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Abstract 

Background Ghana is among the top 10 highest malaria burden countries, with about 20,000 children dying annu-
ally, 25% of which were under five years. This study aimed to produce interactive web-based disease spatial maps 
and identify the high-burden malaria districts in Ghana.

Methods The study used 2016–2021 data extracted from the routine health service nationally representative 
and comprehensive District Health Information Management System II (DHIMS2) implemented by the Ghana Health 
Service. Bayesian geospatial modelling and interactive web-based spatial disease mapping methods were employed 
to quantify spatial variations and clustering in malaria risk across 260 districts. For each district, the study simultane-
ously mapped the observed malaria counts, district name, standardized incidence rate, and predicted relative risk 
and their associated standard errors using interactive web-based visualization methods.

Results A total of 32,659,240 malaria cases were reported among children < 5 years from 2016 to 2021. For every 10% 
increase in the number of children, malaria risk increased by 0.039 (log-mean 0.95, 95% credible interval = − 13.82–
15.73) and for every 10% increase in the number of males, malaria risk decreased by 0.075, albeit not statistically 
significant (log-mean − 1.82, 95% credible interval = − 16.59–12.95). The study found substantial spatial and tem-
poral differences in malaria risk across the 260 districts. The predicted national relative risk was 1.25 (95% credible 
interval = 1.23, 1.27). The malaria risk is relatively the same over the entire year. However, a slightly higher relative risk 
was recorded in 2019 while in 2021, residing in Keta, Abuakwa South, Jomoro, Ahafo Ano South East, Tain, Nanumba 
North, and Tatale Sanguli districts was associated with the highest malaria risk ranging from a relative risk of 3.00 
to 4.83. The district-level spatial patterns of malaria risks changed over time.

Conclusion This study identified high malaria risk districts in Ghana where urgent and targeted control efforts are 
required. Noticeable changes were also observed in malaria risk for certain districts over some periods in the study. 
The findings provide an effective, actionable tool to arm policymakers and programme managers in their efforts 
to reduce malaria risk and its associated morbidity and mortality in line with the Sustainable Development Goals 
(SDG) 3.2 for limited public health resource settings, where universal intervention across all districts is practically 
impossible.
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Background
Malaria is a serious global public health problem caused 
by parasites transmitted to humans via the bites of Plas-
modium-infected Anopheles mosquitoes. According to 
the World Health Organization (WHO), 558,000 people 
died from malaria in 2019, among which children under 
5 years constituted 74% [1, 2]. Sub-Saharan Africa carried 
the greatest malaria morbidity and mortality [3], account-
ing for 95% and 96% of global malaria cases and deaths, 
respectively, in 2020. Despite intensified malaria control 
efforts, malaria incidence has risen in recent years, from 
229 million in 2019 to 241 million in 2020. Malaria is 
endemic in Ghana, with notable seasonal variations in its 
northern ecological zone. The geographical variation in 
malaria transmission in Ghana is dependent on the dura-
tion of the dry season [4]. Data extracted from the Dis-
trict Health Information Management System (DHIMS 
2) in Ghana indicated that suspected malaria cases 
surged from 8 million cases in 2014 to 11 million in 2018 
[9]. Likewise, confirmed malaria cases increased from 3.6 
million in 2014 to 5.5 million in 2018. Thus, this worsen-
ing malaria problem requires tailored and targeted pre-
ventive, control, and elimination strategies.

