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Abstract 

Background Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National 
Malaria Control Programmes (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygen-
omic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) 
are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics 
alone are sufficient to estimate clinical incidence.

Methods This study examined parasites from 3147 clinical infections sampled between the years 2012–2020 
through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped 
with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes 
polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To deter-
mine whether genetic signals can predict incidence, a series of Poisson generalized linear mixed-effects models were 
constructed to predict the incidence level at each clinical site from a set of genetic metrics designed to measure 
parasite clonality, superinfection, and co-transmission rates.

Results Model-predicted incidence was compared with the reported standard incidence data determined 
by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, 
with departures from expected values at very low annual incidence (< 10/1000/annual [‰]).

Conclusions When transmission is greater than 10 cases per 1000 annual parasite incidence (annual inci-
dence > 10‰), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based 
hypotheses of malaria transmission. When transmission was < 10‰, many of the correlations between parasite genet-
ics and incidence were reversed, which may reflect the disproportionate impact of importation and focal transmission 
on parasite genetics when local transmission levels are low.
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Background
Pathogen genomics is revolutionizing public health by 
providing a rich data source for informing real-time, 
actionable recommendations for public health pro-
grammes [1]. Each pathogen genome is a unique record 
of its previous transmission history that can be used 
to study the origin and spread of infectious diseases 
in real time. Genetic surveillance of pathogen popula-
tions provides an opportunity to characterize patho-
gen transmission structure and provide data-informed 
recommendations to public health programmes to 
decrease transmission. In the past two decades alone, 
breakthroughs in genomic technologies and analyti-
cal techniques [2–4] have expanded pathogen genetic 
surveillance to a wide variety of viral and bacterial 
pathogens. Recent examples include the SARS-CoV-2 
pandemic [5, 6], the 2013–2016 West African Ebola out-
breaks [7, 8], and the Middle East Respiratory Syndrome 
(MERS) outbreaks in the Middle East [9].

Despite this success, extending genetic surveillance to 
more complex pathogens, such as the eukaryotic Plas-
modium falciparum parasite that is the causative agent 
for the deadliest form of malaria, has been challenging. 
Unlike viral or bacterial pathogens, P. falciparum has a 
complex, 23-megabase genome with over 5000 genes 
whose genomic architecture is heavily influenced by mei-
otic recombination [10]. Plasmodium falciparum must 
undergo sexual reproduction within a mosquito vector 
to complete its life cycle prior to being transmitted to a 
new human host. The sexual nature of the P. falciparum 
parasite complicates many of the phylogenetic and phy-
lodynamic techniques used in viral and bacterial genetic 
surveillance studies [2–4].

Malaria genetic surveillance has instead relied on iden-
tifying genetic epidemiology metrics that summarize the 
changes in parasite genetics observed from the empiri-
cal sampling of parasite genomes from malaria endemic 
regions. These genetic epidemiology metrics include the 
frequency of multiple strain (polygenomic) infections 
[11, 12], the number of strains per infection (complex-
ity of infection, COI), the genetic relatedness of parasite 
strains [13, 14], and the frequency of clonal parasites in 
the population [15, 16].

Many of these genomic epidemiology metrics were 
identified by comparing sites with different levels of 
transmission intensity, whose measurement includes 
prevalence (frequency of infections), incidence (rate of 
new infections), and the entomological inoculation rate 
(EIR, number of infectious mosquito bites per individ-
ual). As such, malaria genetic epidemiology metrics tend 
to be associated with transmission intensity. Regions with 
high transmission intensity are expected to have high 
frequencies of polygenomic infections and high COIs 

because individuals are more likely to be superinfected 
with multiple infectious bites [17] and there is greater 
opportunity for parasite outcrossing. Conversely, regions 
with low transmission intensity are expected to have high 
frequencies of clonal or genetically related parasites [18, 
19] due to increased levels of inbreeding associated with 
declining transmission and smaller effective parasite 
population sizes.

However, recent genomic analyses of polygenomic 
infections show that a large fraction of polygenomic 
infections are not the result of superinfection, but instead 
from the cotransmission of multiple parasite strains 
from a single infectious bite [13, 20–23]. Cotransmitted 
polygenomic infections do not represent multiple infec-
tious bites and their presence suggests that superinfec-
tion-based predictions of transmission intensity from 
metrics such as the frequency of polygenomic infections 
and COI may be inaccurate. Despite this, lower rates of 
cotransmission were previously observed in Kedougou, a 
high transmission site of Senegal, than in Thies or Rich-
ard Toll, which are both sites with very low transmission 
[13]. These results suggest that the frequency of cotrans-
mitted polygenomic infections could also be used to infer 
transmission intensity.

