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Abstract 

Background The Great Mekong Subregion has attained a major decline in malaria cases and fatalities over the last 
years, but residual transmission hotspots remain, supposedly fueled by forest workers and migrant populations. This 
study aimed to: (i) characterize the fine-scale mobility of forest-goers and understand links between their daily move-
ment patterns and malaria transmission, using parasites detection via real time polymerase chain reaction (RT PCR) 
and the individual exposure to Anopheles bites by quantification of anti-Anopheles saliva antibodies via enzyme-linked 
immunosorbent assay; (ii) assess the concordance of questionnaires and Global Positioning System (GPS) data loggers 
for measuring mobility.

Methods Two 28 day follow-ups during dry and rainy seasons, including a GPS tracking, questionnaires and health 
examinations, were performed on male forest goers representing the population at highest risk of infection. Their 
time spent in different land use categories and demographic data were analyzed in order to understand the risk fac-
tors driving malaria in the study area.

Results Malaria risk varied with village forest cover and at a resolution of only a few kilometers: participants from vil-
lages outside the forest had the highest malaria prevalence compared to participants from forest fringe’s villages. 
The time spent in a specific environment did not modulate the risk of malaria, in particular the time spent in forest 
was not associated with a higher probability to detect malaria among forest-goers. The levels of antibody response 
to Anopheles salivary peptide among participants were significantly higher during the rainy season, in accordance 
with Anopheles mosquito density variation, but was not affected by sociodemographic and mobility factors. The 
agreement between GPS and self-reported data was only 61.9% in reporting each kind of visited environment.

Conclusions In a context of residual malaria transmission which was mainly depicted by P. vivax asymptomatic infec-
tions, the implementation of questionnaires, GPS data-loggers and quantification of anti-saliva Anopheles antibodies 
on the high-risk group were not powerful enough to detect malaria risk factors associated with different mobility 
behaviours or time spent in various environments. The joint implementation of GPS trackers and questionnaires 
allowed to highlight the limitations of both methodologies and the benefits of using them together. New detection 
and follow-up strategies are still called for.
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Background
Despite an international effort towards elimination, 
malaria persists with an estimated 247 million cases in 
2021 [1]. In 2014, the Greater Mekong Subregion (GMS) 
committed to ending malaria transmission by 2030 and, 
since then, has witnessed considerable progress [2]. 
However, although Plasmodium falciparum incidence 
has drastically diminished, Plasmodium vivax burden 
remains high and challenge elimination [2] owing to its 
dormant liver-stages hypnozoites, involved in relapses 
[3], as well as its ability to circulate unnoticed and 
untreated thus leading to asymptomatic cases fuelling 
transmission [4].

In 2019, 85% of the estimated 32,197 malaria cases 
in Cambodia were represented by P. vivax [1, 2]. Mon-
dulkiri province held the highest recorded malaria inci-
dence in the GMS, with more than 50 cases per 1000 
inhabitants from January to July 2019 [2]. Forest-related 
activities have been repeatedly identified as a major risk 
factor as the main malaria vectors (Anopheles dirus and 
Anopheles minimus) are forest-associated. Vector control 
tools to accelerate malaria elimination such as insecti-
cide impregnated clothing or spatial repellents are yet to 
prove effective in the subregion [5]. Larviciding efficacy 
which requires landscape analyses to determine mos-
quito risk and its association to water bodies’ presence is 
limited by the large diversity of larval habitats type and 
size [6, 7].

Therefore and beside passive case detection (PCD), 
tools to accelerate malaria elimination are limited to 
active case detection (ACD), such as mass screening and 
treatment (MSAT) with the whole population targeted 
or focal screening and treatment (FSAT) restricted to 
high-risk groups, usually forest goers [8]. Reactive case 
detection has also been tested in different provinces but 
the very low detection rates and diagnostic sensitivity for 
asymptomatic participants did not demonstrate sufficient 
efficacy to be pursued [9, 10]. In Cambodia, ACD and 
PCD rely on immunochromatography-based rapid diag-
nostic tests (RDT) whose detection threshold has been 
documented at about 100 parasites/µL [11], making this 
method not sufficiently sensitive to detect most asymp-
tomatic infections [5] with an elevated rates of false nega-
tives [5, 12].

Modelling studies suggested that mass drug admin-
istration (MDA) to entire communities or sub-popula-
tions at the highest risk would be effective, but could 
facilitate the emergence of multi-drug resistant P. falci-
parum parasites [8, 13]. Programmatic implementation 

will likely also face difficulties to reach populations of 
interest at high coverage in remote areas, like deep for-
est [14, 15]. Recent findings suggest chemoprophylaxis 
would efficiently decrease malaria incidence, if imple-
mented within the appropriate risk group [16].