Malaria distribution is highly heterogeneous. Distrib-
uting scarce health resources equitably and implement-
ing effective interventions to control malaria requires a 
deeper understanding of the malaria transmission vari-
ations across space and time. Targeted control would 
benefit significantly from a spatiotemporal statistical 
model to estimate and map the geographical distribu-
tion of malaria over time. Disease risk mapping is a pow-
erful and robust technique for monitoring transmission 
and control efforts [4]. Likewise, malaria risk mapping is 
widely applied in spatial epidemiology using geostatisti-
cal methods, such as Bayesian hierarchical spatial and 
spatiotemporal models [5–8]. Previous studies [9–13] in 
Ghana have applied Bayesian hierarchical spatial and spa-
tiotemporal models to estimate the intensity of malaria 
transmission across regions of the country. A study map-
ping the relative risk of malaria in the Greater Accra 
Region of Ghana from 2015 to 2019 revealed spatial dis-
persion and seasonal variation with an irregular pattern 
of malaria transmission across the region [10]. Despite 
this, none of the studies investigated the spatial distribu-
tion of standardized incidence ratio (SIR) of malaria risk 
across the Ghanaian districts or spatial heterogeneity and 
clustering of districts with statistically significant high/
low malaria risk. Thus, the current study incorporated an 
interactive web-based spatial disease mapping tool into 
the Bayesian hierarchical framework to model and map 
spatiotemporal variation and clustering of relative risk of 
malaria morbidity in a setting with limited public health 
resources to arm policymakers and programme managers 

with an actionable tool for reducing malaria risk and its 
associated morbidity and mortality in line with the Sus-
tainable Development Goal (SDG) 3.2.

Methods
Data source and study population
The current study reviewed and extracted data on 
uncomplicated confirmed malaria cases and population 
from the DHIMS2 during 2016–2021. The DHIMS2 is a 
nationally representative and comprehensive electronic 
medical record system implemented by the Ghana Health 
Service (GHS) to collect, collate, report, and analyse rou-
tine health service data for the healthcare ecosystem in 
the country. The DHIMS2 data are aggregated at the 
district, regional and national levels and comprise both 
in-patient and out-patient records of suspected and con-
firmed malaria cases [14]. The required data on uncom-
plicated confirmed malaria cases in the various health 
facilities (private, public, and non-governmental) were 
captured and aggregated at the district level in Ghana. 
To support the spatiotemporal modelling and mapping, 
the district shapefile for the 260 districts in Ghana were 
downloaded from the Database of Global Administrative 
Areas (GADM) website available at  https:// gadm. org/ 
downl oad_ count ry. html and terms of use/license avail-
able at https:// gadm. org/ licen se. html.

Statistical analysis
The extracted data were transferred to RStudio for data 
cleaning and analysis. The unit of analysis is district, and 
there are 260 districts. The population sizes for males 
and children below 5 years old for 13 districts were not 
recorded in 2016, 2017, and 2018, and the names of these 
districts are presented in Additional file  2: Table  S1. As 
a result, multiple imputation (mi) was done to provide 
values for the missing data points. The Standardized Inci-
dence Rate (SIR) was estimated to assess spatial varia-
tion in malaria risk. The districts with SIR values higher 
than 1 indicated that the risk of malaria morbidity was 
above what was expected in the standard population, 
whereas SIR values lower than 1 indicated that the risk 
of malaria morbidity was lower than what was expected 
in the standard population. Even though SIR provides 
important information for determining whether or not 
the district has a high or low relative risk of malaria, it is 
not reliable because of errors and white noise in the spa-
tiotemporal data [15]. The samples used in most of the 
nationally representative sample surveys are not large 
enough to yield direct and unbiased national estimates 
for small areas. Furthermore, applying appropriate statis-
tical models can result in greater precision of small area 
estimates, but this can lead to bias due to misspecified 
models or ignoring informative sampling [16]. Thus, a 

https://gadm.org/download_country.html
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sophisticated Bayesian hierarchical spatiotemporal model 
[17–19], which borrows strength or information across 
space and time to improve the estimation and predic-
tion of the underlying parameters, was specified to esti-
mate the smooth relative risk of malaria. The Conditional 
Autoregressive (CAR) and Random Walk of Order one 
(RW1) were applied to test spatial and temporal correla-
tions between the observations [20–26]. The autocorrela-
tion test was used to determine the presence or absence 
of spatial and temporal correlations, as the results would 
justify whether the Bayesian hierarchical spatiotemporal 
model should be specified. Integrated Nested Laplace 
Approximation (INLA) was used to estimate the Bayes-
ian hierarchical model [17, 27, 28]. INLA is a powerful 
estimation method since it combines analytical approxi-
mation and numerical integration to obtain the approxi-
mated posterior distribution of parameters [18, 29, 30]. 
The study used uninformative priors on the log-precision 
of the hyper-parameters because the Bayesian modelling 
approach required priors, but the study did not have reli-
able priors for the initial model parameters [23].