Mechanistically, cotransmission and superinfection are 
important drivers of parasite genetics, but how cotrans-
mission and superinfection define the relationship 
between genetic metrics and epidemiological measures 
of transmission intensity is unknown, and it is unclear 
whether these relationships are consistent across the 
range of transmission from low to high intensity. It is 
also unclear to what extent other epidemiological factors, 
such as transmission heterogeneity (e.g., focal transmis-
sion) and importation, affect these genetic epidemiology 
metrics. A major goal for this study was to characterize 
the relationship between parasite genetics and transmis-
sion intensity using metrics that measure the impact of 
both superinfection and cotransmission, and to deter-
mine whether predictions of transmission intensity can 
be improved if both factors are considered.

In this study, the relationship between parasite genet-
ics and malaria incidence as reported by the National 
Malaria Control Programme (NMCP) was examined. 
Malaria transmission in Senegal is highly heterogene-
ous and dependent on geographic location, ranging 
from < 1‰ to > 1000‰ annual incidence. This geographic 
disparity was ideal for evaluating the relationship 
between parasite genetics and incidence across a range 
of transmission intensities in a limited geographic area 
where reported incidence and genetic epidemiology met-
rics could be measured consistently across study sites 
and years. A series of mathematical models were used to 
quantify the relationship between parasite genetics and 
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incidence and identify transmission regimes (regions 
within the incidence parameter space) where the rela-
tionships between parasite genetics and incidence dif-
fer. Identifying these transmission regimes is important 
because they can arise from fundamental changes in 
transmission structure that affect how parasite genet-
ics can be used to study transmission and develop data-
informed public health recommendations.

Methods
Sampling strategy
Samples from health facilities were collected as previ-
ously described [13]. Samples were collected through 
PCD from febrile patients reporting to health posts or 
clinics during the malaria transmission season in Sen-
egal (September to December), or actively detected in 
households in response to a case detected at the Banda-
fassi, Ndoga Babacar, Sessene, and  Richard Toll clinics. 
Patients over 6  months of age presenting to the clinic 
with fever within the past 24  h and no history of anti-
malarial use were diagnosed with malaria using micros-
copy or rapid diagnostic tests (RDTs). Parasite genomic 
DNA was extracted from filter papers spotted with 
blood samples collected from malaria-positive patients 
at all sites except Richard Toll. For Richard Toll, parasite 
genomic DNA was extracted from malaria positive RDT 
cassettes.

Ethical approval for these studies was obtained from 
the Ministry of Health and Social Action in Senegal (Avis 
Protocol SEN1949) and the Harvard T.H. Chan School 
of Public Health Institutional Review Board (Protocol 
16330).

Barcoding with a 24 SNP molecular barcode
The 24 SNP (single nucleotide polymorphism) molecu-
lar barcode [24] provides a high-level snapshot of genetic 
diversity that trades genomic resolution for epidemio-
logical sampling breadth. The barcode consists of 24 neu-
tral SNPs spread throughout the malaria genome that 
are genotyped using a panel of TaqMan-based quantita-
tive PCR (polymerase chain reaction) genotyping assays. 
Nucleic acid material was extracted from either filter 
paper or RDT and preamplified using previously estab-
lished methods [25, 26]. Barcodes that had fewer than 
two missing sites were retained for analysis. Barcodes 
with two or more heterozygous sites were classified as 
polygenomic [13].

Full details regarding the criteria for calling homozy-
gous and heterozygous sites are presented in a previous 
publication [13]. Briefly, homozygous and heterozygous 
sites were based on the difference in cycle threshold (the 
ΔCT) for the alleles present at each barcode position. 
The ΔCT threshold used to differentiate homozygous 

and heterozygous sites was based on maximizing the 
true homozygous and true heterozygous rates observed 
in a series of DNA mixtures from lab-adapted 3D7, Dd2, 
and TM90C6B P. falciparum strains. These mixtures con-
tained different pairwise combinations of the three lab-
oratory-adapted strains mixed at different ratios ranging 
from 1:1 to 1:10. The true homozygous call rates in these 
mixtures were > 0.95. The detection limit for heterozy-
gous sites depended on the mixture. For 1:1 and 1:3 mix-
tures, the true heterozygous call rate was > 0.95. For 1:5 
and 1:10 mixtures, the true heterozygous call rates were 
0.83 and 0.53, respectively.

