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Abstract 

Background  Mexico has experienced a significant reduction in malaria cases over the past two decades. Certifica‑
tion of localities as malaria-free areas (MFAs) has been proposed as a steppingstone before elimination is achieved 
throughout the country. The Mexican state of Quintana Roo is a candidate for MFA certification. Monitoring the status 
of insecticide susceptibility of major vectors is crucial for MFA certification. This study describes the susceptibility 
status of Anopheles albimanus, main malaria vector, from historically important malaria foci in Quintana Roo, using 
both phenotypic and genotypic approaches.

Methods  Adult mosquito collections were carried out at three localities: Palmar (Municipality of Othon P. Blanco), 
Buenavista (Bacalar) and Puerto Morelos (Puerto Morelos). Outdoor human-landing catches were performed by pairs 
of trained staff from 18:00 to 22:00 during 3-night periods at each locality during the rainy season of 2022. Wild-
caught female mosquitoes were exposed to diagnostic doses of deltamethrin, permethrin, malathion, pirimiphos-
methyl or bendiocarb using CDC bottle bioassays. Mortality was registered at the diagnostic time and recovery 
was assessed 24 h after exposure. Molecular analyses targeting the Voltage-Gated Sodium Channel (vgsc) gene 
and acetylcholinesterase (ace-1) gene were used to screen for target site polymorphisms. An SNP analysis was carried 
out to identify mutations at position 995 in the vgsc gene and at position 280 in the ace-1 gene.

Results  A total of 2828 anophelines were collected. The main species identified were Anopheles albimanus (82%) 
and Anopheles vestitipennis (16%). Mortalities in the CDC bottle bioassay ranged from 99% to 100% for all the insec‑
ticides and mosquito species. Sequence analysis was performed on 35 An. albimanus across the three localities; 
of those, 25 were analysed for vgsc and 10 for ace-1 mutations. All individuals showed wild type alleles.

Conclusion  The results demonstrated that An. albimanus populations from historical malaria foci in Quintana Roo are 
susceptible to the main insecticides used by the Ministry of Health.
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Background
Malaria is a vector-borne disease caused by Plasmodium 
parasites transmitted to people by Anopheles mosquitoes 
[1]. Robust surveillance systems, prompt diagnosis, 
timely treatment of parasite-confirmed cases and the use 
of insecticides have been the cornerstone interventions 
used to achieve control and to pursue malaria elimination 
worldwide [2]. In Latin America, malaria cases have 
decreased considerably during the last decade, with 0.6 
million cases reported in 2021; with active transmission 
persisting in the Amazon basin and the Mesoamerican 
region with foci in Mexico, Guatemala, the “Moskitia” 
region between Honduras and Nicaragua, and Panama 
[1, 3].

As part of malaria elimination strategies, the 
World Health Organization (WHO) has proposed a 
combination of concepts and operational definitions 
to adapt interventions according to local settings. This 
framework classifies foci and transmission risk based 
on the characteristics of receptivity, vulnerability and 
transmission intensity [4]. As malaria cases decrease, 
countries are advised to use epidemiological data to 
guide intervention strategies at a fine spatial scale. 
Core vector control interventions such as insecticide-
treated nets (ITNs) and indoor residual spraying (IRS) 
are recommended in areas with recent local malaria 
transmission (active and residual foci) and where 
transmission has been interrupted for more than three 
years but where the risk of reestablishment is present [2, 
4].

In Mexico, autochthonous malaria transmission 
involves Plasmodium vivax (100% of cases) and occurs 
at foci within five states with geographic, ecological 
and immigration characteristics that contribute to their 
receptivity and vulnerability [5]. The Mexican state of 
Quintana Roo in the Yucatan Peninsula was a historically 
endemic area that has seen a dramatic reduction in 
cases followed by sporadic transmission limited to the 
municipalities of Othon P. Blanco, Bacalar, Solidaridad, 
and Puerto Morelos [6, 7]. In 2019, the Ministry of 
Health in Quintana Roo performed an epidemiological 
stratification and classified Bacalar and Othon P. Blanco 
as “cleared” foci (where cases have not been reported 
for at least 3 consecutive years) and Puerto Morelos as 
a “residual-non active” focus (with transmission not 
reported for at least one year), as defined by the WHO 
[6, 8].