The study explored the extent of local clustering of the 
districts using the local indicator of spatial association 
(LISA), and mapped statistically significant local clusters 
to display high-high, low-low, high-low, and low–high 
clusters. Queen contiguity spatial weights or matrix was 
used for the LISA statistics [31]. LISA has been described 
as an important technique for investigating the location 
of clusters because it helps to estimate and assess statisti-
cally significant clusters [32].

Study variables
The outcome variable was the number of malaria cases 
aggregated at the district level. The covariate considered 
in this study included the number of under-five popula-
tion and the number of male populations in the districts.

Model description
Let Yit denote the number of malaria cases recorded in 
region i and time period t, Eit denote the expected num-
ber of malaria cases recorded in region i and time period 
t , nit denote the number of persons at risk at district i in 
year t. The expected number of malaria cases recorded in 
district i and time period t is defined as:

The formula for estimating standardized incidence 
ratio (SIR) or relative risk ( θit ) of malaria morbidity in 
each areal unit i at time period t is given as:

(1)Eit = nit

∑
itYit∑
itnit

The log relative risk is expressed as;

The Bayesian hierarchical spatiotemporal specifica-
tion for a Poisson model for counts of malaria cases t  
Yit observed in region i at time period t is defined as:

now  τV ∼ Gamma(1, 0.00005) and 
τµ ∼ Gamma(1, 0.00005) , τγ ∼ Gamma(1, 001) and 
τ∅ ∼ Gamma(1, 0.00005),

where β0 is the overall or average risk for all districts, 
Xit ′ is a matrix of covariates,β denotes unknown cor-
responding parameter vector coefficients, µi denotes 
structured spatial random effect or correlated hetero-
geneity effect (CH), υi denotes unstructured exchange-
able spatial component that models heterogeneity or 
uncorrelated heterogeneity effect (UH) among the 
locations at time t. The correlated heterogeneity effect 
µi and uncorrelated heterogeneity effect υit are spa-
tial random effects that can vary in time. δi represents 
a neighbourhood of the ith area, nδi is the number of 
regions in the ith neighbourhood,µδi

 is the mean of the 
neighbouring µi values. γt is specified using autore-
gressive prior distribution and can follow a random 
walk in time of first order (γ = 1), which allows for a 
non-parametric temporal effect. Whereas ∅t repre-
sents an unstructured temporal effect that is inde-
pendently and identically distributed. All parameters 
( β0,µi, υi, γt ,∅t , τV , τµ, τγ , τ∅ ) assigned non-informa-
tive prior distribution and their posterior distributions 
were approximated by INLA. All the analyses were car-
ried out in R-INLA [33].

(2)SIR = θ̂it =
Yit

Eit

log(θit) = ψit

(3)Yit |eit , θit ∼ Poisson(eitθit)

(4)Log(θ it) = β0 + Xit ′β + µi + υi + γt +∅t

β0 ∼ N (0, τ−1
0 )

υi ∼ N (0, τ−1
υ )

µi|
{
µj

}
−i

∼ N

(
µδi

,
τ−1
µ

nδi

)
,

|γt |γ t−1 ∼ N (γt−1, τ
−1
γ )

∅t ∼ N (0, τ−1
∅

)
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Interactive web‑based mapping of the predicted malaria 
prevalence
The study developed an interactive web-based map-
ping tool to improve the visualization of the predicted 
malaria risks across the 260 districts and over the 
6  years to support the identification of high-risk dis-
tricts for urgent malaria surveillance and intervention 
strategies amidst limited public health resources in this 
setting where universal intervention is practically inef-
fective and impossible. For each district and year, the 
study simultaneously mapped the observed malaria 
counts, district name, standardized incidence rate, and 
predicted relative risk and their associated standard 
errors using interactive web-based visualization meth-
ods. The leaflet, sp, and rgdal packages in R version 
4.2.3 and RStudio were utilized to develop the interac-
tive web-based geospatial maps.

