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Abstract 

Background Vector surveillance is among the World Health Organization global vector control response (2017–
2030) pillars. Human landing catches are a gold standard but difficult to implement and potentially expose collec-
tors to malaria infection. Other methods like light traps, pyrethrum spray catches and aspiration are less expensive 
and less risky to collectors.

Methods Three mosquito sampling methods (UV light traps, CDC light traps and Prokopack aspiration) were 
evaluated against human landing catches (HLC) in two villages of Rarieda sub-county, Siaya County, Kenya. UV-LTs, 
CDC-LTs and HLCs were conducted hourly between 17:00 and 07:00. Aspiration was done indoors and outdoors 
between 07:00 and 11:00 a.m. Analyses of mosquito densities, species abundance and sporozoite infectivity were 
performed across all sampling methods. Species identification PCR and ELISAs were done for Anopheles gambiae 
and Anopheles funestus complexes and data analysis was done in R.

Results Anopheles mosquitoes sampled from 608 trapping efforts were 5,370 constituting 70.3% Anopheles funes-
tus sensu lato (s.l.), 19.7% Anopheles coustani and 7.2% An. gambiae s.l. 93.8% of An. funestus s.l. were An. funestus 
sensu stricto (s.s.) and 97.8% of An. gambiae s.l. were Anopheles arabiensis. Only An. funestus were sporozoite positive 
with 3.1% infection prevalence. Indoors, aspiration captured higher An. funestus (mean = 6.74; RR = 8.83, P < 0.001) 
then UV-LT (mean = 3.70; RR = 3.97, P < 0.001) and CDC-LT (mean = 1.74; RR = 1.89, P = 0.03) compared to HLC. UV-LT 
and CDC-LT indoors captured averagely 0.18 An. arabiensis RR = 5.75, P = 0.028 and RR = 5.87, P = 0.028 respectively. 
Outdoors, UV-LT collected significantly higher Anopheles mosquitoes compared to HLC (An. funestus: RR = 5.18, 
P < 0.001; An. arabiensis: RR = 15.64, P = 0.009; An. coustani: RR = 11.65, P < 0.001). Anopheles funestus hourly biting 
indoors in UV-LT and CDC-LT indicated different peaks compared to HLC.

Conclusions Anopheles funestus remains the predominant mosquito species. More mosquitoes were collected using 
aspiration, CDC-LTs and UV-LTs indoors and UV-LTs and CD-LTs outdoors compared to HLCs. UV-LTs collected more 
mosquitoes than CDC-LTs. The varied trends observed at different times of the night suggest that these methods col-
lect mosquitoes with diverse activities and care must be taken when interpreting the results.
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Background
The Global Vector Control Response 2017–2030 (GVCR) 
provides a framework to enhance vector control through 
improved capacity and surveillance, and through bet-
ter coordination and integrated action across sectors 
and diseases. One of the four pillars of this strategy is 
enhanced vector surveillance [1]. Robust vector surveil-
lance is critical for monitoring currently recommended 
vector control tools as well as to evaluate novel control 
strategies [2]. The objectives for vector surveillance of 
the World Health Organization (WHO) include: char-
acterizing receptivity (to evaluate vector presence and 
density to enable selection and stratification of interven-
tions), tracking of malaria vector densities (for selection 
and timing of vector control deployment by biting time 
or seasonality of transmission), monitoring of insecti-
cide resistance (IR) for selecting insecticides to be used 
by programmes, and identifying other threats to vector 
control efficacy including detecting gaps in interven-
tion coverage [3, 4]. However, the range of entomologi-
cal surveillance methods currently available may lack the 
sensitivity to detect subtle changes in vector behaviours 
or may not be adequate to evaluate the performance of 
novel vector control tools that may target a greater diver-
sity of adult mosquito behaviours [5, 6].

The most common vector control tools—long-lasting 
insecticidal nets (LLINs) and indoor residual spraying 
(IRS)—target indoor biting mosquitoes that are most 
active when people are in bed (LLINs) or that spend time 
resting on walls inside the house (IRS). The effectiveness 
of these vector control tools is threatened by changes in 
vector biting and resting behaviour and the diversity of 
their vectorial system [7]. For example, some mosquitoes 
either bite outdoors [8] or indoors at times that people 
are not under the protection of their bed nets [9]. LLINs 
and IRS have a direct impact on vector bionomics [10] 
and, historically, have been monitored using human land-
ing catches (HLC), CDC light traps, pyrethrum spray 
catches, and aspiration techniques.