Parasite genetic epidemiology quantification
Each of the five genetic epidemiology metrics were cal-
culated for each site-year according to previously estab-
lished methods. Polygenomic infections were identified 
as those infections whose barcode had two or more het-
erozygous sites. Polygenomic fraction was calculated by 
dividing the number of polygenomic infections by the 
total number of samples with a usable barcode (fewer 
than two missing sites). The fraction of non-unique 
monogenomic clones was defined as the proportion of 
monogenomic infections with a barcode genotype that is 
also found in one or more other monogenomic infections 
in the population. It was calculated as 1− pmono,unique , 
where pmono,unique is the proportion of monogenomic 
infections with a unique barcode genotype.  RH and the 
cotransmission fraction were calculated as previously 
described [13]. Briefly,  RH quantifies the deviation in 
the observed, intra-host heterozygosity of polygenomic 
infections with the simulated expectations for a COI = 2 
superinfection. Polygenomic infections with an  RH > 0.30 
are inferred to be the result of cotransmission. THE 
REAL McCOIL [27] COI was calculated independently 
for each study site using the categorical method with 
the following parameter values: maxCOI = 25, thresh-
old_ind = 20, threshold_site = 20, and err_method = 3. 
All other parameters used the default values. The median 
value estimated by THE REAL McCOIL was used as the 
point estimate of COI for each sample.

NMCP‑reported incidences
When possible, NMCP-reported, district-level incidences 
for each collection site were used. However, this data was 
only readily available for the data collected in and after 
2019. For older data, the region-level incidences reported 
in the annual NMCP reports were used [28–34].

Poisson generalized linear model
Model predictions were made with a Poisson Generalized 
Linear Model (GLM):
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where �i is the predicted incidence for a given site-year, 
xi is the vector containing the values of the covariates 
used in the model, and β is the vector of coefficients to 
be estimated. xi includes the polygenomic fraction, the 
fraction of non-unique monogenomic clones,  RH, COI, 
and cotransmission fraction for each site-year and two 
categorical variables for (1) the region of origin and (2) 
whether incidences were measured at the district-level 
or at actual health facility catchment area. Models were 
fit using the GLM function in the Python 3 package 
statsmodel (v0.13.5).

Leave-one-out cross-validation was performed by 
splitting the dataset by sampling site and using all but 
one of the sites during model fitting. All site-years 
associated with the chosen site were removed from 
model fitting and was repeated for each of the 16 stud-
ied sampling sites. The estimates reported in this study 
used the average value obtained from leave-one-out 
cross-validation.

(1)log(�i) ∼ xTi β
Akaike information criterion
The Akaike information criterion (AIC) was calculated 
as:

where k is the number of free parameters and L is the 
log likelihood. For the GLM trained on all the data, k = 7 
(one for each of the parameters used in the GLM). For 
the piecewise GLM, k = 8, to include the additional inci-
dence threshold parameter that separates  GLMbelow10 
from  GLMabove10.

Results
Study design overview
3147 P. falciparum clinical infections collected using PCD 
at 16 health facility clinic sites in Senegal were genotyped 
with a 24 SNP molecular barcode [24] (Fig. 1, Additional 
file 2: Fig. S1). Five genetic metrics (polygenomic fraction, 
COI, the fraction of non-unique monogenomic clones, 
 RH [13], and the cotransmission fraction) were calcu-
lated from the molecular barcode data for each site-year 
(Table 1, Additional file 2: Table S1, Fig. 2). Polygenomic 

(2)AIC = 2k − 2L

Fig. 1 Study design overview. Samples were collected from 16 sites throughout Senegal. (A) The average, NMCP-reported annual incidence values 
(‰) for each site during the time of sampling and their transmission classification according to the WHO. (B) The locations of each of the sampling 
sites and the district they are located in. The coloration used in the map is based on the average, district-level incidences, with yellow indicating 
the district with the highest average incidence and dark purple indicating the lowest
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fraction and COI were chosen because they are among 
the most reported genetic metrics for assessing transmis-
sion intensity from malaria genetics.  RH is an estimate of 
intrahost heterozygosity that is designed to determine 
whether a polygenomic infection is the result of cotrans-
mission or superinfection. The cotransmission fraction 
is the proportion of polygenomic infections with an  RH 
estimate greater than 0.3, which was previously identified 
to be the threshold for distinguishing cotransmitted from 
superinfected infections. The fraction of non-unique 
monogenomic clones represents the frequency of clonal 
transmission in the population, which both empirical and 
simulation-based studies suggest becomes more frequent 
as transmission intensity declines [14]. Polygenomic frac-
tion and  COI  were expected to be positively correlated 
with incidence, while  RH,  the fraction of non-unique 
monogenomic clones, and the cotransmission fraction 

were expected to be negatively correlated with incidence 
(Table 1).