An intensification of the elimination programme 
between 2018 and 2020 greatly decreased malaria 
cases nationwide, but infections from P. vivax were less 
affected than P. falciparum and mixed infections [17]. 
Primaquine is used as both a single dose treatment for 
P. falciparum since 2018 and a 14-day radical cure for 
P. vivax and Plasmodium ovale hypnozoites under cer-
tain conditions (such as e.g. prior glucose-6-phosphate 
dehydrogenase G6PD testing) since 2020 [18]. This 
treatment requires strict adherence to remain efficient 
and includes an important risk as it can trigger dose-
dependent haemolysis in G6PD deficient patients, an 
X-linked genetic disorder found in 2 to 16% of the GMS 
population [19]. Screening for G6PD deficiency prior to 
primaquine administration is crucial for patient safety 
but difficult to implement [18]. Newly commercial-
ized point of care tests have recently permitted quick 
and relatively easy G6PD deficiency screening, but they 
remained ambiguous for women as heterozygote indi-
viduals can give intermediate results difficult to inter-
pret, and could not be implemented outside health 
centers [20]. Still, promising results indicate that G6PD 
testing might be implemented reliably outside these 
health centers soon, which would accelerate elimina-
tion [21].

The risk of false negatives, resistance emergence, 
insufficient coverage or haemolysis could be reduced 
by only prescribing anti-malarial drugs after identify-
ing and diagnosing efficiently whom to treat. To target 
the adequate risk population, a population-oriented 
study could determine individual exposure and char-
acterize the vector-host contact in transmission areas 
and ultimately paves the way for targeted intervention 
measures.

Although epidemiological questionnaires help char-
acterize risk factors, other tools such as serology or 
GPS tracking are being used in heath studies to cir-
cumvent some of their limitations. Notably, because 
P. vivax induces relapses, an individual can suffer a 
malaria episode arising from an infectious bite that 
occurred weeks to months before [3]. For such cases, 
the use of immunological markers can provide insights 
about recent Anopheles bites. Indeed, Anopheles saliva 
compounds are secreted during the bite at the human 
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skin level and could induce the production of specific 
anti-saliva immunoglobulins G (IgG) by bitten indi-
viduals that can be detected from blood samples [22]. 
It has been demonstrated in several studies that the 
intensity of the specific IgG antibody response to only 
one Anopheles salivary peptide (the gSG6-P1 peptide) 
is proportional to the level of exposure to bites received 
by the exposed individuals [23]. Hence, the IgG level 
to this salivary peptide has been validated as an ade-
quate biomarker to measure the individual exposure to 
Anopheles vectors [22, 24].

Malaria transmission occurs at fine spatial scales [25, 
26], and daily mobility patterns around areas with differ-
ent malaria epidemiology settings can lead to imported 
cases and an increase of heterogeneity in individual dis-
ease risk [27, 28]. Fine-scale daily movement trajectories 
and knowledge of locations with increased Anopheles 
activity can inform public health intervention programs 
to progress towards elimination [29]. The standard 
methodology for measuring risk populations mobility 
in Cambodia relied on administering individual-based 
questionnaires [15, 30–32], which are likely to generate 
bias: a study from 2017 showed that participants were 
reluctant to admit to some of their travels, for example 
to illegal wood logging locations [33]. Here are reported 
the simultaneous collection of GPS tracks and standard 
self-reported questionnaires for a population at high risk 
of malaria. Individual fine-scale mobility patterns and 

their agreement with questionnaire data were measured, 
and the limitations arising from behavioral, technical and 
analytical aspects for both methods were explored [34]. 
Finally, to help refine targeted control strategies in the 
local context of P. vivax elimination, the interest of such 
fine-scale mobility metrics were evaluated.

Methods
Study site and population sample
The study site is located in Kaev Seima district, Mon-
dulkiri province, North-Eastern Cambodia. Year is 
divided into rainy (May–October) and dry (November–
April) seasons. Kaev Seima district is a rural, low-income 
environment where populations mainly live from agricul-
ture and forest products exploitation. The land use of the 
study site was determined previously from high resolu-
tion satellite imagery (SPOT 6/7) captured in March 2018 
(Fig. 1) [35]. The classification categorized the land into 
built-up areas (villages and roads), fields (incl. rice pad-
dies, cassava culture), plantations (incl. banana, cashew 
nut, rubber trees) and forest. The nine villages were 
allocated to three categories according to their forest 
coverage around the households, following a previously 
defined gradient from inside to outside the forest [32].

The population sample included villagers at highest risk 
of malaria i.e. men between 13 and 60 years old [12, 30, 
32]. To capture data from the two climate seasons, the 
study was designed with two rounds of collection, during 

Fig. 1 Land use and villages of the study area
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the rainy (April to September 2018) and dry (February 
to April 2019) seasons. Participants were contacted and 
enrolled based on data collected in a prior cross-sec-
tional study in the same district in 2017 [32], if they were 
available and willing to participate in the study, with half 
of them from malaria-negative and the other half from 
malaria-positive participants at the time of the cross-sec-
tional study. A total of 160 participants for rainy season 
and 200 participants for dry season agreed to participate.

Study design
Household visits were scheduled on days 0, 7, 14 and 28 
and included a short health examination, and question-
naires at day 0 (demographic data) and day 14 (mobility 
during the last 2 weeks, Fig. 2). The health examination 
on day 28 aimed at detecting P. falciparum infections 
which might have happened during the mobility study. A 
GPS data logger was provided from day 0 to day 14 with 
a planned exchange on day 7 for another fully charged 
device. The Igot-U GT600 GPS tracker (Mobile Action 
Technology Inc., Taipei, Taiwan) was selected to record 
participants’ mobility [36], as its battery life, data storage, 
price and unobtrusive design corresponded best to this 
study design and it had proven useful in other compara-
ble studies [37, 38].

