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Abstract 

Background Understanding of malaria ecology is a prerequisite for designing locally adapted control strategies 
in resource‑limited settings. The aim of this study was to utilize the spatial heterogeneity in malaria transmission 
for the designing of adaptive interventions.

Methods Field collections of clinical malaria incidence, asymptomatic Plasmodium infection, and malaria vector data 
were conducted from 108 randomly selected clusters which covered different landscape settings including irrigated 
farming, seasonal flooding area, lowland dryland farming, and highlands in western Kenya. Spatial heterogeneity 
of malaria was analyzed and classified into different eco‑epidemiological zones.

Results There was strong heterogeneity and detected hot/cold spots in clinical malaria incidence, Plasmodium 
prevalence, and vector abundance. The study area was classified into four zones based on clinical malaria incidence, 
parasite prevalence, vector density, and altitude. The two irrigated zones have either the highest malaria incidence, 
parasite prevalence, or the highest malaria vector density; the highlands have the lowest vector density and para‑
site prevalence; and the dryland and flooding area have the average clinical malaria incidence, parasite prevalence 
and vector density. Different zones have different vector species, species compositions and predominant species. 
Both indoor and outdoor transmission may have contributed to the malaria transmission in the area. Anopheles 
gambiae sensu stricto (s.s.), Anopheles arabiensis, Anopheles funestus s.s., and Anopheles leesoni had similar human blood 
index and malaria parasite sporozoite rate.

Conclusion The multi‑transmission‑indicator‑based eco‑epidemiological zone classifications will be helpful for mak‑
ing decisions on locally adapted malaria interventions.
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Background
Although it is preventable and treatable, malaria contin-
ues to be one of the greatest global public health threats, 
despite considerable progress made through inten-
sive interventions in the past two decades [1]. Accord-
ing to the World Health Organization (WHO), in 2021 
there were an estimated 247 million malaria cases in 84 
malaria-endemic countries, with an estimated 619,000 
deaths. About 95% of cases occurred in Africa [1]. In 
2015, the WHO set the target of reducing global malaria 
incidence and mortality by at least 90% by 2030 [2], and 
many endemic African countries have set their mile-
stones with the aim of eliminating malaria by 2030 [3–6]. 
However, controlling malaria requires effective strategies, 
and to achieve optimal cost-effectiveness the strategies 
must adapt to local eco-epidemiological settings [7, 8]. A 
better understanding of malaria biology/ecology is key to 
designing such intervention strategies [7–9].

Malaria is a mosquito-borne infectious tropical dis-
ease transmitted by bites from infected female Anopheles 
mosquitoes. Transmission spatial heterogeneity is one of 
the key epidemiological characteristics of vector-borne 
infectious diseases, including malaria, due to the hetero-
geneity of environments supporting vector development 
and reproduction and disease pathogen transmission 
[10–13]. In malaria studies, researchers have found that 
temperature/precipitation patterns, land use land cover, 
elevation, and landscape features such as valley shape, 
rivers, and slopes all affect the transmission and distribu-
tion of malaria vectors and Plasmodium parasite infec-
tions [14–18]. Many studies found that Plasmodium 
infections (both symptomatic and asymptomatic) showed 
aggregated patterns in certain areas (i.e., hotspots) and in 
many cases at the household or village level [11–13, 19, 
20], suggesting the potential for focused interventions 
[10, 21–23]. However, targeted interventions produced 
mixed results [10, 21, 23]. The failure of hotspot-targeted 
interventions to accelerate malaria elimination is likely 
due to confounding factors and to the incomplete under-
standing of spatial transmission dynamics [20, 22, 24]. 
Geographical micro-variations in malaria transmission 
may be a universal feature [22, 25, 26]. Fine-scale, i.e., 
household- or village-level, risk factor analysis is useful 
for informing household-based intervention strategies, 
but it may not be suitable for regional- or national-level 
intervention planning and implementation [21, 22, 25, 
27]. It is important to optimally utilize the spatial infor-
mation collected to prioritize locally adapted interven-
tions in resource-limited settings. The question is how 
to make use of household/village-level information for 
regional malaria control planning.