Malaria transmission in Senegal is highly heterogene-
ous, and the annual incidences reported by the NMCP 
for the clinic sites ranged from < 1 to > 1000‰ (Fig. 1A). 
Based on the definitions established by the World Health 
Organization (WHO) [35, 36], eight sites were “very 
low” transmission settings (< 100‰), three were “low” 
transmission settings (100–250‰), two were “moder-
ate” transmission settings (250–450‰), and three were 
“high” transmission settings (> 450‰) (Fig.  1A). Five 
sites were sampled for multiple years: Dalaba (KDG, 
2015–2020), Touba (MAD, 2019–2020), Sessene (SES, 
2018–2020), Thies (SLP, 2015–2020), and Richard Toll 
(RTP, 2012–2015). The remaining 11 sites were sampled 
in either 2019 or 2020 or both (Table 2). NMCP estimates 
of annual incidence for each site were based on either the 

Table 1 Summary of the genetic metrics used in this study and their expected relationship with transmission intensity

Clones are defined as a parasite whose barcode is observed more than once in the population and is calculated only for monogenomic infections. COI was calculated 
using THE REAL McCOIL

Genetic metric Definition Transmission reflected Expectation

Polygenomic fraction Proportion of infections that are polygen-
omic

Superinfection and cotransmission Increase with transmission intensity

Complexity of infection (COI) Number of strains per infection Superinfection and cotransmission Increase with transmission intensity

The fraction of non-unique 
monogenomic clones

Proportion of monogenomic infections 
carrying a clone that was sampled elsewhere 
in the population

Clonal transmission Decrease with transmission intensity

RH Estimate of polygenomic inbreeding based 
on intra-host heterozygosity

Superinfection and cotransmission Decrease with transmission intensity

Cotransmission fraction Proportion of polygenomics resulting 
from cotransmission

Cotransmission Decrease with transmission intensity

Fig. 2 Rank Analysis for each sample site based on the genetic metrics used in this study is shown. Transmission rank is defined as the rank one 
would use when using the metric to infer transmission intensity (Table 1), with 1 being the highest and 16 being the lowest. Assigned transmission 
ranks were assigned based on the average value calculated across sample years. For polygenomic fraction, The REALMcCOI [27] COI, and  RH [13], 
the transmission rank is positively correlated with the metric. For cotransmission fraction and the fraction of non-unique monogenomic clones, 
the transmission rank is negatively correlated with the metric
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reported district-level or region-level incidences for each 
clinical site (“Methods”).

Transmission rank analyses reveal limitations of using 
individual genetic metrics to infer incidence
Whether parasite genetic metrics could be used to reli-
ably rank sites by transmission intensity was evalu-
ated by assigning each of the 16 sites examined in this 
study a transmission rank based on the expectations 
[37–39] listed in Table  1 and comparing them with the 
rank assigned by incidence (Fig.  2). This approach was 
designed to mimic inferences made using data collected 
from a single parasite genetic metric. A major goal of 
this rank analysis was to evaluate the consistency of the 
transmission ranks assigned by each genetic metric. For 
sites with multiple years, the rank was based on the aver-
age value. Overall, the consistency between the two was 
weak, with small to moderate amounts of concordance 
(Kendall rank correlation coefficient < 0.38, Additional 
file  2: Table  S2). Of the genetic metrics examined, only 
the rank correlation between the fraction of non-unique 
monogenomic clones and incidence was statistically sig-
nificant (Kendall rank correlation = 0.38, p-value = 0.04).

However, transmission ranks tended to be consist-
ent when grouping the data into categories meant to 
represent those with “higher” and “lower “ transmis-
sion sites. Transmission ranks were organized into 2 × 2 
contingency tables (incidence versus each of the genetic 
metrics) with two categories: high transmission rank-
ing (transmission rank < 8) and low transmission ranking 

(transmission rank ≥ 8). The threshold at 8 was deter-
mined by visual analysis of the consistency in trans-
mission ranks observed in the data (Additional file  2: 
Fig. S1). These thresholds roughly correspond to the 
WHO-defined categorization of “very low” transmission 
but are not exactly the same. Splitting the transmission 
rank data improved the correlation between each of the 
genetic metrics and incidence (Yule’s Q between 0.47 and 
0.96, Additional file  2: Table  S2). The fraction of non-
unique monogenomic clones, polygenomic fraction, and 
cotransmission fraction were correlated with these inci-
dence groupings, but only the fraction of non-unique 
monogenomic clones was statistically significant (Yule’s 
Q = 0.96, Pearson’s chi-square correlation p-value = 0.01).

Multi‑variate regression analyses identify 
different correlations between parasite genetics 
and NMCP‑reported incidence
The transmission rank analyses showed that, while 
some genetic metrics could be used to broadly differ-
entiate sites with annual incidence greater versus less 
than < 100‰, the exact transmission rank assigned by 
each genetic metric conflicted with one another and with 
incidence. One way of resolving these conflicts would be 
to use a multi-variate regression model to generate a sin-
gle, site-specific incidence prediction using all the infor-
mation collected from each genetic metric. A series of 
Poisson mixed-effects generalized linear models (GLM, 
“Methods”) were constructed to quantify the relation-
ship between genetics and incidence based on different 

Table 2 The regions, district, three-letter code, and sampling years for each site. 