The questionnaire, designed in English and translated 
by a native Khmer speaker, gathered demographic data 
and information about recently visited environments. 
First round of self-reported data was collected on paper 
questionnaires and second round using the REDCap 
mobile app, an offline electronic data capture software 
linking to a REDCap server hosted at Institut Pasteur, 
Paris, France [39].

Health examination consisted of axillary temperature 
measure and collection of capillary blood onto filter 

paper. A RDT was performed in case of fever (tempera-
ture ≥ 37.5  °C, SD BIOLINE Malaria antigen Malaria Ag 
P.f./P.v). Participants testing positive were referred to a 
health centre to receive anti-malarial treatment.

Laboratory procedures
DNA was extracted from filter paper blood spots with 
Instagene® Matrix (Bio-Rad, Courtaboeuf, France) 
according to the manufacturer’s instructions. Real-Time 
Polymerase Chain Reactions (RTPCR) were performed to 
detect malaria parasites and to carry out parasites specia-
tion, as previously described [40]. RTPCR were carried 
out a posteriori and thus only symptomatic cases were 
referred to health centre. Briefly, a first RTPCR targeted 
the Plasmodium cytochrome b gene and determined the 
positive samples. Then, four nested RTPCR assays tar-
geted the same gene specific to each species: P. falcipa-
rum, Plasmodium malariae, P. ovale and P. vivax [40], 
and a new protocol identified Plasmodium knowlesi with 
a new set of primers specific to the species (assay param-
eters and primers sequences are detailed in Additional 
file 1: Table S1).

The quantification of individual IgG responses to the 
specific Anopheles salivary peptide (gSG6-P1) was done 
by enzyme-linked immunosorbent assay (ELISA) on sera 
eluted from filter paper blood spot from the last day of 
follow-up (week 4) as previously described [23, 41] with 
some modifications (see Additional file material [Proto-
col S1]). The level of the specific IgG response was meas-
ured at the individual level and was expressed as the 
ΔOD, calculated as the difference between the mean of 
the individual optical densities (OD) in 2 antigen wells 
and the OD in 1 blank well containing no gSG6-P1 anti-
gen. As a negative control, the specific anti-gSG6-P1 IgG 
response was also assayed in non-Anopheles exposed 

Fig. 2 Study workflow including health examination, questionnaires, GPS data loggers distribution and collection, with the enrolment for each step
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volunteers (N = 12) residing in an urban area with lim-
ited Anopheles mosquitoes’ populations (Phnom Penh 
city) for more than three months: to quantify the nonspe-
cific background antibody level and to calculate the cut-
off value (calculated as the mean ΔODneg + 3 SDs) [23, 
42, 43]. A participant was classified as an immune IgG 
responder if their ΔOD was > 0.539.

Data processing and analysis
The GPS tracking data was curated and an optimal GPS 
dataset was produced consisting of participants willing to 
take the device daily and for whom trackers had logged 
enough time to be representative of individual trajecto-
ries [36]. The time spent in each land use category was 
extracted from participants GPS data along with descrip-
tive metadata (day or night time and recorded speed) 
[36]. The time spent by a participant in an environment 
over the 2-week GPS follow-up period was computed 
both as the absolute “total hours” (cumulative duration 
logged by the device) and the relative “standardized time” 
(proportion of time logged relative to a 2  week period). 
Analyses were performed under two conditions: firstly, 
as night data (dropping “day” segments) when Anoph-
eles vectors are most active and secondly as slow data 
(< 5  km/h, dropping higher velocity segments) when 
individuals are not driving a vehicle and can be exposed 
to mosquito bites, to determine which conditions led to 
increased malaria exposure for a participant.

A binomial variable representing malaria status was 
attributed to each participant: a value of 1 coded for at 
least one positive RTPCR for any species over the 4 week 
follow-up while 0 indicated participants with only nega-
tive samples. Sociodemographic variables were extracted 
from the questionnaire and coded as categorical: village 
of residence, village category (based on the forest cover), 
age category and main income.

The effects of season, age, main income, village cat-
egory, village of residence, and time spent in different 
environments were tested on participants’ malaria status 
using univariate generalized linear mixed-effects models 
(GLMMs). To further understand participants’ mobil-
ity, univariate GLMMs were used to test the effect of 
travelled distance (standardized distance over 2  weeks: 
total, at night and at slow speed) on malaria status. These 
GLMMs were implemented with a binomial distribution. 
As participants visited different locations depending on 
the area they live in, the effect of the village on the time 
spent in each type of environment was also tested, using 
univariate GLMMs with a negative binomial distribu-
tion. Then, the village of residence was added as a covari-
ate to control for a confounding effect in models testing 
the time spent in different environments on participants’ 
malaria status using univariate binomial GLMMs.