Ethical consideration
Permission was sought and granted by GHS, who pro-
vided the data at no cost for use in this study upon 
written request.

The role of the funding source
The present study did not receive any support from any 
funding source. The authors confirm that they have full 
access to all the data in this study and accept responsi-
bility for submitting for publication.

Results
Malaria trend and transmission in Ghana
The national annual trend of malaria incidence among 
under-five children in Ghana based on the DHIMS2 
data for 2016, 2017, 2018, 2019, 2020, and 2021 are 
4,725,597, 5,077,089, 5,774,470, 6,173,507, 5,167,316, 
and 5,741,261, respectively, resulting in a total malaria 
case number of 32,659,240 over the six-year period. 
Notably, malaria cases increased steadily from 2016 to 
2019. Although malaria cases decreased at the begin-
ning of COVID-19 in 2020, they increased in 2021 
(Table 1).

Spatiotemporal variation analysis of malaria risk
Figure 1 displays the spatial variation of SIR across the 
260 districts in Ghana. The study used the same scale 
for the SIR of malaria morbidity for the 6 maps for bet-
ter visualization and comparison. Clusters of districts 
with a higher risk of malaria morbidity were observed 
across 2016–2021 in the study. Lawra and Nandom dis-
tricts in the Upper West region were identified as hot-
spot areas with consistently high SIR values over the 
6  years. Pru East in the Bono East region consistently 

recorded a high risk of malaria morbidity in 2016–2019 
and 2021. Additionally, Anloga, Ketu North, Ketu South 
districts, and Keta Municipality in the Volta region 
repeatedly recorded high SIR values for the 6 years. A 
cluster of districts such as Bole and Central Gonja in 
the savannah region and Kintampo North Municipal-
ity in the Bono East region with high SIR values were 
observed in 2016–2021.

Figure  2 shows the predicted relative risk of malaria 
morbidity across the 260 districts in Ghana during 2016–
2021. For better visualization, an interactive web-based 
map version of Fig.  2 is provided in Additional file  1. 
The average predicted malaria relative risk across all dis-
tricts from 2016 to 2021 was 1.25 (95% credible inter-
val = 1.23,1.27). The average national relative risk in 2016, 
2017, 2018, 2018, 2019, 2020, and 2021 was 1.22 (95% 
credible interval = 1.20, 1.24), 1.28 (95% credible inter-
val = 1.26,1.29), 1.20 (95% credible interval = 1.18, 1.22), 
1.32 (95% credible interval = 1.31, 1.34), 1.20 (95% cred-
ible interval = 1.18, 1.21), and 1.27 (95% credible inter-
val = 1.25, 1.29), respectively. The malaria risk is relatively 
the same over the entire year. However, the highest risk 
was recorded in 2019 while in the 2021 data, residing in 
Keta, Abuakwa South, Jomoro, Ahafo Ano South East, 
Tain, Nanumba North, and Tatali Sanguli districts was 
associated with the highest risk of malaria burden rang-
ing from a relative risk of 3.00 to 4.83. Spatial clusters of 
districts with a high or low relative risk of malaria mor-
bidity were observed throughout the six years. The rela-
tive risk of malaria in Lawra and Nandom districts in the 
Upper West region was higher than in the overall popula-
tion in all the years except for 2020. Additionally, most 
districts and municipalities in the Savannah, Northern, 
and Bono East regions recorded a high relative risk of 
malaria over the entire period. The Bole district in the 
Savannah region consistently recorded a relative malaria 
risk above the standard population in 2017, 2018, and 
2019. The relative risk of malaria in Kintampo was above 
average in 2017–2020. Notably, the Bole district was 

Table 1 National annual trend of malaria incidence among 
under-five children in Ghana obtained from DHIMS2

Year Malaria incidence

2016 4,725,597

2017 5,077,089

2018 5,774,470

2019 6,173,507

2020 5,167,316

2021 5,741,261

Total 32,659,240
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among the lowest malaria risk districts in 2016 (RR: 0.20) 
but became one of the highest-risk districts in 2019 (RR: 
3.74) and 2020 (RR: 3.38) (Table 2).

