 49 departments with an 
estimated total population of 2.1 million (2019) (Fig. 1). The 
study was conducted in both urban and rural areas.

Data sources and sampling
Information on the sampling frame was obtained from 
the 2000 report of a health survey of the Gabonese direc-
tion nationale des statistiques (DGS) [21], namely the 
number of households in each cluster and number of 

clusters in each residence and resident area. The data 
were made available upon request by DHS program. The 
stratified multi-stage sampling method was used for con-
ducting the survey [22]. The country was divided into 
regions consisting of provinces and two major towns 
(Libreville and Port-Gentil). Within each region the pri-
mary sampling units were clusters of households strati-
fied by area (urban or rural), totaling 20 strata. A random 
number of households was selected within each chosen 
cluster, their sampling weight and their centroid cal-
culated. The number of households was in the range of 
100–300 for each cluster. For all the surveys, 336 clusters 
were sampled with 5 to 30 households per cluster. Spa-
tial data were available for each cluster centroid. For this 
study, Libreville and Port-Gentil were excluded due to the 
missing the data on malaria prevalence. All the covariates 
used here were coming from the raster data and were re-
projected to the same standard-based World Geodetic 
System 1984, then resampled to a 5 × 5 km spatial resolu-
tion. These rasters and the GPS shapefile were imported 
into R to extract raster value. More details can be found 
in Mayala et al. [22].

Statistical analysis
Descriptive analysis
Since for each cluster of households, the PfPR was pro-
vided by year, the mean and standard deviation were used 
to get a summary of the distribution of the prevalence in 
each province by year. The PfPR for each cluster time was 
plotted in order to observe the prevalence within and 
between clusters.

Bayesian inference and computation with INLA
The Bayesian model presents several advantage over the 
frequentist approach. Firstly, in the context of this study 
the data contain hierarchichal structure and potential 
dependency, secondly the study is dealing with secondary 
data and the small areas context. In that situation there 
is need to quantify uncertainty and to remove variability 
through spatial smoothing in order to obtain a good esti-
mation of the prevalence. While frequentist can also deal 
with spatial analysis presenting the advantage of simple 
interpretation in terms of decision through the use of 
p-value, Bayesian modelling offers advantages in its flex-
ibility, incorporation of prior information, robustness 
in small samples, uncertainty quantification, and ability 
to handle complex spatial structures. The computation 
was made using the Integrated Nested Laplace Approxi-
mation (INLA) approach instead of the usual MCMC 
method. The Bayesian inference helps to provide a dis-
tribution of the parameters ( θ ) given the data ( y ) called 
posterior distribution ( p

(
θ |y

)
 ), corresponding approxi-

matively to the product of the distribution assigned to 
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this parameter before seeing the data called prior ( p(θ) ), 
and the likelihood (product of the individual probability 
of yi|θ )) using Bayes theorem.

It can be briefly expressed as:

The marginal posterior distribution was obtained using 
an approach suggested by Rue et  al. [23], called INLA. 
It is based on the latent Gaussian model, the Gaussian 
Markov Random Field model (GMRF) and the Laplace 
approximation, with the aim of reducing the computa-
tion time by adding the assumption of the conditional 
dependence of the parameters. The model can be briefly 
explained as follows: by denoting x = (ω,α,β) as the 
latent fields, and φ =

(
σ 2
e , k , σ

2
)
 as the hyper-parame-

ters, in order to find the marginal posterior, p
(
xk |y

)
 , an 

approximation of p
(
φ|y

)
 and p

(
xk |φ, y

)
 is calculated, 

since the marginal posterior can be expressed as:

Then the Laplace approximation and the nested inte-
gration was used to obtain an approximation p̃

(
φ|y

)
 of 

p
(
φ|y

)
 , and p̃

(
xi|φ, y

)
 . Lastly, a numerical integration 

was used to obtain the approximation p̃
(
xk |y

)
 of p

(
xk |y

)
 

which takes the following form [24, 25]:

Estimation of the prevalence using structured 
and unstructured spatial effects 
In order to remove some of the variability in the preva-
lence and to obtain the smoothed prevalence, two ran-
dom effects were introduced: (1) a spatial unstructured 
effect modelled as i.i.d errors with N (0, τe) , and (2) a spa-
tial structured effect with a Intrinsic Conditional Auto-
Regressive (ICAR) model. These account for region and 
neighbourhood effects and are known as BYM or BYM2 
models or convolution models. Additionally, an inter-
action effect to relax the assumption of lack of specific 
temporal evolution for each cluster was used. Four types 
of models of interaction were compared. Type 1, spe-
cific area time trends interact with random effect of the 
region without being influenced by neighbours, Type 2, 
the temporal trend of a specific area is not influenced 
by its neighbour, Type 3, the spatial dependence or spa-
tial pattern is not changing according to time, and Type 
4, spatial patterns correlated in time or temporal trends 
spatially correlated specific for each cluster. To obtain 
an improved estimate, which we called the “true” preva-
lence, the space and time estimate of the prevalence was 

p
(
θ |y

)
∝ p

(
y|θ

)
× p(θ)