Malaria risk can be measured using several indica-
tors, including asymptomatic Plasmodium infection 

prevalence, clinical malaria incidence, and vector density 
[21, 24, 28–30]. These indicators are also used for spatial 
heterogeneity and household/village-level risk assess-
ments [11–13, 19, 31]. In addition to cluster/village-level 
heterogeneity analyses, a recent study shows that through 
in-depth analyses the same information can also poten-
tially be used for regional intervention planning [32]. 
The selection of interventions is based on epidemiologi-
cal status, but it should be adapted to the local ecologi-
cal conditions that support the development and survival 
of malaria vectors. Previous study used Plasmodium 
infection prevalence, Anopheles adult density, and clini-
cal malaria incidence from different seasons to classify 
study areas into different eco-epidemiological zones [32], 
which can potentially be used for intervention planning. 
However, previous study did not analyse the potential 
spatial heterogeneity of malaria transmission, and the 
study area was relatively small. An expanded study area 
including more diverse eco-epidemiological areas would 
enable researchers to draw generalized conclusions.

In this study, the study area was expanded to include 
areas with more diverse eco-epidemiological conditions. 
The spatial heterogeneity of transmission was examined 
based on epidemiological and entomological observa-
tions and conducted classification analyses to determine 
the eco-epidemiological zones. The eco-epidemiological 
zone classifications will be helpful for making decisions 
on locally adapted malaria interventions.

Methods
Study area
The study was conducted in 108 clusters in Muhoroni 
(top), Nyando (middle) and Nyakach (bottom) sub-coun-
ties of Kisumu County, western Kenya (Fig. 1). The study 
areas cover an area of about 1,440  km2 and a population 
of about 466,000. The climatic/environmental conditions 
and the definition of a cluster have been described in pre-
vious studies [32, 33]. The north end of the Muhoroni 
study area is a large sugarcane plantation, and the central 
western area borders rice paddies (Fig.  1). In the south, 
about half of the Nyakach study area is on the Lake Vic-
toria shore plain with swamps (elevation 1,140–1,200 m), 
with a sloped transition area leading to a highland pla-
teau (elevation 1,550–1,650 m) at the southern border of 
the study area (Fig. 1). Nyando lays in the centre of the 
Kano plain along the Lake Victoria shoreline. Nyando 
presents a contrast in agricultural practices between its 
western and eastern halves, with rice fields dominat-
ing the western side and dryland maize cultivation in 
the flooded (during the long-rainy season) plains of the 
eastern region (Fig. 1). Malaria transmission in the study 
area is perennial with an annual peak from May to July 
during the long rainy season [32, 33]. Malaria vectors are 
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Anopheles funestus sensu lato (s.l.) and Anopheles ara-
biensis in the Muhoroni area and An. funestus, An. ara-
biensis and Anopheles gambiae sensu stricto (s.s.) in the 
Nyakach area [32–34]. Malaria vector species in Nyando 
area is not clear. Also present are Anopheles coustani, a 
potential malaria vector in Kenya, and Anopheles phar-
oensis [32–35].

Entomological survey
Cross-sectional indoor and outdoor mosquito sur-
veys were conducted at all 108 clusters. Indoor-resting 
mosquitoes were collected using the pyrethrum spray-
ing collection (PSC) method. Both indoor and outdoor 
host-seeking mosquitoes were collected using CDC light 
traps. In each cluster for each sampling method, 20–25 
houses were randomly selected, and samplings were 
conducted monthly from May to September 2021. Loca-
tion and altitude of sampling houses were determined 
using a handheld GPS. Mosquito species were identi-
fied morphologically, and female anopheline mosquitoes 
were classed as unfed, blood fed, half-gravid, and gravid. 
Specimens of An. gambiae s.l. and An. funestus s.l. were 
further analysed by rDNA-PCR for species identifica-
tion. Mosquito density was calculated as the number of 
Anopheles females per house per night.

Asymptomatic parasite infection prevalence
Cross-sectional Plasmodium parasite infection sur-
veys were conducted from May to September 2021. The 

details of the sample collections have been described in 
previous study [32]. Briefly, about 100–120 participants 
were randomly selected at each cluster. On signing of 
the informed consent/assent (for minors younger than 
18  years) forms, blood samples were collected using 
the standard finger-prick method. Thin and thick blood 
smears were prepared for laboratory microscopy exami-
nation, and filter paper blood dots were prepared for 
PCR detection of parasite infection status and species. 
Parasite prevalence was calculated as the proportion of 
positive samples over total samples tested based on the 
PCR test results.