Anti-Anopheles saliva seropositivity was coded with a 
binomial variable depending on IgG titers and predeter-
mined threshold. The effects of season, age, village cat-
egory, village of residence, malaria status and time spent 
in different environments were tested on participants’ 
Anti-Anopheles saliva seropositivity (qualitative binomial 
model) and on their ΔOD value (quantitative Gaussian 
model, with log transformation of the variable to sat-
isfy normality assumptions) using univariate GLMMs. 
The effect of the distance (standardized distance over 
2  weeks: total, at night and at slow speed) on partici-
pants’ serological status was also tested using univariate 
GLMMs. Finally, the possible associations between the 
time spent in various environments and serological sta-
tus, was tested while adjusting for village of residence as a 
possible confounder.

The questionnaire at day 14 enquired participants 
about any visit in the following environments during the 
two previous weeks: nearby forest, deep forest, cashew 
nut plantations, rubber plantations, rice fields and cas-
sava fields. For each participant, visits to each land use 
category (extracted from their GPS tracks: at least 30 min 
logged at slow speed in one category) were compared to 
their declarations during the questionnaire at day 14, for 
each type of environment, using Pearson’s Chi-squared 
tests. Each participant was attributed a binomial variable 
depending on this potential data discordance (1: discord-
ance, 0: no discordance). GLMMs were used to assess the 
potential association between discordance and partici-
pants’ malaria status.

All the aforementioned GLMMs were implemented 
with participant ID coded as a random effect to account 
for repeated measurements from the same individual. 
Statistical significance was assessed with likelihood-ratio 
tests (LRT).

The groups of participants with fever, with a positive 
RTPCR result or with a symptomatic malaria infection 
from each season were compared using Pearson’s Chi-
squared tests.

Percentages are presented with exact confidence inter-
val (CI), means with standard deviation (SD) and medi-
ans with interquartile range (IQR). All statistical analyses 
were conducted in R version 4.0 [44].

Results
A total of 360 participants were invited to participate and 
enrolled but only 339 participants finally participated to 
the whole study.

Study population
Among the 339 respondents to the sociodemographic 
questionnaire, median age was 29  years old (IQR = 22, 
range 13–60, Additional file  1: Fig. S1). A majority of 
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participants reported their main income source was 
related to agriculture (69.6%, CI [64.4–74.5%], Fig. 3).

At mid-follow-up on day 14, participants with a com-
plete questionnaire in both seasons and PCR results 
(N = 184) reporting their recent travel history declared 
mostly short trips to the nearby forest (only one stay 
reported to last more than one day, Table  1). Visits to 
the deep forest corresponded to stays from less than a 
day to more than a week (over the last two weeks: 15.8% 
[10.8–21.8%] declared less than a day, 10.7% [6.8–16.3%] 
a day, 13% [8.5–18.8%] several days, 0.5% [0–3%] more 

than a week and 59.8% [52.3–67%] no visits). The pre-
ferred way of transportation was by motorbike, except 
for accessing the nearby forest and rice fields, for which 
walking was more frequent (Table S2). Although partici-
pants mainly declared to go to the deep forest with men 
from their family (37.8% [26.8–49.9%]) or co-workers 
(50% [38.1–61.9%]), they were also sometimes accom-
panied by women (8.1% [3.0–16.8%]) and children (4.1% 
[0.08–11.4%], Table S2). Women and children were often 
joining participants in cashew plantations (respectively 
44.4% [34.9–54.3%] and 21.3% [14–30.2%]) and cassava 
fields (respectively 59.2% [44.2–73%] and 18.4% [8.8–
32%], Table S2).

Health examination
The epidemiology of malaria cases was highly consist-
ent across collection rounds (Table  2). Malaria preva-
lence at baseline was high and similar between rainy and 
dry season (respectively 31.9% [24.7–39.7%] and 28.5% 
[22.3–35.3%], Chi-squared P = 0.56). Likewise, preva-
lence during follow-up remained stable (rainy: 50.6% 
[42.6–58.6%], dry: 43.5% [36.5–50.1%], Chi-squared 
P = 0.21). The proportion of symptomatic cases (rainy: 
18.8% [10.1–30.5%], dry: 10.3% [4.8–18.7%]) did not 
significantly differ by season either (χ2

1 = 1.53, P = 0.22). 

Fig. 3 Main income declared by participants for each season during baseline questionnaire

Table 1 Visits in the different environments during the past two 
weeks declared by the participants during the questionnaire at 
day 14, for all participants with a complete questionnaire at day 
14 (N = 184)

Visits in the past 2 weeks N % CI %

Nearby forest 141 76.6 [69.4–82.5]

Deep forest 74 40.2 [33.1–47.7%]

Rubber plantation 3 1.6 [0.3–4.7]

Cashew plantation 108 58.7 [51.2–65.9]

Cassava field 49 26.6 [20.4–33.6%]

Rice field 15 8.2 [4.6–13.1]



Page 7 of 14Pepey et al. Malaria Journal           (2024) 23:75  

Notably, more participants experienced a fever dur-
ing the rainy season compared to the dry season (22.7% 
[15.7–30.9%] vs. 12.5% [8.3–17.9%]; χ2

1 = 5.14, P = 0.02) 
though it was not necessarily malaria-related (13.3% 
[7.9–20.4%] of participants with fever not due to malaria 
in rainy season and 8% [4.6–12.7%] in dry season).