p
(
xk |y

)
=

∫
p
(
xi|φ, y

)
p
(
φ|y

)
dφ

p̃
(
xk |y

)
=

∑
k
p̃
(
xi|φk , y

)
p̃
(
φk |y

)
�k

obtained firstly through the Horvitz and Thompson for-
mula, and then smoothed using the logit of the obtained 
prevalence. The weight used in the Horvitz formula at the 
cluster level was obtained by following the formula sug-
gested by DHS, using the available information in the 
data, and the DHS final report, which are also used in 
DGS [21] (see Additional file 1: Table S3). In the estima-
tion of the prevalence, the penalized complexity priors 
(PC) was used since it is less sensitive to the change of 
parameters, and it can overcome the difficulty of setting 
a prior for a hierarchical model as noted in the study of 
Simpson [26] (Table 3).

Estimation in areal and geo‑statistical data
The estimation of the prevalence was done using two 
types of data: areal data and geo-statistical data. This was 
in order to highlight the use of one of this type of data 
while estimating the prevalence to borrow strength from 
other provinces. In the areal data, the unit was a polygon 
representing a province. Due to the small number of the 
provinces, the analysis was also conducted in the smallest 
level, which was cluster of households [27]. Each preva-
lence value of a cluster was considered as a partial reali-
zation of a stochastic process, and the spatial dependency 
was measured by using only the distance. This made the 
assumption that nearby points have the approximately 
the same value. This spatial dependency was measured 
using the well-known covariance function called Matérn 
covariance function [28]. To deal with the intensive 
computation due to the size of the variance–covariance 
matrix carrying the spatial correlation, the stochastic 
partial differential equation (SPDE) approach was used. 
This approach allows to find a differential operator on an 
SPDE which has the solution described by a covariance 
function specified above. It provides a sparse precision 
matrix by moving from the exact solution (a Gaussian 
field), to the GMRF, the approximated solution, through 
meshes (48). This was implemented using INLA and the 
results are very similar to those obtained by the MCMC 
method [29] (see Table 3 for the SPDE).

Geo‑additive model (GAM)
In the assessment of the effect of the covariates and the 
prevalence of malaria, after performing the spatio-tem-
poral analysis with the linear model or the non-spatial 
linear model (not presented here), the assumption of 
linearity between them was relaxed by using the GAM, 
in order to allow the shape of the relationship to be 
closely related to the observed data, and the results to 
be compared between the two approaches. In such a 
GAM, the relation is described for each continuous vari-
able by a function which may be linear or not [30, 31]. 
Two approaches were developed. The first one, named 
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replicated model, assumed that the coefficient ρ of AR(1) 
is zero (see Additional file 1: Fig. S16). In the second one, 
named space–time correlation model, it is assumed that 
ρ is not 0, and must, therefore, be estimated (see Table 3).

Spatial econometrics models
In order to quantify the spillover effect, that is the way the 
change of a covariate in a region can affect the prevalence 
in the same region or in another region, the following spa-
tial econometrics models were used: SLM, SEM, SDM, and 
the Spatial Durbin Error Model (SDEM) [30, 31] (Table 3). 
While these models are widely used in econometrics, they 
are not directly implemented in INLA. To be INLA-compat-
ible, it is suggested to condition on the spatial autocorrela-
tion parameter [29, 32].

Spatial autocorrelation and hotspots 
The Moran’s index I was used for detecting the spatial 
autocorrelation on the outcome, malaria prevalence, at 
the cluster level. A positive Moran’s statistics close to 1 or 
a Geary c statistic close to 0 indicated a strong autocor-
relation of the prevalence. For identifying hotspots and 
cold spots, the local indicator of spatial autocorrelation 
(LISA) was used.

Spatial regression with INLA
Variable selection was based on a Gaussian random effect 
model, the multicollinearity using the (variance inflator 
factor, VIF) with the cut-off set at 10, and the knowledge 
of the variables commonly used in the literature. Covari-
ates included in the model study were first available from 
the data as known variable influencing the distribution of 
the prevalence, however to be considered in the analysis 
they were selected in order to avoid redundance effect or 
variables which are not improving the fit of the model. 
The contribution of each variable according to the litera-
ture was the main criteria of selection. As the objective 
was also to compare in the model how environmental 
variables are affecting the distribution in the presence 
of other variables such as population density, socio-eco-
nomic factors such as wealth index, and the vector con-
trol such as ITNs coverage, these variables were included 
in the final model and were considered in the selection 
model presented here (for details see Additional file  1: 
Table  S7—S11). The linear regression was mainly used 
to see whether the variation observed can be sufficiently 
explained by the covariates. Hence, the spatial autocor-
relation was measured in the residuals. Spatio-temporal 
models were run as the appropriate method for spatial 
effect observed. The covariates were split into four sub-
models: M1 (model without covariates), M2 (model with 
only ITNs coverage, population count and wealth index), 
M3 (only ecological variables) and M4 (the full model). 