Sites with ACD of household communities are asterisked (*)

Region (RM) District (DS) Site (PS) Code Sample years

Kedougou Kedougou Tomboronkoto TBK 2019

Kedougou Kedougou Mako MAK 2019

Tambacounda Tambacounda Dialocoto TAM 2019

Kedougou Kedougou Dalaba KDG 2015–2020

Kedougou Kedougou Bandafassi BAN* 2019

Kolda Kolda Bagadadji KLD 2019

Kolda Velingara Ouassadou VLG 2019

Tambacounda Makacoulibantang Ndoga Babacar NDO* 2019

Tambacounda Bakel Gabou GAB 2019

Diourbel Diourbel Madiyana 2 MAD 2019–2020

Diourbel Diourbel Keur Serigne Mbaye Sarr SMS 2019

Diourbel Diourbel Sessene SES* 2018–2020

Sedhiou Sedhiou Centre De Santé Goudomp SED 2019

Thies Thies SLAP (Service de Lutte Antiparasitaire 
Clinic)

SLP 2015–2020

Dakar Pikine Deggo DEG 2019

St-Louis Richard Toll Multiple RTP* 2012–2015



Page 7 of 13Wong et al. Malaria Journal           (2024) 23:68  

combinations of the five genetic metrics used in this 
study. This approach allowed one to evaluate the predic-
tive power of each genetic metric alone and in combina-
tion with one another.

Model predictions from a GLM utilizing all five genetic 
metrics revealed two parameter regions with oppos-
ing model bias corresponding to regions with annual 
incidence > 10‰ and those with < 10‰. (Fig.  3). Over-
all, model predictions for regions with annual inci-
dence > 10‰ were consistent with the reported data 
(Fig.  3A). However, the model tended to underestimate 
incidence relative to the official, NMCP-reported inci-
dence values (Additional file  2: Fig. S4A). When annual 
incidence is > 10‰, increasing incidence was associ-
ated with increasing polygenomic fraction (Pearson 
correlation coefficient r = 0.77, p-value = 1.6e−4) and 
COI (r = 0.60, p-value = 8.6e−3), but decreasing the 
fraction of non-unique monogenomic clones (r = 0.60, 
p-value = 9.8e−6) (Additional file  2: Fig. S5).  RH and 
cotransmission fraction were also negatively associated 
but their correlations were not statistically significant 
(r = − 0.27, p-value = 0.29 and r = − 0.17, p-value = 0.496, 
respectively).

The patterns observed in regions with annual inci-
dence < 10‰ differed from those observed in regions 
with > 10‰. Unlike in the higher transmission regions, 
the model predictions were not consistent with the 
NMCP-reported incidences and were consistently 
overestimated. The inability of the model to accurately 
predict incidence in regions with < 10‰ was because 
many of the correlations between parasite genetics and 
incidence differed from those observed in higher trans-
mission regions (Fig. 4). When annual incidence < 10‰, 
sites with higher incidence were associated with 

decreasing polygenomic fraction (r = − 0.75, 
p-value = 2.0e−3) and COI (r = − 0.60, p-value = 0.04), 
but increasing the fraction of non-unique monog-
enomic clones (r = 0.77, p-value = 1.38e−3). The corre-
lations between  RH and cotransmission fraction were 
also reversed but statistically insignificant (r = 0.10, 
p-value = 0.73 and r = 0.12, p-value = 0.69, respectively).

Of the metrics examined, the detection of non-
unique clones had the greatest potential to be impacted 
by sample size. To account for this, model predictions 
were also made using down-sampled estimates of the 
fraction of non-unique monogenomic clones to control 
for differences in monogenomic infection sample size 
(Additional file 2: Fig. S6). The down-sampled fraction 
of non-unique monogenomic clones estimates were 
lower (Additional file 2: Fig. S6A, B) but otherwise had 
no major effect on model predictions (Additional file 2: 
Fig. S6C).

Based on these observations, a piecewise GLM model 
that splits the data into two groups, one for annual 
incidence < 10‰  (GLMbelow10) and one for annual inci-
dence > 10‰  (GLMabove10), was generated. The inflec-
tion point that separates  GLMbelow10 and  GLMabove10 
was determined by performing a parameter sweep over 
different incidence values (Additional file  2: Fig.  S7). 
However, the dataset had a noticeable gap in sampling 
for sites with annual incidences between 10 and 100‰, 
which made it unclear how reliably we could identify 
the inflection point. For the purposes of this study, a 
conservative threshold of 10‰ was used because it 
represents the minimum value where splitting the data 
caused the model fits to improve. The resulting piece-
wise model significantly improved model fits (AIC 
[Akaike information criterion] = 1291.34) relative to the 

Fig. 3 Poisson mixed-effects GLM model predictions based on all five genetic metrics used in this study using A all the site-years and B 
from a piecewise GLM that splits the data in to low  (GLMbelow10, shaded in grey) and high transmission sites  (GLMabove10). Each dot is the predicted 
incidence for all the examined site-years. Error bars represent the 95% confidence interval generated through iterative leave-one-out analyses 
where all the site-years associated with a chosen site were left out of the analysis. The legend applies to both A and B 
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original GLM (AIC = 3065.78) but tended to overesti-
mate incidence when the reported values were close to 
the inflection point at 10‰ (Fig.  3B, Additional file  2: 
Fig. S4B).