The HLC technique is a method in which human vol-
unteers sit indoors and/or outdoors and collect mos-
quitoes that land on them throughout the night. It is 
considered the gold standard for sampling host-seeking 
mosquitoes [11] and for the estimation of entomologi-
cal exposure rates [12, 13] for the evaluation of vector 
control interventions, and for the study of mosquito 
behaviour [12, 14, 15]. However, HLC is labour-inten-
sive, exposes human collectors to potentially infectious 
mosquito bites, and is subjected to collector bias [16]. 
Other surveillance tools like light traps, pyrethrum 
spray catches and aspiration are less expensive and can 
be implemented more widely, but the information they 

provide is generally limited to indoor abundance. These 
methods either cannot be implemented outdoors at all 
or are thought to be inefficient in capturing mosquitoes 
outdoors. Furthermore, they generally do not provide 
information on mosquito behaviour, particularly the 
time and location of mosquito biting. Additionally, in 
the context of evaluating novel vector control tools, it is 
prudent assess surveillance tools that can provide infor-
mation on subtle changes in mosquito behaviour, hence 
the inclusion of two outdoor locations in this study.

This study evaluated CDC light traps (CDC-LT), UV 
light traps (UV-LT) and Prokopack® aspiration (here-
after referred to as aspiration) against HLC conducted 
either inside or outside houses as potential tools for 
monitoring mosquito populations.

Methods
Study area
The study was conducted in Memba (− 0.16118, 
34.36639) and Mabinju (− 0.17966, 34.37003) villages 
in Rarieda sub-county, Siaya county, western Kenya. 
Residents of the area live in scattered compounds 
which consist of an average of 3 houses occupied by 
closely related family members and interspersed with 
farmlands. The area immediately around the house 
structures is usually delineated from the surrounding 
farmland by a fence or hedges. The area experiences 
intense, year-round malaria transmission [17] with 
Plasmodium falciparum as the predominant malaria 
parasite species and Anopheles funestus, Anopheles ara-
biensis and Anopheles gambiae sensu stricto (s.s.) the 
main vectors [18, 19]. Historically, malaria transmis-
sion in western Kenya was very high with an estimated 
300 infectious bites per person per year in the late 
1980s and early 1990s [20]. Transmission has declined 
substantially since then, largely due to the scale up of 
insecticide treated nets through mass distributions 
targeting universal coverage (1 net for every 2 people) 
supplemented with routine distribution to pregnant 
women and children < 1 year [21]. However, the burden 
of malaria remains high with parasite prevalence at 19% 
in children aged 6 months to 14 years in the region [22]. 
Additionally, the deployment of malaria vector control 
tools such as ITNs has been accompanied by shifts in 
vector populations in this region beginning with the 
near complete disappearance of An. funestus [23], fol-
lowed by a decline in An. gambiae s.s [19]. and a return 
of An. funestus [18]. Additionally, deployment of anti-
vector interventions may lead to adaptive modifications 
in vector behavioural patterns [24–27]. These shifts in 
mosquito populations and vector behaviours necessi-
tate frequent evaluation of trapping tools.
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Mosquito trapping methods
Light traps
CDC light traps (CDC-LTs) (model 512) and UV light 
traps (UV-LTs) (model 912) (John W. Hock Company, 
Gainesville, Florida, U. S. A), without artificial attract-
ants, were used. The CDC light trap uses an incandescent 
light, while the UV light traps are similar to CDC-LTs in 
design but with an ultraviolet light bulb. The traps were 
installed by hanging them approximately 1.5  m above 
the ground either indoors or outdoors. The indoor traps 
were placed next to a person sleeping under a bed net 
whereas the outdoor traps were placed either 10 m from 
the structure (referred to hereafter as outdoors close) 
or 10 m outside the compound (referred to hereafter as 
outdoors far) where indoor sampling was conducted. The 
outdoor traps were not baited and relied only on source 
from the CDC and UV light traps to attract mosquitoes. 
All light traps were powered by a rechargeable 12-V bat-
tery and were switched on at 17:00. Collection cups for 
the traps were replaced every hour of the night by field 
staff in all instances of outdoor traps and a subset of 
indoor light traps. Twelve light traps out of 163 indoor 
collections were not picked from houses during hourly 
trapping as the compound owners refused entry after 
they had gone to bed. In those houses, light traps were 
collected at 07:00 a.m. the next morning. Data analysis 
from these houses included hourly mosquito activity up 
to the last time entry was granted; the rest of the collec-
tions till morning were excluded in the analysis of hourly 
biting but aggregate numbers of mosquitoes collected 
throughout the night were included in comparisons of 
trap efficiency.