Presented in Fig. 3 are the predicted uncertainty maps 
associated with the Smoothed relative risk of malaria 
across the 260 districts in Ghana obtained from the 
weighted Bayesian Hierarchical Spatio-temporal model. 
Generally, the uncertainty associated with the predicted 
relative risk was very low, ranging from 0.0003 to 0.0323 
across the study period. The median and mean standard 
errors were 0.0081 and 0.0085, respectively.

Autocorrelation function of malaria cases from 2016 
to 2021
The autocorrelation plot shows weak autocorrelation of 
the relative risk of malaria in the districts over the six-
year period (Fig. 4). This indicates that malaria cases are 
not highly correlated.

The influence of children under 5 and male population 
on the risk of malaria morbidity
Table  3 shows the covariates associated with the risk 
of malaria morbidity. Both the log number of children 

under five years and the log number of males were not 
significantly associated with altered risks of malaria mor-
bidity. For every 10% increase in the number of children 
under five years, malaria risk increased by 0.039 (log-
mean 0.95, 95% credible interval = − 13.82–15.73) and for 
every 10% increase in the number of males, malaria risk 
decreased by 0.075 (log-mean − 1.82, 95% credible inter-
val = − 16.59–12.95). Notably, Bayesian model selection 
tools such as the deviance information criterion (DIC) 
and Watanabe–Akaike information criterion (WAIC) 
scores for Model I and Model II were almost the same 
even though both model evaluation metrics were in favor 
of Model I (Table 3).

Districts with statistically significant high‑high, high‑low, 
low–high and low‑low values of relative risk of malaria
A Moran scatterplot is presented to display clusters of 
districts with significantly high-high, high-low, low–high, 
and low-low values of relative risk of malaria from 2016 
to 2021. In the upper-right quadrant are districts with 
elevated levels of risk relative to what would have been 
expected in the standard population. Additionally, in the 
lower-left quadrant are districts with significantly lower 

Fig. 1 Standardized Incidence Ratio (SIR) of malaria cases across the 260 districts in Ghana (2016–2021)
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risk than expected in the standard population (Fig.  5 
and Additional file 2: Fig. S1-S5). The Moran scatterplot 
in Fig.  5 showed that Zabzugu, Nanumba North, Tatale 
Sanguli, Bosomtwe, Sene West, Sunyani West, and Tain 
were the districts with high-high risk of malaria in 2021. 
In Additional file  2: Fig. S1, 7 districts (i.e., Adaklu, Ho 

West, Agotime Ziope, Ho Municipal, Denkyembour, 
Bosomtwe, and Efia Kwesimintsim Municipal) in the 
upper-right quadrant were identified as having statisti-
cally significant high relative risk of malaria in 2016. This 
means that these districts were surrounded by neigh-
bouring districts with high relative risk of malaria. The 
Additional file  2: Fig. S1 also identified Bunkpurugu 
Nakpanduri as the only district in the lower-left quad-
rant with statistically significant low values surrounded 
by districts with a lower risk of malaria. Additional file 2: 
Fig. S2 revealed that Jasikan, South Dayi, Afadzato South, 
Kpando Municipal, and North Dayi districts in the Volta 
Region recorded statistically significant clustering of 
high–high relative risk of malaria in 2017. Two districts, 
including La-Nkwantanang-Madina and Krowor Munici-
pal, fell within the lower-left quadrant with a cluster of 
low-low risk of malaria in 2017. It is observed in Addi-
tional file  2: Fig. S3 that there were 11 districts with 
statistically significant high-high risk of malaria, while 
Akatsi North was identified as the only district with 

Fig. 2 Predicted relative risk of malaria across the 260 districts in Ghana obtained from a weighted Bayesian Hierarchical Spatio-temporal model 
(2016–2021). (Note: the interactive web-based version of this map is available in Additional file 2 of the online supplementary material)