Parasite genetics can be used to estimate incidence in low 
to high transmission settings
Whether each genetic metric was sufficiently powered 
to estimate incidence by itself or whether there was a 
minimum subset of genetic metrics that could be used 
to accurately estimate incidence was evaluated. Because 
the piecewise GLM model strongly suggests that para-
site genetics reflect different epidemiological dynamics 
when annual incidence < 10‰, whether the predictive 
power of these genetic epidemiology metrics was the 
same in regions with annual incidence < 10‰ and those 
with > 10‰ was also assessed. To answer these questions, 
a series of  GLMbelow10 and  GLMabove10 models (collec-
tively referred to as {GLMbelow10} and {GLMabove10}) were 
trained with different combinations of genetic epidemi-
ology metrics and their relative goodness-of-fit to the 
data evaluated using AIC (Fig. 5). The goal was to iden-
tify the set of genetic epidemiology metrics that resulted 
in the best-fitting model for both {GLMbelow10} and 
{GLMabove10}.

For the {GLMabove10} models (Fig.  5A), the best fitting 
model was the one that included all five genetic met-
rics  (GLMabove10, AIC = 1245.86). When examining each 
genetic metric individually, the polygenomic fraction 

was the best predictor of incidence (AIC = 2342.57), fol-
lowed by the fraction of non-unique monogenomic 
clones (AIC = 2624.32) (Additional file  2: Fig.  S8).  RH 
and cotransmission were the worst individual predictors 
(AIC = 4501.90 and 4501.93 respectively) but including 
them in combination with other metrics improved model 
fit. In general, increasing the number of genetic metrics 
improved model fit. The average AIC for models with one, 
two, three, and four genetic metrics was 3560.88, 2858.25, 
2178.32, and 1719.56 respectively.

For the {GLMbelow10} models, there was no single, statisti-
cally best fitting model (Fig. 5B). The model with the low-
est AIC was the one trained on the fraction of non-unique 
monogenomic clones alone (AIC = 51.05), followed by the 
one trained on polygenomic fraction alone (AIC = 51.16). 
However, based on standard definitions used to deter-
mine statistical significance (AIC difference > 2), it was 
not possible to determine which of the eight models with 
AIC < 53.05 was the best. On average, including additional 
genetic metrics did not improve model fit. The average AIC 
for models with one, two, three, and four genetic metrics 
was 55.68, 54.10, 54.44, and 55.86. The AIC for  GLMbelow10, 
the original model trained on all five genetic metrics, was 
57.52.

Fig. 4 Relationship between incidence and A polygenomic fraction, B THE REAL McCOIL COI, C  RH, D cotransmission fraction, and E the fraction 
of non-unique monogenomic clones. Error bars represent the 95% confidence interval for each examined site-year. The black lines represent model 
ordinary least squares regression model fits. A vertical dotted line is drawn at an NMCP-reported incidence of 10‰
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Extrapolation of parasite genetic epidemiology based 
on trends seen in transmission settings with annual 
incidence > 10‰ overestimates transmission 
in transmission settings with annual incidence < 10‰
Based on these results, whether inappropriately applying 
the trends in parasite genetics observed in moderate-to-
high transmission settings would cause erroneous inci-
dence predictions in very low transmission settings was 
evaluated. To test this,  GLMabove10 was used to gener-
ate incidence predictions for the sites with annual inci-
dence < 10‰ (Additional file  2: Fig.  S9). This approach 
reflects the current state of malaria genomic epidemi-
ology analyses, where incidence is inferred based on 
the expectations stated in Table 2. The incidence values 
predicted by  GLMabove10 were similar (Additional file  2: 
Fig. S9A) to those seen from the GLM that was trained 
on all the data (Fig.  3A) and settings with annual inci-
dence < 10‰ were consistently overestimated.

Discussion
Parasite genetics has the potential to enable public health 
officials to evaluate changes in transmission in settings 
where the corresponding epidemiological data are either 
missing or difficult to collect. However, the utility of par-
asite genetic surveillance will depend on how informative 
genetics is for studying malaria transmission and whether 
the inclusion of genetics can enhance the confidence of 
estimates based on standard epidemiological measures 
of transmission. The major goals of this study were to (1) 
characterize the relationship between five malaria genetic 

epidemiology metrics that collectively assess the impact 
of superinfection, cotransmission, and clonal transmis-
sion and incidence to determine whether these relation-
ships were constant across transmission strata, and (2) 
test the predictive power of five malaria genetic epidemi-
ology metrics for inferring transmission intensity, which 
in this study was measured as the NMCP-reported inci-
dence for the catchment health facility.