Human landing catches
To reduce the risk of transmission of Covid-19, collectors 
were recruited from the compounds in which they lived. 
Collectors were males above the age of 18 years, organ-
ized into teams comprised of 6 volunteers. The team of 
six volunteers per compound were split into one indoor 
and two outdoor locations and they worked in two shifts. 
The first shift ran from 17:00 until 00:00 p.m. when the 
next team took over until 07:00 a.m. The volunteers were 
trained in HLC and provided with a flashlight, a mouth 
aspirator, mosquito collection cups and a hurricane lamp. 
The hurricane lamp was placed on the ground, approxi-
mately 1  m from the HLC collectors and turned as low 
as possible to allow for observation of mosquitoes land-
ing on the collector’s legs [28]. The collectors sat on a 
chair with their legs exposed from foot to knee and cap-
tured mosquitoes as soon as they landed on the exposed 
leg [29]. Collections were conducted over 45 min within 
each hour with a 15-min break to allow collectors to rest 

and to change collection cups. Each hour’s collection 
was kept separately in labelled paper cups with the labels 
bearing unique hourly codes generated by the tablet and 
taking into account the village code, house number, col-
lection method, collection location, collection day and 
collection time. The date of collection was also written 
on the paper cups. Supervisors were assigned to coordi-
nate the collection activities and ensure volunteers were 
consistently engaged in mosquito collections throughout 
each collection night. HLC data was collected using tab-
lets, with the forms programmed in CommCare® (Dim-
agi, Inc, Massachusetts, USA).

Resting collections (Aspiration)
Prokopack aspirators (Model 1419, John W Hock Com-
pany, Gainesville, Florida, USA) were used to collect 
mosquitoes resting indoors and outdoors from 07:00 to 
11:00 a.m. A total of ten sleeping structures from differ-
ent compounds nearest to the light trap and HLC houses 
were conveniently selected for aspiration. Sampling was 
done by moving the aspirator along the walls and the 
roof, in dark corners, and underneath furniture in the 
house to collect indoor resting mosquitoes for 10  min 
in each structure. Outdoor sampling was performed by 
aspirating from clay pots and other water collection con-
tainers that were already present in the compound and 
located within 5  m of each sampled house [30]. After 
every collection, the samples were released into an adult 
mosquito cage for sorting. The sampled mosquitoes from 
each collection were transferred to labeled paper cups 
per collection separating the outdoor and indoor catches. 
All aspirations were conducted by trained entomol-
ogy staff for exactly 10 min per structure, timed using a 
stopwatch.

House selection and rotation scheme
A community household survey was conducted in the 
two villages outlined in the months of September to 
October 2020. Prior to the start of the study, compound 
selection was done and houses with similar housing char-
acteristics such as roof type, wall type and open eaves 
were recruited to participate in the study. Compounds 
from which mosquitoes were to be collected each night 
were randomly selected from the database of houses 
that had been identified and in the event that there were 
more than one inhabited houses in the compound, the 
primary house of the head of household was selected. A 
total of 160 houses were eligible for sampling during the 
study period. Different compounds were selected every 
night where the HLC, CDC-LT and UV-LT were rotated 
among 10 compounds in each village following a rotation 
schedule such that each house was sampled by each col-
lection method the same number of times by the end of 
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the study period. Aspiration was conducted the morning 
preceding HLC, CDC-LT and UV-LT in 10 compounds 
but close to those sampled the previous night. Each 
compound had only one trap type placed in three differ-
ent positions: indoors, outdoors close and outdoors far. 
These locations were selected to enable a comprehensive 
assessment of the most efficient trapping method when 
collecting natural sugar fed mosquitoes that were likely 
to be captured as has been described in detail in a sepa-
rate article [31]. The mosquito collections were done for 
4 days every week over the two months’ study duration.

Mosquito processing
Samples were transported in cooler boxes to the field lab-
oratory in Lwak, Asembo for morphological assessment. 
Entomology field supervisors and a driver collected the 
paper cups with mosquitoes from the HLC collectors 
and light trap collection cups every hour of the night 
and placed them in cooler boxes containing ice packs 
for transport to the field laboratory. Upon reception at 
the field laboratory, the samples were immobilized by 
freezing at − 20 °C for a period of 10 min and for longer 
storage prior to processing. In the case of power outages 
or when the number of samples received from the field 
overwhelmed the available freezer space, mosquitoes 
were immobilized by exposing to chloroform in a kill-
ing jar for 1 min. The mosquitoes were separated by spe-
cies, sex, and the abdominal status (unfed, half-fed, fed 
and gravid) for females and numbers collected per trap 
recorded. The mosquitoes were identified morphologi-
cally using taxonomic keys [32] to differentiate between 
An. funestus s.l. and An. gambiae s.l. and other secondary 
malaria vectors.