The variation of the spatial parameters was observed in 
each model. This approach was suggested by Giorgi et al. 
[33]. Spatial analysis was conducted considering each 
point as a realization of a Gaussian process, thus defining 
a stochastic process implemented using INLA and SPDE.

Results
Descriptive analysis
This study included 336 clusters, with 153 (46%) clusters 
in rural areas and 183 (54%) clusters in urban areas. The 
prevalence of malaria was high in the Estuaire province 
[29% (± 16%)], followed by Moyen-Ogooue [22% (± 13%)] 
and Woleu-Ntem [21% (± 10%)]. The lowest prevalence 
of 17% (± 9%) was found in Haut-Ogooue province. On 
average, prevalences were similar between the provinces 
and had large variation. In Fig.  2, panel (A), the preva-
lence showed a decrease over time from 2000 to 2010 in 
each province, with a small increase after 2010. In Fig. 3, 
panel (B) shows that the prevalence was higher in rural 
areas than in urban ones. Almost all clusters showed this 
U-shape, as seen in panel C.

It was observed that the mean value of almost all the 
variables is not changing over time, and only rainfall, 
population count, ITNs coverage, and aridity are slightly 
changing. ITNs coverage was the most varying, showing 
a decrease over time (see Additional file 1: Table S2).

Space–time estimation of the prevalence
Comparing various models of interactions, the study 
determined that the type 2 interaction yielded the best 
results based on DIC. This suggests that the model 
which shows that the spatial effect does not change 
over time, and that the temporal effect does not vary 
across space is the best. The model with interaction 
exhibited slightly better performance compared to the 
model without interaction (-145 vs 141 DIC) and dem-
onstrated the highest spatial fraction (41% vs 35%) 
(see Additional file  1: Table  S3 and S4). A compari-
son between estimates obtained using the smoothing 
method with and without the sample design revealed 
a reduction in variance. Hence, the model incorporat-
ing the sample design (Eq. (1)) and the smooth method 
(BYM2 Eq.  (2) from Table  1) should be considered to 
avoid estimates with large variability, as the case was 
when the sampling design used in the sampling method 
is not included in the analysis. The analysis identified 
Estuaire province as having the highest prevalence 
of malaria throughout the years, followed by Moyen-
Ogooue Province (Fig.  3). The prevalence was high in 
2000, decreased over time and increased slightly again 
after 2010, roughly the same in each province. Ogooue-
Maritime province was characterized by a very low 
transmission during the year 2010. This was less than 
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10%, therefore, characterizing the region as a hypo-
endemic area. In general, the whole country remained a 
meso-endemic area over time with prevalence between 
10 and 50%.

Unit‑level model
In Fig.  4, the unit-level model using smoothing model 
shows also that the prevalence of malaria had a U-shape 
for each province, and each type of residence over 
time, and high in rural areas by about 7% more than 
the urban areas. Using this model, the rural areas of 
the Estuaire province were found to be hyper-endemic 
areas during the year 2000, while almost all urban areas 
have low transmission intensity during the year 2010. 
In general, all the country was meso-endemic until 
2015 (see Fig.  4). Compared to the areal model, the 
length of the credible interval was reduced with the 
unit-level model. The maximum length of the credible 
interval went from 12 to 4%, and the minimal length 
went from 4 to 1% from area-level model to unit-level 
model, respectively (see Additional file 1: Tables S5 and 
S6). This was different with the estimation in the Fig. 2 
since it was a descriptive analysis.

Spatial fraction and spatial autocorrelation
The spatial fraction in the prevalence estimated, 
obtained with the reparametrized BYM model (BYM2) 
presented in the Table 1 (Eq. (2)), was observed to vary 
slightly by year. This followed the trend of the estimated 
malaria prevalence over time (Range: 30%, 46%). There 
was a statistically significant (p < 0.001) autocorrelation 
of malaria prevalence in the cluster of the households 
as the Moran’s index I was positive and close to 1. This 
was almost constant over time (see Additional file  1: 
Table S4, Fig. S20).

Hotspot and coldspot analysis
As shown in in Fig. 5, using the LISA method, significant 
hotspots were identified, and the magnitude was varying 
over time. In the year 2000, a significant cluster of high 
prevalence was observed in the western part of Gabon 
at 99% confidence. During 2000 and 2010 the number 
of hotspots was significantly reduced. However, in the 
year 2015, almost the same patterns observed in 2000 
appeared again. Significant cold spots were found with 
magnitude changing over time. During the year 2000, the 
greatest cluster of low prevalence was found in the south-
ern part, followed by the southeast, and the northwest 
Gabon.