Pyrethroid-based interventions together with DDT 
(ITNs and IRS) have been used for Anopheles vector 
control in Mexico since 1955 [9, 10]. The continuous use 
of insecticides can lead to the emergence of insecticide 
resistance, particularly if only one chemical group is 
employed [11]. In 2012, the WHO launched a global 

plan for managing insecticide resistance in malaria 
vectors [12]. A 2018 report described the occurrence 
of insecticide resistance in major malaria vectors from 
seventy-nine countries, twelve of them being in Latin 
America. Countries, including Guatemala and Honduras 
in Central America and others in South America, 
described the presence of phenotypic insecticide 
resistance in Anopheles albimanus and Anopheles 
darlingi, respectively [13].

Knock-down resistance (kdr) mutations in the voltage-
gated sodium channel (vgsc) gene have been reported 
in Neotropical Anopheles [14]. Two non-synonymous 
mutations, L995F and L995C, have been described in An. 
albimanus [15, 16]. In Mexico, a previous study carried 
out in the Yucatan Peninsula showed the presence of An. 
albimanus populations resistant to DDT, deltamethrin 
and pirimiphos-methyl, together with elevated levels of 
detoxifying enzymes (glutathione S-transferases (GSTs), 
cytochrome P450s and esterases) [17]; however, limited 
data are available regarding target-site mutations in 
Anopheles from Mexico.

The Mexican national malaria elimination plan aims 
to certify MFA’s after foci characterization and effective 
case management and responsive vector control [5, 18]. 
As a part of this process, persistent transmission foci 
in Quintana Roo have been subjected to insecticide 
application with deltamethrin and bendiocarb, both 
with IRS, during the last 5 years to maintain low vector 
densities and limit the chance of local transmission 
[4, 6]. However, even with routine insecticide-based 
interventions in place, recent data on insecticide 
susceptibility has not been generated. This study aimed 
to evaluate the susceptibility status (phenotypic and 
genotypic) of the main Anopheles species in historical 
endemic foci of malaria in Quintana Roo, Mexico, as part 
of malaria foci characterization for malaria elimination.

Methods
Study site
The municipalities of Othón P. Blanco, Bacalar and Puerto 
Morelos are recognized by the Ministry of Health (MoH) 
as historically important malaria foci in Quintana Roo. 
In agreement with the MoH, the principal localities from 
each municipality (most populated historically endemic 
area with anopheline mosquitoes) were selected for this 
study (Fig.  1): Palmar (18°26′53.8ʺN 88°31′40.8ʺW) 
and Buenavista (18°52′58.9ʺN 88°14′20.3ʺW) classi-
fied as “cleared” foci, and Puerto Morelos (20°51′13.2ʺN 
86°53′49.4ʺW) classified as a “residual non-active” focus 
from the municipalities of Othon P. Blanco, Bacalar and 
Puerto Morelos, respectively [4, 5, 8].

Palmar and Buenavista are rural communities located 
close to the border with Belize. Puerto Morelos, 
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considered an urban area (population = 26,921 
inhabitants), is located 25  km from Cancun, one of 
the main tourist areas of Mexico. Activities related to 
agriculture and livestock are the main source of human 
activities in Palmar and Buenavista, and economic 
activities in Puerto Morelos are based on tourism and 
economic trade [19]. The temperature at the study 
sites oscillates between 25 and 29  °C during the rainy 
season (May–October) with an average of 1300  mm of 
rain per year [20]. The vegetation in the study areas is 
characterized by wetland forests, including swamps, 
mangroves and small ponds (Fig. 1) [21].

Mosquito collection and identification
Outdoor human-landing catches (HLCs) were performed 
by pairs of trained staff from 18:00 to 22:00 during 
3-night periods at each site during October 2022 (rainy 
season). Collections were made within the locality, 50 m. 
from houses and larval habitats such as ponds and small 
creeks (Fig.  1). All the collected Anopheles were placed 
in cages (Model BugDorm-1 Insect Rearing Cage, L31 × 
W31 × H9 cm; Taiwan) and maintained alive between 8 
and 12  h to separate those individuals that were not in 
optimal physiological condition to carry out bioassays. 
Mosquitoes were morphologically identified using keys 
for the Anopheles of Central America and Mexico [22].

CDC bottle bioassays
Due to the limitations of rearing an F1 generation, 
Anopheles spp. wild-caught adult mosquitoes were used 
for bioassays as reported previously [23]; each bioassay 
was carried out based on mosquito availability with at 
least 20 individuals tested per insecticide. Using the 
standard CDC bottle bioassay method, between 20 
and 25 female mosquitoes per bottle in four replicates 
(Wheaton, USA) were exposed to the diagnostic doses 
of deltamethrin (12.5  µg/mL), permethrin (21.5  µg/
mL), malathion (50 µg/mL), pirimiphos-methyl (50 µg/
mL) or bendiocarb (12.5  µg/mL) and between 10 
and 15 mosquitoes as control in a bottle coated with 
acetone [24]. When possible, replicates were carried 
out for both pyrethroids. For each insecticide, the 
number of dead/alive mosquitoes was registered at 
ten-minute intervals until 30  min of exposure was 
achieved (diagnostic time), and mortality was scored. 
Mosquitoes were then transferred to a separate holding 
container, provided sugar water, and held for 24  h to 
detect recovery. The percentage of dead mosquitoes 
at the diagnostic time was determined to characterize 
the susceptibility status of each population according 
to WHO criteria [25]. At the end of the bioassay, the 
mosquitoes were stored in tubes with 70% ethanol and 
transported to the Centre for Genetic Research of the 

B.