Molecular assays
Polymerase chain reaction (PCR) was used to differenti-
ate between mosquitoes of the An. gambiae species com-
plex following the protocols described by Scott et al. [33] 
and between sibling species of the An. funestus complex 
using the protocols described by Koekemoer et  al. [34]. 
All non-amplified samples were processed twice and the 
samples that were morphologically identified as An. gam-
biae, but failed to amplify were run using An. funestus 
primers and vice versa. Sporozoite infection rates were 
determined by enzyme linked immunosorbent assay 
(ELISA) using the protocol adapted from Wirtz et al. as 
described in the MR4 Methods in Anopheles Research 
[35, 36].

Data analysis
Vector abundance was assessed using descriptive sta-
tistics (means, SD, proportions, and 95% CI). Separate 
analyses of trap comparisons were conducted on the 

three most common female species collected: An. funes-
tus sensu lato (s.l.), An. gambiae s.l. and Anopheles cous-
tani s.l. Aggregated numbers of mosquitoes collected 
each night were estimated for the primary analyses. For 
HLCs, no adjustments were made for the fact that col-
lectors were operating for only 45 min within each hour. 
Since the data were over-dispersed, generalized linear 
mixed models (GLMM) using Template Model Builder 
(glmmTMB) were fitted using negative binomial distri-
bution for analysis of daily mosquito numbers by various 
collection methods. Daily numbers of female Anoph-
eles mosquitoes were assessed as a function of collection 
method as a fixed effect while collection compound and 
collection day were treated as random factors apart from 
when evaluating An. arabiensis outdoors where mosquito 
counts variation was not sufficient with both collection 
compound and collection day as random effect. Only col-
lection compound was treated as a random effect while 
modelling An. arabiensis outdoors. Pairwise compari-
sons of the mean numbers of each Anopheles species col-
lected by the different trapping methods were done by 
Tukey’s test. For assessment of hourly trap catches, data 
only included structures that had at least 12–14 collec-
tions during the night; structures/nights that did not 
achieve this threshold were excluded from these analyses 
of hourly collections. All data analyses were performed 
using R statistical software version 4.1.2 while all figures 
and graphs were fitted using ggplot2 package in R. Statis-
tical significance level was set at α = 0.05.

Results
Abundance of Anopheles mosquitoes
A total of 5,370 male and female Anopheles mosquitoes 
were sampled during the study period from a total of 608 
trapping efforts: CDC-LT (165), UV-LT (152), aspiration 
(158) and HLC (133). Anopheles funestus constituted 
more than half (n = 3780; 70.4%) of the sampled Anoph-
eles mosquitoes with the rest being An. gambiae s.l. 
(n = 385; 7.2%), An. coustani (n = 1061; 19.7%) and other 
Anopheles species (n = 144; 2.7%) including Anopheles 
pharoensis (n = 120), Anopheles rufipes (n = 16), Anoph-
eles gibbinsi (n = 5), Anopheles maculipalpis (n = 1), 
Anopheles chrysti (n = 1), and Anopheles tenebrosus 
(n = 1). Only An. rufipes (n = 3), An. pharoensis (n = 1) 
and An. parensis (n = 1) of the secondary Anophelines, 
other than An. coustani were collected indoors; the rest 
were trapped outdoors (Table 1). A total of 3,562 female 
mosquitoes were collected during the study (2169 An. 
funestus, 284 An. gambiae s.l., 973 An. coustani, 136 
other Anopheles). All subsequent analyses included only 
females.

A proportion of the sampled mosquitoes (51% of An. 
funestus and 53% of An. gambiae) were processed for 
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species identification by PCR and sporozoite detection 
using ELISA. Out of the 1760 An. funestus s.l. samples 
analysed by PCR, 1650 (93.8%) were confirmed to be An. 
funestus s.s. and 45 (2.6%) An. leesoni, while 65 (3.7%) 
did not amplify. A total of 214 An. gambiae s.l. were pro-
cessed through PCR out of which 209 (97.8%) were con-
firmed to be An. arabiensis and the remaining 5 (2.3%) 
samples did not amplify. A sample of the three predomi-
nant species An. funestus s.l. (862/2169, 39.7%), An. 
arabiensis (168/284, 59.2%) and An. coustani (358/973, 
36.8%) were analysed for P. falciparum sporozoite infec-
tion. Only An. funestus samples were positive, with a 
species specific sporozoite infection prevalence of 3.1% 
(27/862).