Fig. 1 The Map of Gabon
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Model building 
Using the pairwise correlation test, malaria prevalence 
was negatively associated with many covariates such as 
ITNs coverage, and night land surface temperature. It 
was positively associated with mean temperature and 
wet days. Although minimum and maximum tempera-
ture are widely used in the literature, since no evidence 

of correlation was found, they were removed from the 
model. However, since there was a strong correlation 
between minimum temperature and mean temperature, 
the mean temperature was used in the model to replace 
these variables in order to have an estimate of the 
effect of temperature. Based on a mixed random effect 
model, and the multicollinearity using the VIF (< 10), 

Fig. 2 An overview of the distribution of the prevalence. A the variation of the prevalence over time by province. The colors red and blue highlight 
the first two provinces with high prevalence. The green color highlights the province where the prevalence reached the lowest value. B distribution 
of the prevalence by type of residence for each province. C prevalence for each cluster over time with the green line showing the overall trend 
based on polynomial functions
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the following variables were the final variables selected: 
Proximity to water, all population count, aridity, day 
land surface temperature, enhanced vegetation index, 
ITN coverage, mean temperature, wealth index, wet 
days and rainfall (Additional file 1 for details, Table S8, 
S9, and S10).

Multiple linear regression and spatial autocorrelation 
in the residuals
The linearity of the selected variables and the outcome 
was assumed looking to the scatter plot and the model 
was based on the log transformation. Overwhelming 

Fig. 3 Map of malaria prevalence in Gabon by year (2000, 2005, 2010, 2015). This plot presents the estimate obtained with the smoothing model 
and survey complexity

Table 1 Spatial parameters OLS and GAM with all variables considered as non‑linear

* GAM Geo-additive Model; OLS Ordinary Least Squared

Model Parameter Spatio‑temporal OLS model GAM model with non‑linear variables

Mean (SD) 95% CI Mean (SD) 95% CI

M1 Error 0.000064 (0.0000077) (0.00005,0.00008) 0.00053 (0.000064) 0.00042;0.00067

Spatial variance 0.17 (0.036) (0.11,0.25) 11 (2.2) 7;16

Range 333 (35) (270,406) 332 (31) 276;396

Time coefficient (a) 0.97 (0.0044) (0.96,0.98) 0.99 (0.0016) 0.98;0.99

M2 Error 0.000026 (0.0000045) (0.000018,0.000036) 0.00047 (0.000062) 0.00036;0.0006

Spatial variance 0.055 (0.01) (0.038,0.077) 8.1 (1.7) 5.2;12

Range 154 (15) (128,185) 278 (27) 229;336

Time coefficient (a) 0.97 (0.0044) (0.96,0.98) 0.99 (0.0015) 0.99;0.99

M3 Error 0.000071 (0.000012) (0.00005,0.000095) 0.0006 (0.000082) 0.00045;0.00077

Spatial variance 0.021 (0.0053) (0.012,0.033) 10 (2.3) 6.4;15

Range 153 (21) (114,197) 342 (36) 279;422

Time coefficient (a) 0.93 (0.014) (0.89,0.95) 0.99 (0.0018) 0.98;0.99

M4 Error 0.000023 (0.0000043) (0.000016,0.000032) 0.00053 (0.000073) 0.0004;0.00068

Spatial variance 0.044 (0.011) (0.026,0.068) 8 (1.9) 4.9;12

Range 142 (17) (111,176) 290 (33) 230;360

Time coefficient (a) 0.96 (0.0062) (0.95,0.97) 0.99 (0.0016) 0.98;0.99
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evidence of strong spatial autocorrelation in the resid-
uals for each year was found, with only a slight reduc-
tion compared to the spatial autocorrelation in the 
prevalence Additional file 1 for details, Table S12, S13).

Spatio‑temporal models
Linear models and GAM
Spatial variation was reduced by 68%, 88%, and 76% for 
SPTOLS, and by 26%, 9%, and 27% for space–time cor-
related GAM after adjusting with M2, M3 (environmen-
tal variables), and M4 (full model) from M1, respectively 
(Table  1). The full model, exhibiting the smallest DIC, 
was considered the most optimal. The value of the range 
showed a strong spatial correlation decreasing slowly up 
to 142 km (290 km with GAM). For all the sub-models, 

the spatial variance was obviously greater than the meas-
ure error by more than 95%. The coefficients for time ( ρ ) 
were almost the same for all the three sub-models. No 
evidence for the time effect was found since the credible 
interval contains 0. From AR (1), no effect of time was 
found since the coefficient for time was relatively high. 
For the replicated GAM, M3 was better than M2, while 
for the space–time correlated model, M2 was better than 
M3 with respect to DIC (see Additional file 1: Table S19).

In the full model, a 1% increase in ITNs coverage and 
or population density was found to be significantly asso-
ciated with a 52% reduction (3% reduction) in malaria 
prevalence. Conversely, a 1-degree increase in night land 
temperature showed a significant association with a 3% 
increase in malaria prevalence (see Additional file  1: 

Fig. 4 Smoothed prevalence by type of residence obtained from the unit‑level model estimated for each year. The bar plotted at each point 
represent the 95% CI. In contrast to Fig. 2, this is an estimate obtained from a unit‑level model
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Table S15). See Eq. (5) and Eq. (5) from Table 3 for spatial 
linear model and spatial GAM, respectively.