Plasmodium vivax was the most frequent malaria para-
site over both rainy and dry seasons, respectively found 
in 84% [74.1–91.2%] and 95.4% [88.6–98.7%] of detected 
infections. Plasmodium falciparum burden was 9.9% 
[4.4–18.5%] in rainy season and 8% [3.3–15.9%] in dry 
season among infections. Mixed infections were also 
uncommon accounting for 4.9% [1.4–12.2%] and 5.7% 
[1.9–12.9%] of cases. No carriage of P. ovale, P. malariae 
or P. knowlesi was detected, however a total of 16 positive 
samples could not be typed.

GPS data
Battery life averaged 3  days and 7  h per device in the 
rainy season, and 4 days and 1 h in the dry season, with 
large heterogeneity between loggers (from a few minutes 
to 16  days and 18  h). The GPS devices logged on aver-
age 159.9  km by participant over the complete follow-
up. Once the GPS tracks were curated, the average daily 
distance varied greatly among the 273 participants with 
optimal GPS tracks but was consistent between seasons 
and averaged 26  km per day per participant (median: 
23.5 km, IQR: 14.4 km, range 10.2–97.3 km per day per 
participant, standardized distance over 2 weeks).

Risk factors
Risk factors analysis was performed on a subset of 
participants having complete socioeconomic, malaria 
status and optimal GPS data (N = 258 participants, 
Fig. S2). Malaria status was not associated with the 
season, χ2

1= 1.2, P = 0.27), the main income declared 
(χ2

8  = 9.5, P = 0.3), nor with the village of residence 
χ2

8= 14.1, P = 0.08). Malaria infections were more 
prevalent in adults between 21 and 39 years old (57.4% 

[47.5–66.9%]) than younger (42.5% [31.5–54.1%]) and 
older men (44.3% [32.4–56.7%]) over follow-up, but 
the difference was not significant (χ2

2 = 5.3, P = 0.07). 
Malaria status was significantly affected by the vil-
lage category (χ2

2 = 7.4, P = 0.02): malaria prevalence 
in the villages on the forest fringe (36.4% [25.7–48.1]) 
was significantly lower than outside the forest (55.1% 
[46.4–63.7%]). Malaria prevalence for participants from 
villages inside the forest was not significantly differ-
ent from the two other categories (53.3% [37.9–68.3%]; 
Additional file 1: Table S3).

Neither the total time nor the standardized time spent 
in a given land use were found to modulate the risk of 
malaria infection (Additional file  1: Table  S4). Partici-
pants visited different parts of the study area depending 
on their village of residence (Additional file 1: Fig. S3) 
and there were significant differences between villages 
in the time spent in the forest at slow speed (χ2

8 = 25.2, 
P = 0.001) and at night (χ2

8 = 30.4, P < 0.001), and plan-
tations at slow speed (χ2

8 = 50.9, P < 0.001) and at night 
(χ2

8 = 61.8, P < 0.001; Additional file 1: Table S5). How-
ever, there was still no effect of the time spent in a 
given land use on participants’ malaria status when the 
village of residence was added as a covariate to control 
for those village differences (Additional file 1: Table S6). 
Malaria status was not associated with the total dis-
tance travelled (malaria-positive: 27.4  km on average 
per day, IQR = 14.6  km vs. malaria negative: 25.3  km, 
IQR = 14.4 km, χ2

1 = 2.20, P = 0.14), was not significant 
for the association to the distance travelled at night 
(malaria-positive: 6.5  km, IQR = 4.3  km, vs. malaria-
negative: 5.6  km, IQR = 4.8  km; χ2

1 = 3.79, P = 0.052) 
and was not associated to the distance travelled at 
slow speed (malaria-positive: 11 km, IQR = 8.4 km, vs. 
malaria-negative: 10.2  km, IQR = 7.3  km; χ2

1 = 1.31, 
P = 0.25).

As high malaria prevalence at baseline was observed 
(30%), the analyses were also performed on a sub-
set excluding the participants malaria-positive at D0 

Table 2 Malaria prevalence in rainy and dry seasons

“Over follow-up” corresponds to individuals that have been positive at least once over the follow-up

Season Rainy season Dry season

Week Baseline Over follow-up Baseline Over follow-up

Value N % CI % N % CI % N % CI % N % CI %

Plasmodium spp. 51 31.9 [24.7–39.7] 81 50.6 [42.6–58.6] 57 28.5 [22.3–35.3] 87 43.5 [36.5–50.1]

Plasmodium vivax 44 27.5 [20.7–35.1] 64 40 [32.3–48] 47 23.5 [17.8–30] 78 39 [32.2–46.1]

Plasmodium falciparum 4 2.5 [0.7–6.3] 4 2.5 [0.7–6.3] 2 1 [0.1–3.6] 2 1 [0.1–3.6]

P. vivax/ P. falciparum 2 1.3 [0.2–4.4] 4 2.5 [0.7–6.3] 4 2 [0.5–5] 5 2.5 [0.8–5.7]

Undetermined 1 0.6 [0.01–3.4] 9 5.6 [2.6–10.4] 4 2 [0.5–5] 2 1 [0.1–3.6]
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to determine the risk factors for incident infections 
only (N = 177), again no significant correlations were 
observed (Additional file 1: Tables S7, S8).