Comparison of mean numbers of Anopheles mosquitoes 
caught per trapping method each night/day
The average number of mosquitoes collected indoors 
each night by HLC was 0.97 for An. funestus, 0.03 for 
An. arabiensis, and 0.08 for An. coustani. When com-
pared to indoor HLC, indoor aspiration method captured 
the highest number of An. funestus with a mean of 6.74, 
(RR = 8.83, 95% CI 4.72–16.52, p < 0.001) followed by 
indoor UV-LT with a mean of 3.70, (RR = 3.97, 95% CI 
2.28–6.92, p < 0.001) then indoor CDC-LT with a mean 
of 1.74 (RR = 1.89, 95% CI 1.07–3.34, p = 0.03). Compared 
to HLC, significantly higher numbers of An. arabien-
sis were collected indoors by UV-LT (RR = 5.87, 95% CI 
1.22–28.34) and CD-LT (RR = 5.75, 95% CI 1.20–27.48) 
with a mean of 0.18 each, followed by aspiration and 
HLC, although these were not statistically different in 
pairwise comparisons. For An. coustani, the CDC-LT col-
lected the highest number of mosquitoes indoors mean 
of 0.29 although this difference was not statistically dif-
ferent compared to HLC (RR = 2.01, 95% CI 0.50–8.03, 
p = 0.325). The indoor UV-LT collected a mean of 0.08 
An. coustani per trap-night (RR = 0.89, 95% CI 0.18–4.47, 
p = 0.887) while no An. coustani were collected by indoor 
aspiration.

Outdoors, when data was aggregated to night of col-
lection or day of collection (for aspiration), there were 
no differences in the means for the two outdoor locations 
(outdoor far and outdoor close) for either the CDC-LT, 
the UV-LT or HLCs for any of the species. The data sets 
for the two outdoor locations were therefore combined as 
outdoors in the daily mean analysis. Outdoor UV-LT col-
lected significantly higher numbers of Anopheles mosqui-
toes across all species analysed (An. funestus mean = 1.69, 
RR = 5.18, 95% CI 2.68–10.00, p < 0.001; An. arabiensis 
mean = 0.22, RR = 15.64, 95% CI 1.97–124.36, p = 0.009; 
An. coustani mean = 3.74, RR = 11.65, 95% CI 5.18–26.20, 
p < 0.001) when compared to outdoor HLC. Outdoor 
CDC-LT also collected higher mosquitoes compared 

to outdoor HLC for all three species (An. funestus 
mean = 1.00, RR = 3.09, 95% CI 1.62–5.90, p < 0.001; An. 
arabiensis mean = 0.15, RR = 10.81, 95% CI 1.34–87.35, 
p = 0.026; An. coustani mean = 2.14, RR = 11.22, 95% CI 
4.95–25.43, p < 0.001 (Table  2). For outdoor aspiration, 
significantly fewer An. funestus were collected per sam-
pling effort compared to HLC (mean = 0.06, RR = 0.21, 
95% CI 0.07–0.67, p = 0.008).

Pairwise comparisons of mean densities of different 
Anopheles species by collection methods and location are 
presented in Additional file 1: Table S1. When a post hoc 
analysis was done to compare the performance in mean 
mosquito collection between traps, aspiration collected 
statistically more An. funestus indoors mean = 6.74, 
RR = 8.83, 95% CI 4.72–5.16.52, p < 0.001 than UV-LT 
which in turn collected significantly more An. funestus 
(mean = 1.74; RR = 1.89, 95% CI 1.07–3.34, P = 0.03) com-
pared to indoor CDC-LT (mean = 3.70; RR = 3.97, 95% CI 
2.28–6.92, P < 0.001).