C.

A.

Fig. 1  Location of the study area and localities, and general aspects of the collection sites. A Puerto Morelos-Puerto Morelos. B Buenavista-Bacalar. 
C Palmar-Othón P. Blanco, in Quintana Roo, Mexico
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Universidad Nacional Autónoma de Honduras and 
stored at − 20 °C for molecular analyses.

DNA extraction and amplification
To detect target-site mutations on genes of interest, 
mosquitoes exposed to pyrethroids (vgsc) and carbamates 
(ace-1) were chosen for analysis. Given the absence of 
phenotypically resistant mosquitoes, a subset of five 
mosquitoes exposed to deltamethrin, permethrin and 
bendiocarb were randomly selected per site. DNA was 
extracted from each specimen following the Extracta 
protocol (Quantabio, Beverly, Massachusetts, USA). For 
each specimen, hind legs were dissected and placed in 
a 0.2  mL conical tube with 25 μL of extraction reagent. 
A thirty-minute lysis at 95 °C was carried out. DNA was 
stabilized at a final volume of 50 μL and stored at − 20 °C 
until further use.

Primers designed for An. albimanus were used to 
amplify segments of vgsc and ace-1. The vgsc target was 
amplified using primers AAKDRF2 (5′—AGR TGG 
AAY TTY CAN GAY TTY—3′) and AADKDRR2: (5ʹ—
GTT CGT CTC ATT ATC C—3ʹ) [16]. PCR reactions 
were carried out in a volume of 50 μL, with 25 μL of Taq 
Master Mix 2 × (Promega, Madison, Wisconsin, USA), 2.5 
μL of each primer (10 μM), 2 μL of DNA, and nuclease-
free water. The PCR programme was as follows: one cycle 
at 95 °C for 3 min, 40 cycles at 95 °C for 45 s, 45 °C for 
45  s, 72  °C for 1 min, and 1 cycle at 72  °C for 5 min in 
a thermocycler (Veriti, Applied Byosistems). The ace-1 
target was amplified with primers ACE1DAF: (5ʹ- TAA 
GAA GGT GGA CGT GTG GC -3ʹ) and ACE1DAR: 
(5ʹ—AGG GCA AGG TTC TGA TCG AA—3ʹ) [16]. PCR 
amplifications were carried out in a volume of 50 μL, 
with 25 μL of Taq Master Mix 2 × (Promega, Madison, 
Wisconsin, USA), 2.0 μL of each primer (10  μM), 2 μL 
of DNA, and nuclease-free water. PCR program was 
as follows: 1 cycle at 94 °C for 3 min, 35 cycles at 94 °C 
for 30  s, 61  °C for 30  s, 72  °C for 1  min, and 1 cycle at 
72  °C for 10  min. PCR products were separated by 
electrophoresis on 1% agarose gels stained with ethidium 
bromide.

Sequence analysis
Amplification products of both vgsc and ace-1 were 
sequenced using the same primers used for PCR [16]. 
Purification and sequencing services were provided by 
Psomagen® (www.​psoma​gen.​com, Maryland, USA). 
The sequences were edited with the Geneious® 9.1.7 
software (https://​www.​genei​ous.​com); Auckland, New 
Zealand). SNP analyses were carried out at positions 
995 and 280 for vgsc and ace-1 sequences, respectively 
[24]. All sequences were submitted as queries to NCBI 
through the BLASTn tool under default parameters to 
identify the most similar sequences in the GenBank 
nucleotide collection.

Results
Mosquito species collected
A total of 2828 anophelines were collected during 
the study period from the three localities. Puerto 
Morelos yielded the largest mosquito collections (55%) 
(Table  1). The most abundant species collected was 
An. albimanus (87% of the total mosquitoes captured), 
followed by Anopheles vestitipennis (10%). Additionally, 
specimens of Anopheles crucians (n = 64) and Anopheles 
gabaldoni (n = 21) both in Palmar and Buenavista, and 
An. darlingi (n = 1) and Anopheles neomaculipalpus 
(n = 1) in Palmar, were collected.