Senegal was an ideal setting for this analysis due to 
its extensive range of transmission intensities in a local-
ized geographic region. By utilizing data collected across 
16 health facilities located throughout the country, this 
study found that the relationship between parasite genet-
ics and annual incidence changed in very low transmis-
sion settings with < 10‰. Based on these results, parasite 
genetics could be used to evaluate changes in incidence 
when the annual incidence is > 10‰ and used to assess 
potential sources of importation and other forms of 
transmission heterogeneity when transmission is low and 
falls below an annual incidence of 10‰.

When transmission is above an annual inci-
dence > 10‰, the relationship between parasite genetics 
and reported incidence were consistent with previously 
established superinfection-based hypotheses that predict 
higher rates of multiple infections as transmission inten-
sity increases [37–39]. Under these conditions, parasite 
genetics can be used to accurately infer incidence and 
increasing transmission intensity is associated with an 
increase in polygenomic fraction and COI and a decrease 
in the frequency of clonal parasites in the population. 

Fig. 5 AIC values for A  GLMabove10 and B  GLMbelow10 models calibrated with different combinations of genetic epidemiology metrics. P refers 
to polygenomic fraction, Cotx refers to cotransmission fraction, COI refers to THE REAL McCOIL COI, and M refers to the fraction of non-unique 
monogenomic clones. For convenience, models trained with all five genetic epidemiology metrics are labelled in black, four in blue, three in green, 
two in yellow, and one in red. Error bars indicate the 95% confidence interval obtained from leave-one-out cross-validation. The dotted blue line 
indicates the line of statistical significance relative to the best fitting model. Bars whose average is above the dotted line are statistically worse 
than the best-fitting model. Bars whose average is below the dotted line perform equally well as the best-fitting model
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These results suggest that NMCPs can utilize these corre-
lations to quantify and compare the incidences of regions 
where transmission is high enough to be explained by 
superinfection, which in Senegal occurs when annual 
incidence > 10‰. However, accurately inferring NMCP-
reported incidence in these moderate-to-high transmis-
sion areas required the incorporation of all five of the 
metrics used in this study, including those designed to 
measure cotransmission  (RH and cotransmission frac-
tion). Thus, while superinfection is likely the dominant 
driver of parasite genetics when incidence > 10‰, the 
impact of cotransmission should not be discounted.

This study suggests that genomic epidemiological 
inference can be made with as few as 24 SNPs and a rel-
atively small number of samples, which could be advan-
tageous for assessing changing levels of transmission in 
high transmission settings with limited resources. These 
24 SNPs can be genotyped from the genomic material 
extracted from discarded RDTs, which greatly reduces 
the technical and logistical complexities involved with 
collecting appropriate genetic material from clinical 
populations [25]. Collectively, this sampling strategy 
allowed us to develop a regression model to characterize 
and predict the NMCP-reported incidences when inci-
dence > 10‰. In this study, the average number of sam-
ples per site year was 98.34, ranging from a minimum of 
35 to 243 samples. These results suggest that a relatively 
small number of samples are needed to infer NMCP-
reported incidence, but additional work is needed to 
assess the effect of sample size and sampling bias on 
genomic epidemiology inference more thoroughly.

However, the relationship between parasite genetics 
and incidence was not consistent across all transmis-
sion strata. When transmission falls below annual inci-
dence < 10‰, many of the relationships between parasite 
genetics and incidence observed in higher transmission 
regions were reversed; increasing transmission intensity 
resulted in a decrease in polygenomic fraction and COI 
and an increase in the frequency of clonal parasites in the 
population. These results are difficult to explain under 
superinfection-based hypotheses, especially as the study 
sites with the lowest incidence, such as Richard Toll, had 
polygenomic fractions that were consistent with those 
seen in study sites with annual incidence > 400‰.

One possibility for the unusual trends in parasite 
genetics in very low transmission settings is that accu-
rate quantification of the NMCP-reported incidence 
values is more difficult as transmission declines because 
infected individuals are infrequent and difficult to iden-
tify. Superinfection in very low transmission settings may 
also be more difficult to detect as parasite populations 
become more clonal and genetically related [40]. While 
the problems associated with sample ascertainment or 

measurement error in low transmission settings cannot 
be discounted, it is difficult to attribute these observa-
tions to sample ascertainment bias alone given the tight, 
but reversed, correlation observed between polygen-
omic fraction, the fraction of non-unique monogenomic 
clones, and COI in this transmission regime.