Spatial econometric models
Computing models
Using the Moran index, or the Lagrange multiplier (LM), no 
evidence of spatial dependence was observed (Additional 
file 1: Table S17). The DICs of the spatial lag models were 
smaller than the DIC of the GAM ran previously, (-3125.58 
and -1744.26, respectively). Based on the ML (Maximum 
Likelihood), the best model was the SDEM (Eq. (9) Table 1, 
Additional file 1: Table S20). This was used since the DIC fit-
ted in INLA as run by Rue et al. did not allow the comparison 

of the DICs [32]. The fit with ML and INLA, gave approxi-
mately the same values.

Impact
As shown in Table 2, since the indirect effect of ITNs cov-
erage was positive and significant, therefore, for a par-
ticular cluster, increasing the ITNs coverage in its nearby 
clusters or day land surface in the same cluster was found 
to be significantly associated with the decrease of the 
prevalence in this cluster by 21% or 2%. An increase of wet 
days in a cluster or mean temperature in nearby clusters 
was associated with an increase of the prevalence in that 

Fig. 5 Malaria hotspots and cold spots identification over time in Gabon

Table 2 Comparison INLA and Maximum likelihood for SDEM

Covariates SDEM from ML SDEM from INLA—95% CI

Direct impact Indirect impact Direct impact Indirect impact

Mean temperature − 0.0089 0.019 − 0.009 (− 0.025; 0.0069) 0.019 (0.0012; 0.037)

Day land surface temperature − 0.015 0.0065 − 0.015 (− 0.02; − 0.011) 0.0065 (0.0016; 0.011)

Wet days 0.032 − 0.0016 0.032 (0.012; 0.052) − 0.0018 (− 0.023; 0.02)

ITN coverage 0.14 − 0.21 0.14 (‑0.067; 0.34) − 0.21 (− 0.4; − 0.0055)

Urban—rural − 0.041 − 0.0083 − 0.041 (− 0.054; − 0.028) − 0.0082 (− 0.022; 0.0052)
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cluster by 3% or 2%. There was a statistically significant dif-
ference in prevalence by type of residence.

From M0, the spatial variation was reduced by 33%, 
13% and 8% when considering the M4, the model with 
environmental variables (M3) and M2 respectively. Look-
ing specifically at the ITN coverage curve, we can see that 
malaria prevalence only begins to fall at 20% coverage 
(Additional file 1: Fig. S18).

Discussion
The aim of this work was to use Bayesian spatio-temporal 
analysis to identify the spatial patterns of malaria preva-
lence over time in Gabon for children between 2 and 
10  years of age, using DHS survey data. This study con-
sidered environmental factors and other variables, such as 
ITNs coverage, population count, wealth index and type 
of residence. To grasp the complexity of malaria preva-
lence and the survey indicators, various model strategies 
were used, including one by Giorgi et al. [33]. Space–time 
smoothing model based on the areal data and the unit-
level data were used for small area estimation (SAE) using 
the sampling design of the multi-stage stratified sampling 
method, which ensures the representativeness of the esti-
mate at the national level. This study investigated the spa-
tio-temporal distribution of malaria taking into account 
almost the whole area in Gabon. By incorporating these 
comprehensive methods, this study aimed to enhance 
understanding of the spatio-temporal dynamics of malaria, 
providing valuable insights for targeted interventions and 
malaria control efforts in Gabon.

The prevalence decreased between 2000 and 2010, and 
increased slightly after 2010. This decrease was also seen in 
a study investigating the changing risk of PfPR. It was con-
ducted based on 49 African countries, and 82% of them 
showed this similar decrease [34]. Findings of the high preva-
lence in the rural areas were supported by a study conducted 
in Mozambique [35]. They found that children living in 
urban areas had lower risk of malaria compared to those liv-
ing in rural zones. The decrease of malaria prevalence can be 
explained by the fact that new interventions were introduced 
around 2000 and 2006 in urban areas, for example the use of 
ACT and the distribution of ITNs. In fact, during this period 
many studies reported the introduction of these new inter-
ventions in the improvement of anti-malarial policy, and the 
decrease of the prevalence at the same period [2, 10]. For 
African countries, such as Malawi, there were some obvious 
decrease of the prevalence as the intervention was sustained 
[36].