Table 2 Average predicted relative risk of malaria

Year Posterior mean 95% 
Credible 
Interval

2016 1.22 1.20,1.24

2017 1.28 1.26,1.29

2018 1.20 1.18,1.22

2019 1.32 1.31,1.34

2020 1.20 1.18,1.21

2021 1.27 1.25,1.29

Overall 1.25 1.23,1.27
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low-low risk of malaria in 2018. The results in Additional 
file  2: Fig. S4 indicated that 10 districts in the upper-
right quadrant recorded a significant high relative risk 
of malaria, surrounded by districts with a high risk of 
malaria. Clusters of low-low risk of malaria were identi-
fied in South Dayi and Agona East in 2019. In 2020, clus-
ters of high-high risk of malaria were recorded in Okere, 
East Gonja Municipal, Asante Akim North, Yilo Krobo, 
Kpando Municipal, Bole, and Adansi Akrofuom districts, 
while a cluster of low-low risk was identified in Dormaa 
East district (Additional file 2: Fig. S5).

Spatio‑temporal clustering and outliers of the risk 
of malaria morbidity
Figure  6 displays the LISA cluster map of districts with 
extremely high-high, high-low, low–high, and low-low 
significant relative risks of malaria morbidity with asso-
ciated covariates from 2016 to 2021. A spatial cluster of 
significantly high relative risk of malaria morbidity was 
recorded in the Ho West, Adaklu, and Agotime Ziope 
districts and Ho Municipality in the Volta region in 2016. 
The Bosomtwe, Kwaebibirem, Ga North and Effia Kweis-
mintsim, with a significantly high relative risk, shared a 
high relative risk with neighbouring districts in 2016. The 
year 2017 identified Lawra, Ahafo Ano North, Sekyere 
Kumawu, Abuakwa North, Jasikan, Kwahu Afram Plains 
North, South Dayi, North Dayi, Afadzato South and 
Kpando Municipal as hot spot districts. In 2018, a sig-
nificantly high relative risk of malaria morbidity was 
recorded in the Nanton, Kintampo North Municipal, 
Ejura-Sekyedumase, Mampong Municipal, Sekyere Cen-
tral, Sekyere Afram Plains North, Sekyere Kumawu, 
Bekwai Municipal, Asuogyaman, Lower Manya, Shai 

Fig. 3 Predicted standard errors associated with the predicted relative risk of malaria across the 260 districts in Ghana obtained from the weighted 
Bayesian Hierarchical Spatio-temporal model

Fig. 4 Autocorrelation plot of malaria cases from 2016 to 2021
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Osudoku, Ningo/Prampram and Ada East. In 2019, hot-
spot districts included West Mamprusi Municipal, Zab-
zugu, Tatale Sanguli, Asante Akim North, Sekyere East, 
Achiase, Nzema East, and Anloga, while in 2020, hotspot 
areas included Kpando, East Gonja, Asante Akim North, 
Okere and Yilo Krobo districts and municipalities with 
a significantly high relative risk of malaria morbidity. In 
2021, spatial clusters of high-high relative risk of malaria 

morbidity were observed in Sunyani West and Tain dis-
tricts in the Bono region, Bosomtwe in the Ashanti 
region, Sene West districts in the Bono West Region, and 
Nanumba North, Zabzugu and Tatale Zanguli districts in 
the Northern Region. It is observed that La Nkwantan-
ang-Madina district, with a significantly low relative risk 
of malaria morbidity, was surrounded by its neighbours 
(Ga East, Adenta Municipal and Ayawaso West) with 

Table 3 Posterior means and Bayesian credible intervals of predicted relative risk of malaria morbidity estimated from the Bayesian 
Hierarchical Spatio-temporal model with and without covariates (2016–2021)

Model 1 = Bayesian hierarchical spatio-temporal model without covariates (empty model); Model 2 = Bayesian hierarchical spatio-temporal model with covariates; 
Cr.I = Credible interval. = Hyperparameter that measures spatial correlation, = Hyperparameter that measures spatial dispersion. τ−1

γ  = Hyperparameter that measures 
temporal correlation, τ−1

∅
 = Hyperparameter that measures temporal dispersion

Parameters Model 1 Model 2
Posterior mean (95% Cr.I) Posterior mean (95% Cr.I)