Susceptibility assays
Bioassays were carried out for all insecticides with An. 
albimanus populations from Palmar and Puerto Morelos. 
Due to the limited number of An. albimanus collected 
in Buenavista, it was only possible to perform bioas-
says with deltamethrin. In Palmar, given the availability 
of specimens, additional bioassays were conducted with 
four insecticides (deltamethrin, bendiocarb, perme-
thrin and malathion) with An. vestitipennis (Table  2). 
Anopheles albimanus populations from all three locali-
ties exhibited complete susceptibility to all insecti-
cides, with mortalities ranging from 99 to 100% for the 

Table 1  Total Anopheles collected per locality in Quintana Roo malaria foci collected by outdoor human-landing catches during 
October 2022 (rainy season)

Municipality Locality Foci status An. albimanus n (%) An. vestitipennis 
n (%)

Other Anopheles 
spp. n (%)

Total (%)

Othon P. Blanco Palmar Cleared 792 (32.3) 271 (93.7) 85 (98) 1,148 (41)

Bacalar Buenavista Cleared 103 (4.2) 18 (6.3) 2 (2) 121 (4)

Puerto Morelos Puerto Morelos Residual 1557 (63.5) 0 (0) 0 (0) 1,557 (55)

Total 2452 (86.7) 289 (10.2) 87 (3.1) 2828 (100)

http://www.psomagen.com
https://www.geneious.com
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insecticides evaluated (Table  2, Supplemental Fig. S1). 
Similar results were observed for An. vestitipennis from 
Palmar (Table 2).

The An. albimanus population from Puerto Morelos 
was the only population that showed recovery to 
deltamethrin and permethrin at 24 h post-exposure, 2% 
and 2.5%, respectively.

Sequencing analysis of vgsc and ace‑1 genes
Thirty-five sequences corresponding to randomly 
selected An. albimanus from the three localities were 
analysed, and one sequence per site was deposited in 
GenBank. Twenty-five sequences were analysed for 
mutations on vgsc and ten for ace-1. Five individuals 
exposed to deltamethrin and five exposed to 
permethrin from both Palmar and Puerto Morelos 
were included for vgsc analysis. In Buenavista, only 5 
individuals exposed to deltamethrin were included 
for vgsc analysis. Five individuals each from Othon 
P. Blanco and Puerto Morelos exposed to bendiocarb 
were selected for ace-1 analysis. The consensus 
sequences from samples were aligned and compared 
with the reference genome from An. albimanus 
(KF137581) and An. gambiae (AGAP004707-RA) 
from GenBank and Vectorbase, respectively. An 
SNP analysis was carried out to identify mutations 
at positions 995 for vgsc and 280 for ace-1. Analysis 
revealed that all individuals had wild type alleles.

Discussion
According to previous reports, An. albimanus was the 
main malaria vector distributed across Quintana Roo, 
although other anopheline species like An. vestitipennis 
are also present and could present a risk for malaria 
reestablishment [25–27]. These results corroborate the 
predominance of An. albimanus as the main malaria 
vector species in these historical malaria foci in Quintana 
Roo and highlight its importance for insecticide 
resistance monitoring.

Malaria vectors are impacted by insecticides through 
vector control activities, leading to the selection of 
resistance in target populations [11, 14]. In addition 
to the use of insecticides for public health, the use of 
insecticides in agricultural activities constitutes an 
additional selection pressure [28]. The municipalities of 
Othon P. Blanco, Bacalar and Puerto Morelos have been 
areas of interest for vector control activities due to their 
epidemiological importance and malaria receptivity 
[17, 29]. These municipalities were the major areas of 
transmission in Quintana Roo between 2010 and 2019, 
where 148 out of 171 autochthonous cases at state level 
were reported [7, 30], and ITNs impregnated with the 
pyrethroid alphacypermethrin were deployed as well as 
IRS using bendiocarb was conducted according to local 
pre-elimination plans [6, 31]. Despite these interventions 
over the last ten years, findings here reported suggest 
that the local malaria vectors remain susceptible to 
insecticides.