Immunological analyses were performed on a subset 
of participants that has complete malaria status, serol-
ogy and GPS datasets (N = 270). In qualitative and quan-
titative univariate models respectively, seroprevalence 
and average ΔOD were significantly higher during rainy 
season compared to dry season (χ2

1 = 35.36, P < 0.01 
and χ2

1 = 58.48, P < 0.01, respectively; Additional file  1: 
Table  S9, Fig.  4). Participants from the villages on the 
forest fringe had the lowest average ΔOD (ΔOD = 0.62), 
followed by outside the forest (ΔOD = 0.69) and finally 
inside the forest (ΔOD = 0.87) though this did not reach 
statistical significance (χ2

1 = 5.55, P = 0.06, Additional 
file  1: Table  S9). All other factors such as malaria sta-
tus, age and time spent in different environments had 
no significant association with seroprevalence and aver-
age ΔOD (Additional file 1: Table S9). The average ΔOD 
was significantly associated with the village of residence 
(χ2

8 = 31.19, P < 0.001): the average ΔOD over all villages 

was 0.70, with 2 villages at the forest fringe and 2 inside 
the forest having the lowest average ΔOD (ranging 
0.42–0.45) while Gaty, inside the forest, had the highest 
average ΔOD (1.09; Additional file  1: Table  S10). When 
adding the village of residence as a covariate participants’ 
antibody levels were significantly positively associated 
with the total time spent in fields at night (χ2

1 = 4.23, 
P = 0.04, Additional file  1: Fig. S4) and at slow speed 
(χ2

1 = 4.03, P = 0.04, Additional file 1: Fig. S5) (Additional 
file 1: Table S11). No other effects were found (Additional 
file 1: Table S11). The analyses on seroprevalence with the 
time spent in different environments and village of resi-
dence as covariate did not converge due to small group’s 
size.

The total distance travelled during follow-up was not 
associated with seroprevalence (seropositive: 26.4 km on 
average per day, IQR = 14.3 km vs. seronegative: 25.5 km, 
IQR = 13.4 km, χ2

1 = 0.38, P = 0.54) or with average ΔOD 
(χ2

1 = 0.004, P = 0.95). Similarly, the overall distance trav-
elled at night was not associated with seroprevalence 
(seropositive: 6.2 km on average per day, IQR = 3.6 km vs. 
seronegative: 5.8  km, IQR = 5.2  km, χ2

1 = 0.63, P = 0.43) 
nor with the average ΔOD (χ2

1 = 0.98, P = 0.32). However, 
the distance travelled at slow speed was positively associ-
ated with both seroprevalence (seropositive: 11.5 km on 
average per day, IQR = 8.2  km vs. seronegative: 9.8  km, 
IQR = 7.1  km, χ2

1 = 0.7.1, P = 0.008) and average ΔOD 
(χ2

1 = 10.2, P = 0.001, Fig. 5).
Overall, the most important findings were negative 

results: the time spent in a specific environment, even 
one identified at high risk of malaria such as the forest, 
was not correlated to a higher malaria prevalence. How-
ever, the time spent in fields under certain conditions did 
correlate with Anopheles bites exposure, in addition to 
the season and the total distance spent walking. Finally, 
the forest cover of the village of residence correlated both 
with malaria status and bites exposure (Table 3).

Comparison between questionnaire and GPS data
Compared to GPS, questionnaires significantly underes-
timated the visits in fields (48.7% (N = 96) declared a visit 
while 95.9% (N = 189) visits were observed in GPS data; 
χ2

1 = 27.7, P < 0.0001) and overestimated the visits in the 
forest (91.4% (N = 180) for questionnaire versus 70.6% 
(N = 139) for GPS data; χ2

1 = 109.7, P < 0.0001) and plan-
tations (71.1% (N = 140) versus 61.4% (N = 121), χ2

1 =, 
4.1, P = 0.04).

For participants that had both a complete question-
naire dataset and optimal GPS (N = 197), each participant 
was assigned a variable corresponding to either concord-
ant data (both GPS and questionnaire data demonstrated 
at least a visit or no visit at all) or not (only one dataset 
had evidence of a visit in the considered environment, 

Fig. 4 Participants’ serostatus and ΔOD by season (N = 270). The 
black dot indicates the mean ΔOD of each group  (meandry = 0.476, 
 meanrainy = 0.976). The purple line indicates the cut-off value 
calculated form the negative controls (cut-off value = 0.539)
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Additional file  1: Table  S12). The total concordance 
between the two datasets was 61.9%, with the highest 
value of concordance between visits in the forest (73.1%), 
followed by plantations (60.9%) and fields (51.8%). Con-
cordance between the questionnaire and GPS datasets 
was not associated to malaria status over follow-up, 
over all visited environments (χ2

1 = 1.03, P = 0.31), nor 
specifically between fields (χ2

1 = 2.27, P = 0.13), planta-
tions (χ2

1 = 0.08, P = 0.78) or forest datasets (χ2
1 = 0.57, 

P = 0.49).