Outdoors, UV-LT collected significantly more An. 
funestus (mean = 1.69, RR = 5.18, 95% CI 2.68–10.00, 
p < 0.001) compared to CDC-LT (mean = 1.00, RR = 3.09, 
95% CI 1.62–5.90, p < 0.001), which collected signifi-
cantly more An. funestus compared to outdoor aspiration 
(mean = 0.06, RR = 0.21, 95% CI 0.07–0.67, p = 0.008). 
Indoors, UV-LT and CDC-LT collected significantly 
higher numbers of An. arabiensis compared to HLC but 
no other pairwise comparisons were significantly dif-
ferent. Outdoors, UV-LT and CDC-LT collected sig-
nificantly more An. arabiensis compared to HLC while 
UV-LT collected significantly more An. arabiensis com-
pared to aspiration. Outdoor UV-LT and CDC-LT col-
lected significantly more An. coustani compared to HLC 
and aspiration collections but there were no differences 
in mean numbers of An. coustani by the different trap-
ping methods indoors (Table 2).

Comparison of hourly mosquito collections by trapping 
method
The mean number of mosquitoes captured by hour and 
by location using the three different collection methods 
are presented in Fig.  1. The hourly biting patterns are 
shown in Fig. 2. By HLC, biting by An. funestus was low 
from the start of collections until midnight when there 
was increased biting reaching a plateau that remained 
consistent throughout the remainder of the night. In 
contrast, a peak of activity for An. funestus was observed 
by both CDC-LT and UV-LT between 7 and 8  p.m. 
which diminished rapidly but activity was still observed 
throughout the night by both methods. Outdoors, An. 
funestus showed similar patterns although they were 
less distinct given the lower number of mosquitoes col-
lected. For An. coustani outdoors, a peak in activity was 
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observed by CDC-LT and UV-LT between 8 and 9 p.m. 
which declined rapidly though some activity was still 
observed throughout the night. Numbers of An. coustani 
collected by HLC outdoors or by any collection method 
indoors were too low to discern a pattern. Similarly, the 
numbers of An. arabiensis collected by the three methods 
both indoors and outdoors were too low to detect a clear 
pattern of activity throughout the night.

Discussion
This study compared the efficiency of different trapping 
methods, placed at different locations around the peri-
domestic space to identify the most suitable method or 
set of methods to use as potential alternatives to HLCs. 
Anopheles funestus was predominantly caught rest-
ing indoors with aspiration being the most effective 
method of collection. Based on the mean numbers col-
lected, UV-LT outperformed the CDC-LT in trapping 
An. funestus indoors and outdoors. The UV-LT also col-
lected more An. arabiensis and An. coustani compared to 
the CDC-LT except for sampling An. coustani indoors; 

however, other than for An. funestus indoors, none of 
these observed differences were statistically significant. 
The UV-LT and CDC-LT trapped more mosquitoes than 
HLC both indoors and outdoors. Hourly biting rates in 
UV-LT and CDC-LT indicated different peaks in biting 
from that of HLC which raises questions about the physi-
ological state and behaviour of mosquitoes captured by 
the different collection methods.

The observation of An. funestus as the primary vector 
collected during the evaluation of these trapping meth-
ods coupled with the fact that these mosquitoes were 
mostly captured indoors demonstrates the resilience in 
this vector species after years of high coverage of ITNs 
in the study area. Anopheles funestus reemerged [18] 
after almost being eliminated in the study area following 
the distribution of ITNs in 2000s [37]. Multiple research 
groups have reported resurgences of An. funestus despite 
sustained control efforts in multiple countries [18, 38]. 
The reemergence of An. funestus is likely associated with 
high levels of pyrethroid resistance that developed in 
this species [39, 40]. The fact that only indoor collected 

Table 2 Comparison of mean numbers of Anopheles mosquitoes caught by UV-LT, CDC-LT and aspiration to HLC

*Post hoc comparison of the trapping methods. Methods bearing the same letter do not differ significantly at 5% level. Note that for An. coustani indoors, pairwise 
comparisons with aspiration could not be done as there were no females of this species collected by aspiration

All variables with the same letter implies that the trapping methods do not differ significantly at 5% level based on mean daily trap catch for each mosquito species. If 
two variables have different letters, they are significantly different at 5% level

Species Collection position Collection method* Mean daily trap catch RR (95% CI) P-value