The high prevalence in rural areas can be explained 
by the lack of amenities, therefore locating health care 
workers poses challenges in terms of availability [2]. The 
underlying factors responsible for the observed increas-
ing trend, particularly the slight upturn after 2010, 
remain ambiguous and warrant further investigation. 
However, it was notice the following points [2, 5]: after 
2008, maybe due to the decrease in global fund contribu-
tion or the observed decrease in different areas in Gabon, 
ITN coverage decreased, and the activities of National 
Malaria Control Programme (NMCP) for prevention 
slowdown. Since the interest was often focused in a par-
ticular age group, and it happened that the intervention is 
not sustained this led potentially to a small increase in the 
prevalence This is known as ‘delayed malaria’ [38]. In the 
studies conducted in Zambia and Zanzibar, as the inter-
vention was maintained, the rebound, referring to a spe-
cific period characterized by an elevated risk of malaria 
infection following a time-limited period of protection 
from malaria, was not shown [36, 37]. The implication of 
delayed malaria and rebound in regions with inconsistent 
or reduced intervention efforts is a higher prevalence of 
malaria, as supported by many studies [2, 5]. Sustained, 
comprehensive intervention strategies, including con-
sistent funding, active programme implementation, and 
continuous efforts in preventive measures, are crucial in 
combating malaria effectively and avoiding resurgence or 
rebound effects. This may mitigate the impact of the loss 
of naturally acquired immunity as it could be induced by 
effective interventions. Other factors able to contribute 
in such increase can be vector resistance to insecticide 
or lack of awareness campaigns. It should be notice, drug 
resistance poses a threat to the effectiveness of control 
measures. On the other hand, it will be important to arise 
awareness in the education system including education 
from parent regarding the risk of malaria and the dis-
tribution of new ITNs, to increase its average just after 
cessation of the effective intervention [6]. It is worthy to 
notice that maintaining long-term community engage-
ment, consistent funding, and ensuring the sustainability 
of interventions remain challenges. The result of 46% or 
41% of the contribution of spatial component in the esti-
mation of the prevalence was in line with a study con-
ducted in Rwanda [16], although the confidence interval 
was wide. The authors found that the spatial compo-
nent contributed 49% in 2014 and 41% in 2018 based 
on malaria relative risk estimates. These results demon-
strated also that it is better to use the survey design of the 
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study and the smoothing model, since it reduced the vari-
ance due to the introduction of another random effect 
of borrowing strength from neighbours. This was in line 
with many studies in the literature [39]. Furthermore, the 
use of the unit-level model reduced the uncertainty in the 
credible interval of the estimate, while approximately the 
same estimate was obtained with the areal model.

The change of hotspots and cold spots over time and 
space was also supported by a study conducted in Sen-
egal [40]. Here, the authors analysed the spatio-temporal 
distribution of hotspots and their association with vari-
ous environmental variables. They found that the vari-
ation of hotspots was associated with rainfall and EVI). 
For this study, this relationship was further evaluated 
separately to explore the distribution of hotspots and 
its relationship with environmental and other factors in 
Gabon [41], and was in line with the above study. Hot-
spots occurrence was found to be significantly associated 
with the increase in year, and rainfall amount.

The difference on the significance of covariates found 
in the OLS regression compared to spatial models, 
emphasized that, in the presence of spatial autocorrela-
tion, the results of the OLS were biased as the standard 
error was not correct [31]. In all spatio-temporal models 
used, the change in the year did not yield significant evi-
dence of influencing the prevalence. This finding may be 
attributed to limited temporal observations and potential 
variations in data collection timing.

Among all models considered to assess the effect of 
covariates on the prevalence, SDEM was the best. This 
model was also used by Augusto et  al. to describe the 
relationship between forest clear-cutting and malaria 
cases [42]. Using this model, it was found that environ-
mental variables were impacting considerably the spatial 
distribution when they were introduced in the analysis 
before. This spatial distribution of the prevalence slightly 
changed after adjusting with the other variables. How-
ever, the magnitude of the change in the prevalence was 
small. This finding was in line with many other studies 
highlighting the importance of geo-climatic variables 
using other models [17, 18]. Interaction between ITNs 
coverage and other variables, or amongst other variables 
was not found. This is in contrast to other studies, where 
they found interaction between night land surface tem-
perature (LSTN) and Normalized Difference Vegetation 
Index (NDVI) [18].

ITNs coverage was the most important variable affect-
ing the variation of malaria prevalence in Gabon with 
protective effect on nearby clusters. This result was 

similar to the finding of a study conducted by Hawley 
et  al. [43]. In their study, by investigating the effect of 
ITNs in the nearby households, they found that ITNs 
have a protective effect on households that did not 
receive ITNs but were situated within 300 m of the ones 
that did. These results from our study highlighted the 
important role of malaria control policy on the preva-
lence of malaria even on the cluster level. In the non-lin-
ear relationship when the summarized data on year were 
used, this study suggested that malaria prevalence started 
to decrease once ITNs coverage was above 20%.

The negative effect of mean temperature was consistent 
with many studies that did not applied spatial economet-
rics model [44, 45]. Despite being supported by several 
studies, the observed outcome was unexpected. This is 
due to the fact that an increase in temperature would 
normally be anticipated to create challenges in the life 
cycle of P. falciparum. However, the mean temperature 
in Gabon, according to this study was between 24 °C and 
27 °C which is in the range of the optimal temperature for 
both vector and parasite, that is, 25  °C and 27 °C. Thus, 
these results were suggesting that the country has a suit-
able ground for mosquito breeding. The finding of the 
effect of day land surface temperature on the prevalence 
was supported by the study conducted in Uganda [18]. In 
their study, they found a decline of malaria at higher tem-
perature 35 °C, but they did not apply the same model to 
identify the spillover effect.

The finding of the effect of wet days on malaria preva-
lence, was also found in a study conducted in the Dem-
ocratic Republic of Congo [45]. They focused on the 
association of climatic factors in malaria morbidity based 
on data from 2001 to 2019. They found that one-day 
increase of the rainy day was associated with 7% increase 
in malaria cases. In fact, wet days have a significant posi-
tive correlation with rainfall. Rainfall leaves sites for mos-
quito to grow larvae, therefore contribute to expanding 
the mosquito population.