Active malaria case detection
Clinical malaria incidence was determined through 
active case detection (ACD) conducted at all clusters 
from April to September 2021. The details of ACD have 
been described in previous studies [30, 32]. Briefly, a 
cohort of 100–150 households, comprising about 500 
residents, was selected randomly from each cluster, and 
all residents in the selected households were invited 
to participate in the study based on the inclusion and 
exclusion criteria. Written informed consent/assent (for 
minors younger than 18  years) for study participation 
was obtained from all consenting heads of households 
and from each individual who was willing to participate 
in the study. Participants were visited bi-weekly by a 
team of government trained and certified local Commu-
nity Health Volunteers (CHVs) and screened for clinical 

Fig. 1 Distribution of study clusters in Muhoroni (top), Nyando (middle), and Nyakach (bottom) sub‑counties, Kisumu, Kenya
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malaria. Body temperature and symptoms and signs of 
illness were recorded on a case report form (CRF). For 
anybody who had malaria-like symptoms, a rapid diagno-
sis test (RDT) was administered on-spot. Clinical cases 
were referred to the nearest government-run hospital or 
health centre for free treatment. A clinical malaria case is 
defined as an individual with fever (axillary temperature 
of 37.5  °C or higher) and other related symptoms such 
as chills, severe malaise, headache, or vomiting at the 
time of examination or 1–2 days before the examination, 
together with a Plasmodium-positive RDT. The incidence 
rate was calculated as the number of cases per 1,000 peo-
ple per year based on the RDT test results.

Data statistical analyses
Spatial heterogeneity of mosquito density, parasite preva-
lence and clinical malaria incidence was examined using 
the Getis-Ord Gi* statistic of the ArcGIS Hot Spot Anal-
ysis tool (ArcGIS Pro 3.0, ESRI Inc., Redlands, CA, USA) 
[36]. Trend surfaces of malaria incidence, parasite preva-
lence and malaria vector density were produced using 
the completely regularized spline smoothing method of 
radial basis kernel function of ArcGIS. The study clus-
ters were then classified into different zones, using hier-
archical clustering method, based on the combination 
of all risk factors measured, including mosquito density, 
parasite prevalence, clinical malaria incidence, and eleva-
tion. Analysis of variance (ANOVA) was used to assess 
differences in parasite prevalence (with arcsine trans-
formation), clinical malaria incidence (with logarith-
mic transformation), and malaria vector density among 
different zones. The post hoc Tukey HSD test was used 

for pairwise tests. The χ2 test was used to test the differ-
ences in Anopheles mosquito species composition among 
different zones, and differences in sporozoite rate and 
bloodmeal sources between indoors and outdoors and 
between different vector species.

Results
Descriptive statistics
For the ACD surveillance, 10–12 rounds of home visits 
were carried out, 364,176 person-visits were conducted, 
and 1,862 RDT-positive malaria cases were detected, 
with an overall annual incidence rate of 122.7 cases/1,000 
people (95% CI 121.6–123.8) (Table 1).

For the Plasmodium prevalence surveys, a total of 
11,554 blood samples were collected and PCR was done 
on 9,184 samples (Table 1). PCR detected 2,686 infected 
samples, a prevalence of 29.2% (95% CI 28.3–30.1). 
Among the PCR-positive samples, 2,541 (94.6%) were 
Plasmodium falciparum, 26 (1.0%), Plasmodium malar-
iae, 34 (1.3%), Plasmodium ovale, 15 (0.6%) mixed P. fal-
ciparum and P. ovale, and 60 (2.2%) mixed P. falciparum 
and P. malariae.