An. funestus Indoors CDC-LTa 1.74 (1.02–2.45) 1.89 (1.07–3.34) 0.028

UV-LTb 3.70 (2.59–4.82) 3.97 (2.28–6.92)  < 0.001

Aspirationc 6.74 (4.69–8.78) 8.83 (4.72–16.52)  < 0.001

HLCd (Ref ) 0.97 (0.61–1.39) Ref Ref

Outdoors CDC-LTa 1.00 (0.74–1.40) 3.09 (1.62–5.90)  < 0.001

UV-LTb 1.69 (1.06–2.32) 5.18 (2.68–10.00)  < 0.001

Aspirationc 0.06 (0.01–0.12) 0.21 (0.07–0.67) 0.008

HLCd (Ref ) 0.37 (0.15–0.60) Ref Ref

An. arabiensis Indoors CDC_LTa 0.18 (0.06–0.29) 5.75 (1.20–27.48) 0.028

UV-LTa 0.18 (0.07–0.30) 5.87 (1.22–28.34) 0.028

Aspirationab 0.10 (0.03–0.17) 3.38 (0.64–17.90) 0.152

HLCb (Ref ) 0.03 (0–0.08) Ref Ref

Outdoors CDC-LTab 0.15 (0.05–0.26) 10.81 (1.34–87.35) 0.026

UV-LTb 0.22 (0.11–0.33) 15.64 (1.97–124.36) 0.009

Aspirationac 0.05 (0–0.11) 3.59 (0.38–34.28) 0.267

HLCc (Ref ) 0.01 (0–0.04) Ref Ref

An. coustani Indoors CDC-LTa 0.29 (0–0.64) 2.01 (0.50–8.03) 0.325

UV-LTa 0.08 (0.02–0.15) 0.89 (0.18–4.47) 0.887

Aspiration 0 – –

HLCa (Ref ) 0.08 (0–0.18) Ref Ref

Outdoors CDC-LTa 2.14 (0.46–3.82) 11.22 (4.95–25.43)  < 0.001

UV-LTa 3.74 (1.28–6.20) 11.65 (5.18–26.20)  < 0.001

Aspirationb 0.23 (0.05–0.41) 1.25 (0.30–5.17) 0.755

HLCb (Ref ) 0.29 (0–0.58) Ref Ref



Page 8 of 12Kosgei et al. Malaria Journal           (2024) 23:81 

An. funestus were positive for sporozoites indicates that 
the bulk of malaria transmission in this area is likely 
propagated indoors by this species and complementary 
indoor vector control tools are needed to achieve malaria 
elimination.

All the An. gambiae s.l. caught by the different trap-
ping methods were An. arabiensis. The predominance 
of An. arabiensis compared to An. gambiae s.s. fol-
lowing the scale up of ITNs was previously reported 
[19, 41–43] indicating that An gambiae s.s. has not 
responded in the same way as An. funestus despite 
the presence of phenotypic and genotypic resistance 
in An. gambiae s.s [44]. Anopheles arabiensis were 
mostly collected outdoors by light traps and aspiration 
from clay pots, consistent with the species’ exophilic 
and exophagic behaviour previously reported in in the 
region [45–47]. This likely has enabled them to avoid 
indoor deployed interventions, such as LLINs and IRS 
[14, 48, 49]. Despite not being detected in the current 
study, sporozoite positive An. arabiensis have been 
reported previously albeit at lower rates compared to 
An. funestus [18]. Given their tendency to feed and rest 
outdoors, An. arabiensis may contribute to residual 

transmission of malaria [50]. The presence of An. cous-
tani in the peri-domestic space has been observed 
previously [51] but their importance for malaria trans-
mission remains to be elucidated.

Comparison of different mosquito trapping methods 
indicates that mechanical aspirations indoors and UV-LT 
outdoors captured high numbers An. funestus mosqui-
toes. UV-LT performed well outdoors and indoors, sec-
ond only to aspiration in the number of An. funestus 
mosquitoes collected indoors. UV-LTs generally collected 
more mosquitoes than CDC-LTs, although the difference 
was statistically significant only for the collection of An. 
funestus indoors and outdoors. It is possible that the effi-
cacy of incandescent light in CDC-LTs may be affected by 
other light sources in the night including moonlight [52]. 
Also, mosquitoes have diverse response to different light 
spectra as previously reported where mosquito response 
to artificial light indicated that blue and green light is 
often more attractive than that in the yellow-orange and 
red regions of the visible spectrum [53, 54]. UV-LT is a 
largely unexplored trapping technique that could be use-
ful for both indoor and outdoor trapping of mosquitoes 
especially when evaluating outdoor deployed vector 

Fig. 1 Comparison of UV-LT, CDC-LT and HLC at three different locations
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control methods such as ATSBs as was recently done in 
Mali [55].