Fixed effect

 Intercept − 0.07 (− 0.12, − 0.26) 10.22 (− 4.1
1, 24.55)

 Log number of children under 5 years - 0.95 (− 13.82, 15.73)

 Log number of males – − 1.82 (− 16.59, 12.95)

Random effect

τ−1
µ

20,458.78 (1508.20,6.90×10+4) 25,059.51 (1966.54
102,239.83)

τ−1

ϑ
1.13 (1.05, 1.21) 1.49 (1.39, 1.60)

τ−1
γ

127.70 (22.50, 4.25 ×10+2) 113.54 (21.32, 318.45)

τ−1

∅
24,762.67 (1251.56, 1.23 ×10+5) 27,924.84 (2009.64, 122,507.24

Model evaluation metrics

 DIC 21,118.20 21,121.27

 WAIC 20,648.16 20,655.43

Fig. 5 Moran scatterplot of districts with significantly high-high, high-low, low–high and low-low values of relative risk of malaria in 2021
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low relative risk. Bosomtwe district in the Ashanti region 
recorded a statistically significant high relative risk of 
malaria in 2016 and 2021. Asante Akim North district 
in the Ashanti region was identified as a hotspot area in 
2019 and 2020. A statistically significant high relative risk 
of malaria was observed in Zabzugu and Tatale Zanguli 
districts in 2019 and 2021. Sekyere Kumawu district was 
identified as a hot spot area in 2017 and 2018. South Dayi 
district recorded a statistically significant high relative 
risk of malaria in 2017 and this dropped significantly in 
2019 (Fig. 6).

Discussion
The study investigated the district-level geographical and 
temporal variations in the risk of malaria among children 
aged < 5  years. The analysis covering the period from 
2016 to 2021 revealed three key findings. First, the results 
showed substantial district-level geographical differences 
in the risk of malaria across the 260 districts in Ghana. 
Thus, residing in certain districts was associated with an 
increased risk of malaria morbidity. Notably, residing in 
Keta, Abuakwa South, Jomoro, Ahafo Ano South East, 
Tain, Nanumba North, and Tatale Sanguli districts was 

Fig. 6 LISA Cluster map showing clusters of districts with high-high (red), high-low (skyblue), low–high (navy), low-low (orange), and significant 
relative risk of malaria morbidity with associated covariates (2016–2021)
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associated with the highest burden of malaria risk based 
on the 2021 data. Secondly, the analysis revealed signifi-
cant temporal differences in malaria risk by districts in 
Ghana. Thirdly, significant clustering in spatial patterns 
of malaria risk was found. Notably, geographical clusters 
of high-high relative risk of malaria morbidity were found 
in Sunyani West and Tain districts in the Bono region, 
Bosomtwe in the Ashanti region, Sene West districts in 
the Bono West Region, and Nanumba North, Zabzugu 
and Tatale Zanguli districts in the Northern Region. 
Geographical and temporal differences and spatial clus-
tering of health outcomes, including malaria, have previ-
ously been documented [5–9, 12].

This study developed interactive web-based spatial and 
temporal malaria risk maps superimposed with observed 
malaria counts, names of the districts, standardized 
incidence rates, and relative risks and their associated 
standard errors. By placing a cursor on any polygon in 
the interactive web-based maps, the user is automati-
cally provided with these parameters/details about that 
district for improved visualization and targeted policy 
and intervention strategies amidst limited public health 
resources. The color coding alerts the user about the 
malaria risk levels, with red colors depicting districts 
with a higher malaria risk. This is a standalone, but effec-
tive tool that can be readily available to policymakers and 
programme managers in charge of malaria prevention, 
control, surveillance, and elimination efforts in a setting 
where universal interventions are practically ineffective 
and impossible due to limited public health resources. To 
the best knowledge of the authors, this study is the first to 
have conducted spatiotemporal modelling under INLA 
supported with interactive web-based spatial mapping of 
malaria risk in Ghana using routine health service data 
from 2016 to 2021 covering 260 districts to support effi-
cient and targeted malaria control and elimination efforts 
in the country.