For the vector surveillance, a total of 5,173 trap-nights 
were sampled, and 12,600 Anopheles mosquitoes were 
captured (Table  1). Among the mosquitoes captured, 
9,020 (72.6%) were morphologically identified as An. 
gambiae s.l., 2,218 (17.6%) An. funestus s.l., 825 (6.5%) 
An. coustani, 425 (3.4%) An. pharoensis, and 112 (0.9%) 
unidentified species. PCR analyses found that among An. 
gambiae s.l., 89.5% (759/848) were An. arabiensis and 
the rest were An. gambiae s.s.; among An. funestus s.l., 
86.3% (761/882) were An. funestus s.s. and the rest were 

Table 1 Summary of clinical malaria incidence, parasite prevalence, and vector density

Items Numbers Note

Number of study clusters 108

Malaria clinical incidence

 Population enrolled (individuals) 45,738

 Rounds of home visits 5–12 Bi‑weekly

 Total person‑visits 364,176 All ages

 RDT positive cases 1,862

 Incidence rate (95% CI) 122.7 (121.6–123.8) Cases/1,000 people/year

Parasite prevalence

 Blood samples collected 11,554 All ages

 PCR detected prevalence (95% CI) 29.2% (28.3–30.1)

Anopheles density

 Trap‑nights sampled 5,173 All‑inclusive

 Anopheles captured 12,600 Total captures

 Indoor resting density 1.0 ± 1.7 Females/house/night (± SD)

 Indoor host‑seeking density 1.2 ± 1.6

 Outdoor host‑seeking density 1.1 ± 2.0
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An. leesoni. A total of 46,050 Culex and 54 Aedes were 
collected.

Although there were significant time-lagged correla-
tions between Anopheles densities and parasite preva-
lence and clinical malaria incidence (Additional file  1: 
Table  S1), the overall pairwise correlations between the 
four malaria transmission indicators, parasite prevalence, 
clinical malaria incidence, vector density and elevation, 
were not very high, with the highest correlation of 0.41 
between parasite prevalence and clinical malaria inci-
dence (Additional file 1: Table S2).

Trend surface and hot spot analyses
Trend surface analysis illustrated strong spatial heterog-
enous distribution of clinical malaria incidence (Fig. 2A), 
asymptomatic parasite prevalence (Fig. 2B), and malaria 
vector density (Fig. 2C). Clinical incidence was very high 
in the northwestern section of the study area, parasite 
prevalence was high across the northern part plus a few 
sparse clusters across the study area, while vector density 
was high across the northwestern part of the study area 
(Fig. 2A–C).

Both hot and cold spots were detected in the study 
areas (Fig.  2D–F). A small hotspot of clinical incidence 
was detected in the northwestern area (Fig.  2D). For 
parasite prevalence, a large hotspot was detected in the 
north and a large cold spot in the south (Fig. 2E). For vec-
tor density, cold spots were detected in the south similar 

to that of prevalence, while the locations of the hot spots 
were different from both clinical incidence and parasite 
prevalence (Fig. 2F). In general, at the top of the highland 
plateau there was low parasite prevalence, low malaria 
incidence and low vector density, while the northern area 
surrounded by the sugarcane plantation and rice fields 
had high parasite prevalence, high malaria incidence and 
high vector density (Fig. 2).

Malaria risk classification and characterization
The study areas could be classified into four zones based 
on parasite prevalence, clinical malaria incidence, malaria 
vector density, and elevation (Fig.  3). Parasite preva-
lence was significantly higher in the north (42.3 ± 2.0%) 
(Figs.  3, 4 Zone 4) compared to the other zones (11.8–
17.5%) (Tukey HSD test, P < 0.05, Figs. 3, 4). The northern 
zone (Zone 4 on Fig.  3) had significantly higher clinical 
malaria incidence (290.3 ± 27.5 cases/1,000 people/year) 
and Zone 2 had significantly lower clinical malaria inci-
dence (96.5 ± 7.2 cases/1,000 people/year) (Tukey HSD 
test, P < 0.05, Figs. 3, 4). Zone 1 had the highest malaria 
vector density (3.8 ± 0.9 females/house/night) and the 
highland (Zone 3) had the lowest vector density (0.4 ± 0.1 
females/house/night) (Tukey HSD test, P < 0.05, Figs.  3, 
4). Clearly, the highland zone had the highest elevation 
(1514 ± 22  m above sea level) compared to the other 
zones (1128–1193  m a.s.l.) (Tukey HSD test, P < 0.05, 
Figs. 3, 4).