Fewer mosquitoes were collected by HLCs compared 
to both UV-LT and CDC-LT both indoors and outdoors. 
Previous comparisons of HLCs versus CDC LTs have 
resulted in diverse outcomes [56] with some indicat-
ing greater efficiency of HLCs [57, 58] and others indi-
cating higher efficiency of CDC LTs [46, 59]. In western 
Kenya, HLCs were also less efficient in collecting the pri-
mary vectors compared to the Furvela tent trap, the host 
decoy trap, mosquito electrocuting traps and outdoor 
CDC light traps [52]. While HLCs are considered the 
gold standard for monitoring entomological measures 
of malaria transmission, the low numbers collected sug-
gest they may underestimate entomological inoculation 
rates. The reason for the low numbers captured by HLCs 
is not clear as the collectors were provided adequate 
training and supervision. It is possible that light traps and 

aspiration collections capture more than just host-seek-
ing mosquitoes [16, 56, 60].

Human landing catches remains the gold standard 
method for monitoring the abundance and host-seeking 
behaviour of mosquitoes because they elicit the natural 
host-seeking activity of malaria vectors using the same 
cues such as carbon dioxide, host odors, body heat and 
images. Other traps such as CDC light trap deploy light 
cues or artificial odors to attract mosquitoes and as such 
may not be used to accurately study the host-seeking 
activity of malaria vectors with the precision seen in HLC 
[61–64]. Furthermore, HLCs are easy to standardize and 
can be conducted in rural settings with limited access 
to electricity. However, HLCs are labour-intensive and 
potentially expose collectors to infectious mosquito bites. 
Therefore, CDC-LT, and less frequently UV-LT, are rou-
tinely used in monitoring Anopheles abundance during 
entomological surveillance. These traps are usually set 

Fig. 2 Comparison of hourly trap catches from indoor and outdoor locations
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up in the evening and left to run uninterrupted the whole 
night and therefore are unable to account for the specific 
hours at which mosquitoes were trapped as an indicator 
of host-seeking behaviour [12, 56, 65, 66]. Rotator light 
traps have been used to assess diel mosquito activity in 
studies of Aedes mosquitoes [67–69] and less frequently 
to monitor Anopheles activity [41, 61, 70]. In this study, 
CDC-LT and UV-LT bags were collected every hour 
through the night. Despite being labour-intensive and 
intrusive, this method allowed a direct comparison of the 
mosquito host-seeking behaviour patterns to those usu-
ally depicted by HLC. In western Kenya, previous HLC 
collections demonstrated a single peak in biting by An. 
funestus that extended from midnight until around 6 a.m. 
[71] similar to what was observed in this study. CDC-LT 
and UV-LT identified high mosquito activity early in the 
evening when people are unlikely to be under the protec-
tion of their bed nets. This differed from the HLC col-
lections which is consistent with previous observations 
where biting was observed primarily when people were 
in bed and under their bed nets. Similar observations 
have been reported in the highlands of western Kenya [9] 
where it was suggested that transmission could occur at 
times when people were not under the protection of nets. 
However, the differences in collection times by the differ-
ent methods raises questions about mosquito behaviour 
in the peridomestic space including those unrelated to 
host-seeking. Observations from this study suggest that 
while CDC-LTs and UVLTs may be useful as proxy indi-
cators of the total mosquito population, they may not 
represent the host-seeking population of mosquitoes and 
care should be taken in interpreting the results of CDC-
LTs and UVLTs as proxies for HLC in estimating EIRs. 
An. arabiensis densities were too low to derive any mean-
ingful inferences on their behaviour indoors but like An. 
coustani, were observed to peak early in the evening 
outdoors.

Some limitations in this study included low number of 
An. funestus samples collected using HLC and limited 
number of An. arabiensis in all trapping methods there-
fore reducing the statistical power. Comparisons of the 
times of collection by the various methods were limited 
by the fact that some households refused entry while they 
were asleep and this may have biased the activity patterns 
of mosquitoes collected by CDC-LTs and UV-LTs. How-
ever, this was accounted for by limiting analyses of bit-
ing times to only those households with at least 12 hourly 
collections over the course of the night.

Conclusion
Anopheles funestus was the predominant malaria vec-
tor in this study with lower numbers of An. arabiensis 
and An. coustani. This study indicates that aspiration, 

CDC-LTs and UV-LTs are efficient methods for trap-
ping Anopheles mosquitoes indoors and outdoors and 
often collect more mosquitoes than HLCs. Although 
not statistically significant, UV-LTs generally collected 
more mosquitoes than CDC-LTs. Different trends in 
collection times were observed for An. funestus when 
collected by CDC-LT and UV-LTs compared to HLCs. 
This suggests that the different collection methods are 
capturing mosquitoes engaged in different behaviours 
throughout the night.
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