Discussion
The main objective of this study was to identify the fac-
tors associated with a gradation in infections at a fine 
scale to ultimately precise the transmission hotspots in 
Cambodia. As such, this study design aimed to deter-
mine whether the time spent in a certain land use cate-
gory would correlate with malaria positivity, to ultimately 
enable identifying more accurately transmission areas. 
Notably, it was expected to observe that the participants 
spending more time in the forest, at peak biting hours 
and low speed, would be exposed to more infectious 
mosquito bites, resulting in an increased positivity rate. 
However, data from both GPS and questionnaire did not 
demonstrate any correlation. The continuous and swift 
decrease in P. falciparum prevalence, associated with 
increased P. vivax burden at the time of the study, which 
changed from 45% of cases being P. vivax or mixed infec-
tions in 2017 to 75% in 2018 [2], made it difficult to dis-
tinguish relapses from newly-infectious bites, the latter 
only being influenced by exposure to mosquitoes. Indeed, 
the aim was to associate malaria infection to the recent 

individual mobility data, which is not a direct link with P. 
vivax as the majority of infections are due to relapses that 
occur at a distant time from the initial infection [45, 46].

The questionnaire and GPS data were concordant for 
only 61.9% of the visits they included. Notably, the fields 
were overrepresented in the GPS data. That could by 
a consequence of the satellite imagery processing into 
a land use classification, which might categorize fal-
low lands as fields, or alternatively, because of outdated 
images or ongoing deforestation [47, 48], resulting in pre-
viously forest areas changing into fields. Such difference 
between the two datasets suggest that a complemen-
tary approach could be necessary to capture all aspects 
of malaria risk factors in Cambodia. Notably, illegal 
activities, often found associated with increased risk of 
malaria, would remain undetected by GPS-based collec-
tion methods.

The distance logged by the GPS devices at slow speed 
was not associated with malaria cases. Malaria risk was 
also not associated with a specific environment such as 
the forest. This result could highlight that malaria risk is 
important over all the study area, in all environments, or 
that malaria vectors are able to travel far from the forest 
or forest patches. Interestingly, the distance travelled at 
night time was not associated with malaria status, which 
could corroborate the importance of exposure at dusk, 
dawn, but also daytime [49].

Interestingly, the categorization of the villages accord-
ing to the percentage of forest surrounding the house-
holds highlighted that the participants from villages 
outside the forest had a significantly higher malaria 
prevalence than those from villages at the forest fringes. 

Fig. 5 Association between average ΔOD and average standardized distance travelled at slow speed by day χ2
1 = 10.2, P = 0.001, N = 270)
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Though sample size were unbalanced in that analysis 
(185 participants from outside the forest, 116 from for-
est fringes and 59 from inside the forest), they remained 
large enough to suggest an association between the vil-
lage of residence and malaria exposure variations [32]. 
These results align with other studies highlighting the 
important exposure variability between villages only a 
few kilometers apart [12, 26]. Hypothetically, social or 
economic factors, such as family-privy gatherings or for-
est expeditions, particular agriculture methods, crops 
and forest patches affiliated to specific villages, and 
the size or the organization of a village, might have an 
impact on daily mobility, mosquito net usage and other 
risk behaviors, as previous results on human behavior 
variability [31, 50–52] and fine-scale exposure heteroge-
neity [12, 26] suggest. These factors could also explain 
how inhabitants from outside the forest display both 
the highest malaria and the second highest Anopheles 
bites exposure, while Cambodian primary vectors are 
forest-associated. In addition, the ELISA protocol can-
not distinguish between exposure from primary vectors 
and other Anopheles species; the populations outside the 
forest could be exposed to important field or plantation-
dwelling Anopheles species such as Anopheles aconitus 
or members of the Anopheles hyrcanus group [49, 53]. 
Finally, a recent mobility study from Laos using similar 
GPS loggers [54] did not analyse the association between 
malaria status and high-risk trips (dusk, dawn and night 
travels into the forest), but they could identify that socio-
economic factors increased the probability to engage in 
these trips: being 30 to 45  years old, having more than 
two children and sleeping outdoors without a structure.

The quantification of anti-Anopheles antibodies sug-
gested that vector exposure was higher during the 
rainy season which is expected as Anopheles vector 

Table 3 Main findings

Risk factors Prevalence % Average per day p-value

Malaria status

Season 0.27

 Dry 43.5

 Rainy 50.6

Age category 0.07

 Younger 
[≤ 20 years 
old]

42.5

 Mid 
[21–39 years 
old]

57.4

 Older 
[≥ 40 years 
old]

44.3

Village of residence 0.08

Village category 0.02

 Inside forest 53.3

 Forest fringe 36.4

 Outside forest 55.1

Distance at slow speed 0.25

 Positive 11 km

 Negative 10.2 km

Time spent in any environment  > 0.05

Serostatus

 Season  < 0.0001

 Dry 30.5

 Rainy 66.4

Age category* 0.83–0.68

 Younger 
[≤ 20 years 
old]

43.9

 Mid 
[21–39 years 
old]

48.2

 Older 
[≥ 40 years 
old]

45.9

Village of residence  < 0.001

 Gaty 60

 Ohchra 25

 Ohtrone 0

 Poucha 27.3

 Sraeampilk-
roam

16.7

 Sraeampilleu 65.7

 Sraektum 41.4

 Sraelvy 69.2

Sraepreas 81.3

Village category* 0.18–0.06

 Inside forest 57.8

 Forest fringe 40.7

 Outside forest 45.8

Distance at slow speed* 0.008–0.001

 Seropositive 11.5 km

Significant differences (p-value < 0.05) are indicated in bold

One asterisk indicates p-values calculated respectively for qualitative and 
quantitative models. Two asterisks indicate p-values for quantitative models 
only with village of residence as covariate