Fig. 2 Maps of trend surface and hotspots in parasite prevalence (A/D), clinical malaria incidence (B/E), and malaria vector density (C/F) 
in the study area
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From a malaria transmission and vector control point 
of view, malaria vector species composition is also an 
important parameter. An. gambiae s.l. was dominant in 
all lowland zones while An. funestus was dominant in 
the highlands (χ2 = 838.09, d.f. = 9, P < 0.0001, Fig.  5A). 
Female density varied significantly among zones for all 
species (ANOVA, P < 0.05 for all). Anopheles gambiae 

and An. funestus had significantly higher densities in 
Zone 1, and the density of An. funestus was also high in 
Zone 4 (highland), while An. coustani had the highest 
density in Zone 1 (Fig. 5B). Density of An. pharoensis was 
low in all zones (Fig. 5B).

For An. gambiae and An. funestus complexes, 3,291 
females were randomly selected for PCR species 

Fig. 3 Eco‑epidemiological classification of study clusters based on parasite prevalence, clinical malaria incidence, and malaria vector density. 
Numbers on the map corresponding to the number on the dendrogram of the hierarchical clustering on the left

Fig. 4 Eco‑epidemiological characteristics of each zone
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identifications. A total of 2,660 females have been iden-
tified to species with 1,708 (64.2%) An. arabiensis, 116 
(4.4%) An. gambiae s.s., 736 (27.7) An. funestus s.s., 
and 100 (3.8%) An. leesoni. The species compositions 
were significantly different between indoor and out-
door catches (χ2 = 14.75, d.f. = 4, P = 0.0052, Figs.  5C, 
D), as well as among different zones for indoor catches 
(χ2 = 120.60, d.f. = 12, P < 0.0001, Fig. 5C) and for outdoor 
catches (χ2 = 45.73, d.f. = 12, P < 0.0001, Fig. 5D).

Bloodmeal source and sporozoite infections
A total of 1,730 female mosquitoes were examined for 
bloodmeal source and sporozoite infections, of them 65 
(3.8%) had sporozoite infections, 117 (6.8%) had bovine 
bloodmeals, 66 (3.8%) had human blood meals, and 
human bloodmeal index (HBI) was 0.36 (Table 2). Inter-
estingly, sporozoite rate was significantly higher in mos-
quitoes collected outdoors (5.0%) compared to indoors 
(2.9%) (χ2 = 4.91, d.f. = 1, P = 0.0265, Table 2). Proportions 

Fig. 5 Malaria vector species composition (A) and abundance (B) in different zones, and PCR identified species compositions of indoor (C) 
and outdoor (D) Anopheles gambiae sensu lato and Anopheles funestus s.l 

Table 2 Blood meal source and sporozoite positivity rate of Anopheles gambiae s.l. and Anopheles funestus s.l. mosquitoes

Pf Plasmodium falciparum

Species N samples n. Pf Bovine Human Not amplified Sporozoite rate Human 
blood 
index