The average national predicted relative risk across 
all districts from 2016 to 2021 was 1.25 (95% credible 
interval = 1.23,1.27), suggesting substantial geographi-
cal and temporal differences in malaria risk across the 
districts in Ghana. The minimum relative risk of 1.20 
was recorded in 2018 and 2020, while the maximum of 
1.32 was recorded in 2019. The 95%  credible interval  is 
relatively wide for some of the random effects, indicating 
substantial uncertainty which accounts for lack of infor-
mation. The RR for each year exceeded 1.0, indicating an 
increased risk of malaria for all the study years. Notice-
able changes were also observed in the risk of malaria for 
some districts over some periods in the study. For exam-
ple, the Bole district was among the lowest-risk districts 
in 2016 (RR: 0.20), but one of the highest-risk districts in 
2019 (RR: 3.74) and 2020 (RR: 3.38). On the other hand, 

West Mamprusi had the highest RR in 2017 (RR: 4.43) 
and 2019 (RR: 3.08), but the lowest RR in 2020 (RR: 0.96). 
These findings support previous studies that examined 
spatial and temporal variations and found substantial 
spatial and temporal differences in malaria morbidity [5, 
7, 9–12]. The finding that some districts are at the highest 
risk of malaria morbidity indicate serious threats to the 
progress in malaria control in Ghana, and interventions 
are urgently required to address this. It is imperative to 
note that the DIC and WAIC scores are similar for Bayes-
ian hierarchical spatio-temporal model without covari-
ates (model 1) and Bayesian hierarchical spatio-temporal 
model with covariates (model 2). This might be due to 
the fact that the two covariates used in model 2 did not 
account for extra variability in the relative risk of malaria.

The use of routine health service data, which are more 
frequently collected, provides high-quality data for more 
timely investigation of health outcomes and disease bur-
dens like malaria to inform timely interventions based on 
new evidence, unlike surveys that are conducted every 
five years like the Demographic and Health Surveys and 
the Multiple Indicator Cluster Surveys.

The modelling and mapping approach is a critical and 
relevant tool to guide policymakers and programme 
managers in the development of targeted policies and 
intervention strategies that can help improve malaria 
risk surveillance to ensure that the implementation of 
policies, interventions, and programmes are targeted at 
districts with the utmost need and at the right time. This 
tool uses routine health service data to effectively moni-
tor changes in malaria transmission which can be used to 
evaluate progress.

Conclusion
This study provided a critical tool for planning the opti-
mal and efficient allocation of scarce resources, sur-
veillance, and evaluation of malaria control policies, 
interventions and programmes. The approach used in 
this study permits web-based maps to be created and 
provides key information on the contribution of geo-
graphical location and time on malaria burden across the 
260 districts in Ghana. This approach can be applied to 
other substantial public health challenges such as HIV/
AIDS, TB, malnutrition, and vaccination, in Ghana and 
other settings. The higher burden malaria risk districts 
identified should be urgently targeted with additional but 
effective malaria control programmes to reduce the risk 
of malaria morbidity and its associated mortality. The use 
of spatiotemporal modelling and interactive web-based 
mapping of malaria risk using routinely collected health 
service data to examine goals/targets set for malaria risk 
reduction at the district level is highly recommended. 
Further studies are warranted to search for additional 



Page 11 of 12Aheto et al. Malaria Journal          (2024) 23:102  

factors not considered in this study that might explain 
why some districts were at higher risk of malaria morbid-
ity while others are not, as part of the overall strategy in 
addressing the problem of under-five malaria morbidity 
and its associated mortality.

Limitations of the study
This study could not consider all potential district-
level predictors of malaria risk in the study because the 
DHIMS2 database had limited variables that could be 
included in the model to explain some of the increased 
relative risks, For example. environmental and geograph-
ical factors were not considered because the DHIMS2 
which is the source of the required data used does not 
capture these types of variables. The two covariates were 
the only covariate captured in the DHIMS. This is one of 
the limitations of the current study.
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