This study had a cross-sectional design with data col-
lected at only four specific time points. A more compre-
hensive understanding of the temporal trends could be 
gained with more time points. The lack of some other 
variables like health facilities quality and proportion of 
drug limits the ability to fully grasp their impact on the 
prevalence of malaria. Also, the use of a secondary data 
may introduce potential temporal biases which may limit 
knowledge in the current situation due to changes in 
demographics, technology, or socio-economic factors. 
Although, the exact method of determining parasitaemia 
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was not available from the data, a report of a UNAID 
DHS surveys carried out in 29 African countries used 
both rapid diagnostic test and malaria microcopy.

Policy implication
The use of spatial component methodology allows to 
obtain good estimates of an outcome in small areas, 
reflecting the true burden of the disease, when there is 
the presence of a strong spatial effect. The findings of this 
study provide valuable insights for policy makers, ena-
bling them to effectively target and prioritize areas with a 
high burden of malaria. The spatial effect observed in the 
level of cluster of households can be important to amplify 
the impact of an intervention to reach areas not targeted 
through the local spillover effect. ITNs coverage plays a 
protective role which is, in magnitude, much better than 
the negative spillover effect of environmental variables. 
Environmental variables associated with prevalence 
reduction and ITNs coverage can significantly improve 
the impact of interventions. This gives strength to the 
expectation that the interventions may play a significant 
role in the way of reducing the burden of malaria.

Conclusions and recommendations
The findings of this study emphasize the significant prev-
alence of malaria, identification of hotspots, the pres-
ence of strong spatial autocorrelation decreasing slowly, 
and the spillover effect of environmental variables. Addi-
tionally, the study highlights the association between 
variables such as day land surface temperature, wet days, 
mean temperature, and ITNs coverage after adjusting for 
other factors. These insights contribute to a comprehen-
sive understanding of the malaria landscape and inform 
strategies to mitigate the disease burden effectively.

These findings, may have four major implications. 
Firstly, the use of advanced spatial methods to achieve 
more accurate estimations of malaria prevalence for 
small areas with strong spatial autocorrelation, by incor-
porating spatial components in the analysis using Bayes-
ian framework, and the spillover effect through SDEM 
to elucidate the impact of interventions or some factors 
when change occurred in surrounding neighbourhoods. 
Secondly, the optimization of the resource alloca-
tion. Finding suggesting that the ITN coverage may be 
increased at least to 20% may benefit in resource allo-
cation. Increasing the ITNs coverage uniformly across 
diverse locations to a substantial threshold in different 
household clusters necessitates significant resources, 
posing challenges in achieving parity across various 

regions, since the limitations in resource availability often 
hinder attaining equal coverage levels in multiple areas. 
Therefore, these findings may highlight the potential cost 
reduction and optimization of resource allocation across 
various locations even in the setting where they are not 
enough to reach high level of the coverage. This enables 
more effective and efficient resource utilization to yield 
optimal outcomes.

Thirdly, the mitigation of hotspots. The second point 
coupled with enhanced healthcare access and the 
establishment or reinforcement of health infrastruc-
ture in specific regions, aiding in prompt diagnosis 
and treatment accessibility in rural areas, may for-
tify malaria control initiatives, significantly reducing 
clinical incidence, and potentially curbing the forma-
tion of hotspots. The increase in ITNs coverage paired 
with spillover effect at the household cluster level, may 
enhance the impact of the ITNs coverage on the clini-
cal burden of malaria in close areas for children aged 
between 2 and 10  years. If this is not considered, the 
decrease of ITNs coverage, and other factors like 
quality of public health facilities, associated with the 
increase of some ecological factors, will probably lead 
to a significant upsurge of malaria, and formation of 
hotspots. Fourthly, collaborative efforts between the 
National Directorate of Meteorology (DGM) and the 
National Malaria Control Programme (NMCP) are 
needed to mitigate adverse climatic effects on malaria 
by developing a good early warning system (EWS) for 
malaria. Focusing research on this EWS for malaria, 
will help in informing population on different initia-
tives to undertake when there are changes in environ-
mental or ecological factors, in order to better fight 
malaria at community or individual level. These recom-
mendations should be applied particularly in targeted 
cluster of households in the north west, and specifically 
in Estuaire province and the south part of the country 
where there are hotspots or coldspots. Implement-
ing these comprehensive measures can pave the way 
towards meaningful progress in malaria control and 
contribute to improving public health outcomes in the 
country.