Indoor

 An. arabiensis 490 7 27 16 36 1.4 0.37

 An. funestus s.s 444 17 16 21 50 3.8 0.57

 An. gambiae s.s 53 1 8 4 8 1.9 0.33

 An. leesoni 66 6 9 0 1 9.1 0.00

 Total 1053 31 60 41 95 2.9 0.41

Outdoor

 An. arabiensis 269 10 15 7 6 3.7 0.32

 An. funestus s.s 317 22 27 16 34 6.9 0.37

 An. gambiae s.s 36 0 3 2 1 0.0 0.40

 An. leesoni 55 2 12 0 3 3.6 0.00

 Total 677 34 57 25 44 5.0 0.30

 Grand total 1730 65 117 66 139 3.8 0.36
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of female mosquitoes having bovine bloodmeals was also 
significantly higher in mosquitoes collected outdoors 
(8.4%) compared to indoors (5.7%) (χ2 = 4.84, d.f. = 1, 
P = 0.0278, Table  2). Proportions of female mosquitoes 
having human bloodmeals was similar between mos-
quitoes collected outdoors (3.7%) and indoors (3.9%) 
(χ2 = 0.04, d.f. = 1, P = 0.8314, Table  2). Sporozoite infec-
tions have been detected from all four species of An. 
gambiae and An. funestus complexes, but sporozoite 
rates varied among species and between indoor and 
outdoor collected females, with the highest sporozo-
ite rate of 9.1% for indoor collected An. leesoni and 0% 
for outdoor collected An. gambiae s.s. (χ2 = 3.48, d.f. = 1, 
P = 0.0622, Table 2). Due to the small number of sporo-
zoite infected females, bloodmeal source and sporozoite 
infection were not analysed by zones. Bloodmeals and 
sporozoite infections in An. coustani and An. pharoensis 
were not examined.

Discussion
Malaria transmission heterogeneity is universal due to 
the nature of environmental heterogeneity. For maxi-
mum effectiveness, malaria interventions should be 
adapted to local eco-epidemiological conditions [7, 8, 
37]. The question is how to best utilize the data on trans-
mission heterogeneity to form the optimal strategy for 
malaria intervention planning. Many studies have ana-
lysed malaria transmission heterogeneity, especially 
micro-geographical transmission hotspots. Interventions 
targeting high-transmission areas have yielded mixed 
effectiveness [21, 23, 38]. Bousema et  al. conducted 
interventions in hotspots and found that the impact on 
parasite prevalence of interventions targeting malaria 
vectors and human infections was modest, transient, and 
restricted to the targeted hotspot areas, suggesting that a 
community-wide approach may be more beneficial [21]. 
In an earlier study by Zhou et al. conducted in the high-
lands of western Kenya at a time when vector resistance 
to insecticides was low, they found that indoor residual 
spraying in the high-transmission area (i.e., area-wide 
targeted intervention) significantly reduced vector den-
sity and new Plasmodium infections in school-aged chil-
dren across the community [23]. In the study by Zhou 
et al., the targeted area was not a simple small hotspot but 
an area where most breeding habitats and Plasmodium 
infections were located [29, 39, 40]; i.e., the selection of 
intervention strategy was based on the eco-epidemiolog-
ical settings of the area [7, 8]. For malaria control deci-
sion makers, the important question is how to determine 
the different eco-epidemiological settings so that differ-
ent adaptive intervention strategies can be formed. In 
this study, based on multiple malaria risk parameters, the 
study areas were classified into four eco-epidemiological 

conditions. Since the four zones have distinct malaria 
transmission characteristics, the four areas may need 
different intervention strategies. It should be noted that 
in most previous studies, detection of transmission hot-
spots was based on a single risk indicator, in many cases 
using one-time-point surveillance data [21, 24, 27–29]. 
This study used Plasmodium infection prevalence (all-
age inclusive), clinical malaria incidence (six months/12 
rounds of active case surveillance) and malaria vector 
density (six-month samplings). This comprehensive sur-
veillance data may strengthen the reliability of the clas-
sification results.

Household- and village-level heterogeneity and risk 
analysis is important for informing household malaria 
prevention strategies. However, decision-makers need 
regional-level eco-epidemiological analysis to form the 
basis for malaria control planning. For example, in the 
highlands, malaria vector habitats and Plasmodium 
infections are usually concentrated in the valleys [29, 31, 
39, 40]. At the top of the highland plateau, habitats are 
usually man-made water ponds and sparsely distributed 
[32]; in these areas, habitat management may be an effec-
tive strategy for malaria control [23, 41, 42]. On the other 
hand, in the rice-growing area, although larviciding has 
proven to be an effective vector control strategy [43], 
large-scale larviciding in rice fields can be costly in terms 
of larvicide usage and implementation costs if larvicides 
are applied in multiple rounds during the rice-growing 
season [44], making it a less cost-effective strategy. From 
this point of view, this study provides useful informa-
tion for vector control planning; i.e., the four zones may 
need different vector and malaria management strategies. 
For example, in the high-prevalence and high-incidence 
zones, an effective strategy might be enhancing diagno-
sis and clinical treatment to reduce the parasite reservoir, 
supplemented by indoor spraying with the new formula-
tion of insecticides such as pirimiphos-methyl  Actellic® 
300CS [35, 45, 46]. Cost-effectiveness should be consid-
ered when selecting any intervention strategy.