Table 3 (continued)

Risk factors Prevalence % Average per day p-value

 Seronegative 9.8 km

Time in fields at night** 0.04

 Seropositive 17.8 h

 Seronegative 14.8 h

Time in fields at slow speed** 0.04

 Seropositive 18.8 h

 Seronegative 16 h

 Time spent 
in other envi-
ronments

 > 0.05
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density increases in the rainy season, as it was previ-
ously observed in the GMS [6, 24, 55]. The levels of anti-
Anopheles antibodies intensity response mirrored the 
trend of malaria prevalence. However, these analyses 
could not identify a significant association between anti-
Anopheles antibodies levels and socioeconomic variables, 
malaria status or the time spent in a specific environ-
ment apart from the time spend in fields at night or slow 
speed when including the village of residence as a covari-
ate. Particularly, there was no relation between the time 
spent at night or at slow speed in the forest, a land type 
generally associated with Anopheles bites exposure [15, 
30, 31]. The lack of association between serological sta-
tus and malaria status probably arises from the important 
incidence of P. vivax cases and their relapses, increasing 
the time spent between an infectious bite and a detected 
malaria case.

The three methodologies implemented during this 
study—questionnaires, GPS loggers and vector expo-
sure serological marker—could not identify the mobil-
ity patterns and environments responsible for malaria 
cases in the study area. However, rather than the meth-
ods themselves, the context might not be suitable to their 
implementation. The ΔOD values followed the expected 
seasonal abundance of Anopheles and most of the GPS 
data was optimal (75% of the participants had optimal 
GPS data). Both methodologies were successfully imple-
mented elsewhere to characterize vector exposure [22, 
24] and mobility associated to malaria transmission [37, 
56, 57]. However, malaria prevalence is sharply decreas-
ing in Cambodia. Plasmodium falciparum cases rep-
resent only a fraction of infections, meaning that GPS 
trackers alone are not suitable to characterize the origin 
of most malaria infections. Infectious bites constitute 
only a very small percentage of mosquito bites, making 
vector exposure quantification less relevant as prevalence 
decreases. Finally, a different approach to mobility might 
be required to understand its association to malaria 
risk, in which mobility is not subpopulation-dependant 
but a process joining risk groups through migration and 
cases importation [58]. A study implemented at a bigger 
scale, looking at long-distance travels could help under-
stand malaria transmission across villages, risk areas and 
demographic groups. Indeed, sample size was a limita-
tion in this study, considering the important rate of unus-
able data (only 258 out of 341 participants with complete 
socioeconomic, malaria status and optimal GPS data) 
and the small effect size observed. A retrospective power 
and sample size calculations were perfomred using the 
package simr [59], based on 1000 simulations. This data-
set was largely underpowered with a power of 13.9% for 
the analysis of time spent at night in the forest and 3.1% 
for the time spent at slow speed in the forest. Keeping the 

effect sizes observed in this study, a sample size of 500 
and 1200 participants, for testing the hypothesis that 
malaria risk was correlated to the time spend at night or 
at low speed in the forest, respectively, would be needed 
to reach 80% power.

As such, both GPS tracking and vector exposure sero-
logical marker quantification do not appear to provide 
the resolution required to identify risk factors associated 
to malaria cases, mostly relapsing P. vivax infections, in 
the current Cambodian context. An FSAT approach tar-
geting people with fever would have limited efficacy as 
only 12.5% (21 symptomatic cases for 168 positive RTP-
CRs) participants with an ongoing malaria infection had 
fever. Likewise, RDT-based malaria detection is also 
not suited to such low transmission settings, where the 
remaining hotspots often consist of sub-microscopic 
infections evading detection. Since many subclinical 
P. vivax cases remain undetected, testing for recent P. 
vivax infections via the use of serological exposure mark-
ers could be a more adapted elimination strategy [60, 
61]. The modelling of P. vivax serological testing and 
treatment (PvSeroTAT) demonstrated that it could sig-
nificantly reduce P. vivax transmission while avoiding 
overtreatment, thus reducing the risk of accidental hae-
molysis in G6PD deficient patients [61]. The PvSeroTAT 
strategy, targeting both blood and liver stages parasites, 
appears to be a safer and efficient alternative to MDA, 
while also more efficient than MSAT [61].

Conclusion
In a context of residual malaria transmission which is 
mainly depicted by P. vivax asymptomatic infections, 
the implementation of questionnaires, GPS data-loggers 
and ELISA quantification of anti-Anopheles antibod-
ies detection on the high-risk group were not specific 
enough to detect malaria risk factors associated with dif-
ferent mobility behaviors or time spent in various envi-
ronments. The joint implementation of GPS trackers 
and questionnaires allowed to highlight the limitations 
of both methodologies and the benefits of using them 
together. The collected data characterized forest-goers 
mobility, the social context of their visits in different envi-
ronments, in addition to quantitative data about the time 
and distance spent in these environments. New detection 
and follow-up strategies are still called for.
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