Instead, these changes could be driven by fundamen-
tal changes in transmission structure that affects the 
parasite genetics of very low transmission settings [41]. 
In Senegal, the reversed relationships between parasite 
genetics and transmission intensity could reflect the dis-
proportionate impact of importation as local transmis-
sion declines. The 2013 Senegal census estimated that 
14.6% of the population were internal lifetime migrants, 
meaning that their current area of residence differs from 
their birthplace [42]. The most popular destinations of 
internal lifetime migrants are in the low and very low 
transmission regions, such as Dakar, Diourbel, and Thies. 
Richard Toll also experiences seasonal influxes of migrant 
workers due to the presence of the Senegalese Sugar 
Company, and identical parasite clones were previously 
detected between Dakar and Richard Toll [42]. Anecdo-
tal evidence obtained from the health facilities in the low 
transmission regions of this study suggest that patients 
with recent travel history were more likely to be tested 
and diagnosed with malaria. Regions with moderate to 
high levels of transmission, such as Kaolack and Kedou-
gou, reported a net loss in population in the 2013 census. 
Thus, while it is possible to infer incidence from parasite 
genetics in the very low transmission settings of Senegal 
(Fig.  3B,  GLMbelow10), this is possibly due to the impor-
tation of parasites from the moderate- to high-transmis-
sion regions to the lower transmission regions of Senegal. 
Parasite genetics in very low transmission settings should 
be combined with data regarding travel history or other 
indicators of human movement [41, 43] to evaluate the 
potential impact of importation or focal transmission.

Overall, these results suggest that there are two distinct 
regimes where parasite genetics could be used to inform 
public health decision-making. When transmission is 
sufficiently high such that superinfection dominates, 
changes in parasite genetics can be used to infer inci-
dence and quantify the transmission intensity in differ-
ent regions. Parasite genetics could be especially valuable 
for evaluating the efficacy of public health interventions 
in reducing transmission in moderate to high transmis-
sion settings. However, when transmission falls below 
a certain threshold, these results suggest that parasite 
genetics should instead be used to begin evaluating the 
impact of importation or other heterogeneous transmis-
sion processes whose effects are masked by local mix-
ing and transmission in high transmission settings but 
whose contributions are proportionally greater in low 
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transmission settings. The exact incidence threshold for 
distinguishing between these two paradigms is uncer-
tain, but likely lies between an annual incidence of 10 and 
100‰. Until additional study sites with annual incidence 
between 10 and 100‰ can be examined, the current 
WHO guidelines for defining sites with very low trans-
mission sites (annual incidence < 100‰) could be used 
to determine when parasite genetics can be used to infer 
transmission intensity and when it can be used to study 
subtler effects associated with importation and other 
sources of transmission heterogeneity.

The careful examination of parasite genetics in very 
low transmission sites could help NMCPs address long 
standing issues regarding the role of importation and 
focal transmission in low transmission settings. Very low 
transmission sites should be identified prior to using par-
asite genetics, as inappropriately applying the trends in 
parasite genetics from higher transmission settings risks 
over-estimating incidence and ignores possible sources of 
infections in low transmission areas. This phenomenon is 
most clearly seen in the model predictions from the GLM 
trained on all the sites (Fig.  3A) and the out-of-sample 
extrapolations made with the GLM trained on only 
sites with annual incidence > 10‰  (GLMabove10, Addi-
tional file  2: Fig.  S9). In practice, very low transmission 
sites can be distinguished from higher transmission sites 
using standard epidemiological metrics of incidence. The 
advantage of parasite genetics in very low transmission 
settings is that it could potentially allow NMCPs to iden-
tify source-sink populations or focal transmission sites 
that require targeted intervention for elimination. Addi-
tionally, parasite genetics in very low transmission sites 
could potentially be used to help countries confirm the 
absence of locally sustained transmission when applying 
for WHO certification of elimination.

Conclusion
In conclusion, this study evaluated the relationship 
between several parasite genetic epidemiology metrics 
and transmission intensity measured as annual incidence 
in Senegal. This study clearly shows that parasite genetic 
metrics behave differently under diverse transmission 
strata. When transmission is sufficiently high, changes in 
parasite genetics were consistent with different rates of 
superinfection and outcrossing as transmission intensity 
changes. However, when transmission intensity falls too 
low, changes in parasite genetics cannot be explained by 
current superinfection-based hypotheses; it is likely that 
changes in parasite genetics in very low transmission set-
tings reflects importation or other forms of transmission 
heterogeneity. These results highlight the multidimen-
sionality of parasite transmission and demonstrate the 
utility and limitations of parasite genetics for inferring 

transmission intensity in Senegal. Future studies will 
continue to investigate the relationship between parasite 
genetics and other epidemiological metrics of transmis-
sion and importation as well as incorporate other genetic 
epidemiology metrics that were not explored in this study 
(e.g., clonal barcode persistence [14, 44]).
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