Malaria risk changes over time, and both malaria risk 
and intervention strategies may need to be reevaluated 
over time to adapt to the changed epidemiology [20, 
22, 24]. For example, in western Kenya, supplementing 
LLINs with  Actellic® IRS has significantly reduced the 
malaria burden in both Migori and Homa Bay counties 
[35, 45, 46]. However, malaria vector density is still high 
in Homa Bay irrigation sites [35], and thus malaria trans-
mission potential is still high in the area. Vector mosquito 
species in Homa Bay have shifted from An. gambiae s.s., 
An. funestus and An. arabiensis to An. arabiensis alone 
after several years of the enhanced  Actellic® IRS inter-
vention [35, 45]. Since An. arabiensis is a predominantly 
zoophilic and exophilic species [47, 48] and IRS and 
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LLINs work mainly indoors (although they may reduce 
overall mosquito density), different vector intervention 
strategies may be required to eliminate malaria transmis-
sion potential. Similarly, in the lake shore lowland and 
highland plateau parts of the study area,  Actellic® IRS 
and piperonyl butoxide LLINs (PBO-LLINs) were imple-
mented in the study clusters in 2020 [49]. Compared with 
the 2019 data from the previous study [32], malaria bur-
den and transmission have significantly reduced, indicat-
ing the effectiveness of both PBO-LLIN and LLIN + IRS 
interventions. Cost-effectiveness should be analysed to 
determine the optimal interventions.

The higher proportion of bovine (compared to human) 
bloodmeals and higher sporozoite infection rate from 
outdoor (compared to indoor) collected female mos-
quitoes highlighted the importance of outdoor residual 
transmission of malaria in western Kenya. An. arabiensis 
is an opportunistic blood sucker and rests both indoors 
and outdoors [50]. Studies conducted in the same area in 
the 1990s found that both An. gambiae s.s. and An. funes-
tus generally fed indoors on humans preferably and rests 
indoors [50–53]. However, after the universal coverage 
of LLINs started since mid-2000s, there are amounting 
reports on outdoor host seeking and resting of An. gam-
biae s.s. and An. funestus from various places including 
western Kenya [33, 34, 54, 55]. In this study, about 40% 
bovine bloods were detected from indoor-collected An. 
funestus and higher sporozoite rate in outdoor-collected 
An. funestus, similar HBI and sporozoite rate for indoor 
and outdoor collected An. gambiae s.s., indicating the 
behavioural changes in both vector species in the study 
area, which concurs with other studies [56–58]. Outdoor 
transmission may have contributed a great proportion to 
maintaining the high parasite prevalence detected in the 
study areas, cost-effective control measures need to be 
developed and implemented to reduce the outdoor resid-
ual malaria transmission.

The major missing part of this study is seasonal sur-
veys. Malaria transmission in the study area peaks dur-
ing the long rainy season, usually from April to June. 
The low season is from December to February, which 
is usually hot and dry [32]. A cluster-randomized adap-
tive intervention has been implemented and is ongoing 
in the study area [49], which prevents us from conduct-
ing low-season surveillance. Nonetheless, both rice and 
sugarcane need water (irrigation) during the usually dry, 
hot low-transmission season, which may affect malaria 
transmission in the northern part of the study area. Dur-
ing the dry season, farms usually irrigate sugarcane and 
rice fields with flood irrigation utilizing the natural river 
water flow, which creates huge areas of An. arabiensis and 
An. funestus larval breeding habitats, supporting very 
high malaria vector density both indoors and outdoors 

[33–35, 50, 53]. However, irrigation agriculture is nearly 
null in the southern and central eastern part of the study 
area, so adding dry-season surveys may not change the 
four-zone clustering results.

Conclusion
In conclusion, regional heterogeneity of malaria bur-
den and transmission is universal. Examining these het-
erogeneities is not only important for understanding the 
current malaria epidemiology but also provides useful 
information for planning vector control strategies. Imple-
menting interventions adapted to regional eco-epidemio-
logical conditions may yield the robust cost-effectiveness 
that is especially important in resource-deficient malaria-
endemic African countries.
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