Appendix
See Table 3
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Table 3 Models and related equations in estimating the prevalence of malaria and the effect of covariates

Models Related equations Description

Space–time 
smoothing esti‑
mate

(a) Prevalence estimation with weight

pit =
∑nit

k=1
wkyk∑nit

k=1
wk

(1)
(b) True prevalence
logit(pit)|�it ∼ N

(
�it , V

L
it

)

�it = β + βit(rural)+ (�+ γit)(urban)

+αit + ǫit +
1√
τ

(√
(1− φ)Si +

√
φei

)
+ δit

φ is the spatial fraction(2)
(c) PC Prior
The prior for φ is not on a close form. The prior on τ:
π(τ) = �

2
τ−3/2e−�τ−1/2

, τ > 0, � > 0 (3)

yj(a) was defined to be the cluster’s outcome andwk , if available, the weight 
associated with the clusterk . i ∈ I , I  is the partition of the region, and nit 
is the number of clusters at time t  in the area i
(b) the true prevalence was estimated using logit(pit).β is the intercept 
for a cluster identified as in rural area, β + � intercept for urban area. βit 
and γit are temporal main time‑varying effects. αit is the structured time 
trends, ǫit is the temporal term ( iid XE “ iid”), Si is the structured spatial trends, 
ei the unstructured spatial terms and δit the interaction between space 
and time
(c) The priors were defined on the hyperparameters φ and τ for the for 
the structured and instructured effect [26]
For time effect α , the following was used: αit ∼ N

(
αt−1, σ

2
)
 (random walk 

order 1) or N
(
2αt−1 + αt−2, σ

2
)
 (random walk order 2). The auto‑regres‑

sive model AR(1) is defined as αt = φαt−1 + ωtωt ∼ N
(
0, k(−1)

)
 , t ≥ 2 

and α1 ∼ N(0, τ1) , τ1 = k
(
1− φ2

)
 . The spatial structure of δit is modelled 

by the ICAR model:

δit |δjt , τδ ∼ N
(

1
ni

∑
j∈n∂ i

δjt ,
tδ
ni

)
,

∂ i = the set of neighbours for the area i  , n∂ i number of these neighbours

SPTOLS yit ∼ N
(
ηit , σ

2
e

)

ηit =
∑p

j=1 βj xji + ωit ,ωit = aωi(t−1) + ξit , |a| < 1

(4)

xmi is the mth variable values at cluster i  , σ 2
e  the variance for the measure‑

ment error modelled through a Gaussian process spatially and serially 
uncorrelated. Here ωit is an AR(1). Coefficient a is spatially correlated. 
ξit is a GF (Gaussian Field) independent in time, with mean 0 such 
that for t1 = t2 , Cov

(
ξit1 , ξit2

)
 is non‑null and is the Matèrn covariance 

function defined as above. The PC prior was used for the autocorrelation 
parameter a such that the probability of the standard deviation to be 
greater than 0 is 0.9. For the remaining parameters, loggamma distribu‑
tions were used with mean 1, and precision of 0.00001 or 0.001 as also used 
by Musenge et al. [25]

GAM yit ∼ N
(
ηit , σ

2
e

)

ηit =
∑p

j=1 fj
(
xji
)
+ vit , vit = ρvi(t−1) + uit

• Space time correlated GAM: ρ is estimated
Replicated model: ρ = 0 (5)

The prior specification for the functions Uj is fj for all j  is a random walk pro‑
cess of order 2 (RW(2)). f (t) = 2f (t − 1)− f (t − 2)+ u(t) , f (t) = f

(
x(t)

)
 , 

x(t) is an ordered statistic, with u(t) ∼ N
(
0, τ 2

)
 and diffuse prior set on f (1) 

and f (2)

Spatial economet‑
rics

y = Xβ + u ; with u = ρMu+ e

with e ∼ MVN
(
0, σ 2In

)

(6)
SEM, lag on the error:
The average total impact (direct) is the posterior 
marginal of the coefficient βr
y = ρWy + Xβ + e;e ∼ MVN

(
0, σ 2In

)

(7)
The SLM,
y = ρWy + Xβ +WXγ + e ; e ∼ MVN

(
0, σ 2In

)
(8)

The SDM:
The average impact: 
n−1tr

(
(In + ρW)−1

)
βr + n−1tr

(
(In + ρW)−1W

)
γr)

,
 y = Xβ +WXγ + u ; u = ρWu+ e , 
e ∼ MVN

(
0, σ 2In

)
(9)

SDEM:
The average total impact: βr + γr

These are implemented in INLA as spatial latent model by conditioning 
on ρ to allow the model to take the suitable form (53). In this estimation, 

a Gaussian prior was used for log
(

ρ
1−ρ

)
 , and a normal prior for β with mean 

0 and very large variance
In the implementation, the variance of the likelihood was set to e−15 
[32]. Therefore, it is not possible to compare models fitted within INLA, 
but the obtained DIC can perhaps be compared with the one obtained 
with the other models such as the GAM

SPDE (
k2 −�

)α/2
(τ f (x)) = W(x)

with

cov(f (0), f (x)) = σ 2

2v−1Ŵ(v)
(k � x �)vKv(k � x�)

(10)
f is a weak solution

W(x) is a Gaussian white nose process, � is the Laplacian, k is a s
cale parameter related to the range r  , τ affects the variance of f  , α 
is related to the smoothness of f  . This solution is approximated by a GMRF 
through triangulation
The range is the distance after which the spatial correlation is small, i.e. 
almost null or less than 0.1. The default value for α was 2 . Specification 
on the range is provided in Supplementary material

r =
√
8
k
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