A recent publication from Solis-Santoyo et  al. 
reported An. albimanus populations that were resistant 

Table 2  Bottle bioassay results for malaria vectors from different sites in Quintana Roo, Mexico

Species Municipality Locality Insecticide n % Mortality 
at diagnostic 
time

An. vestitipennis Othon P. Blanco Palmar Deltamethrin 80 100%

Permethrin 35 100%

Bendiocarb 39 100%

Pirimiphos-methyl 58 100%

An. albimanus Othon P. Blanco Palmar Deltamethrin 122 99%

Permethrin 148 100%

Bendiocarb 145 100%

Pirimiphos-methyl 114 99%

Malathion 111 100%

Bacalar Buenavista Deltamethrin 92 100%

Puerto Morelos Puerto Morelos Deltamethrin 450 100%

Permethrin 368 100%

Bendiocarb 108 100%

Pirimiphos-methyl 101 100%

Malathion 100 100%
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to deltamethrin and permethrin but susceptible to 
malathion and bendiocarb in two localities in Chiapas 
State in southern Mexico [32]. These results differ 
from the data presented here in two ways. First, the 
entomological collections in Chiapas were conducted 
in cattle corrals from localities with insecticide pressure 
derived from livestock and agriculture activities. Second, 
the diagnostic doses used in the bottle bioassays in the 
Chiapas study were established using a local reference 
strain, with insecticide concentrations lower than those 
recommended by globally recommended protocols 
[32–35]. National insecticide resistance data for malaria 
vectors is scarce, highlighting the importance of 
defining consistent methods for monitoring insecticide 
susceptibility of anophelines in Mexico.

Together with phenotypic data, this study provides 
evidence of the absence of kdr and ace-1 mutations in 
An. albimanus from Quintana Roo. Bioassays are key 
methods for detecting phenotypic resistance in vector 
populations, however, they can be complemented with 
molecular assays to detect polymorphisms that can arise 
at early stages of resistance development [33, 36–38]. 
Target-site screening on anophelines has been carried out 
routinely in other regions like Africa, yet such data are 
relatively scarce in Latin America [13, 39, 40]. Although 
a small subset of samples was screened, the approach 
employed aligns with similar studies in Colombia and 
Peru, where target-site allele screening together with 
bioassays has been used to improve insecticide resistance 
surveillance and inform insecticide resistance monitoring 
programs [24, 41, 42].

Current vector control guidelines highlight the 
importance of including a plan for insecticide resistance 
monitoring within national malaria elimination plans to 
guide decision-making for vector control interventions in 
different transmission scenarios and achieve MFA [4, 12]. 
In particular, the “Global Technical Strategy for Malaria” 
states that to build a robust entomological surveillance, 
monitoring and evaluation programme, countries should 
generate data in all settings, including those that are 
malaria-free but at risk of reestablishment, to prevent 
resurgence [2]. This report highlights that insecticides, 
including those recommended in Mexican guidelines 
NOM-032-SSA2-2014, can be used for immediate 
response in case of a malaria outbreak and as part of a 
preventive residual intervention programme in areas 
where reestablishment of transmission is a risk [43–45].

These findings demonstrate an absence of resistance, 
but it’s unclear the extent to which this can be 
extrapolated to other localities within the State where 
agricultural or public health use of insecticides may be 
higher. A previous study in 2007 reported the presence 
of pyrethroid resistance on An. albimanus populations 

in three localities, including Palmar (included in this 
study), and where enzymatic resistance mechanisms in 
both Quintana Roo and Campeche (also in the Yucatan 
Peninsula) were detected [17]. Therefore, evaluation of 
An. albimanus populations from other potential areas/
localities where insecticide pressure exists due to routine 
applications should be considered.

Furthermore, future studies could include evaluations 
with alphacypermethrin (main pyrethroid used in recent 
ITN campaigns) which was not evaluated here, together 
with other less abundant malaria vector species, such as 
An. vestitipennis and An. darlingi [27, 29]. Further studies 
should be carried out to expand the analysis to other sites 
and foci in the Yucatan, such as the neighbouring state 
of Campeche, as well as border areas with Guatemala 
and Belize, including both phenotypic and genotypic 
approaches.

To strengthen malaria elimination in Quintana Roo 
and the rest of the Yucatan, routine insecticide resistance 
monitoring should be in place together with effective 
vector control coverage in highest risk areas. According 
to guidance provided by the WHO, each malaria-endemic 
country should develop a national plan where sentinel 
sites for routine insecticide resistance monitoring are 
chosen; in this context, Quintana Roo could include the 
data provided here as baseline information and expand 
upon it as needs dictate, to improve integrated vector 
management strategies [46].

Conclusions
Current An. albimanus populations in historical malaria 
foci from Quintana Roo remain susceptible to the main 
active ingredients in products used by the MoH for 
vector control in Mexico. Molecular analysis confirmed 
the absence of two main target-site mutations associated 
with resistance. This information could be used by local 
and national authorities to inform current vector control 
strategies and strengthen the malaria elimination and 
MFA certification process.

Disclaimer
The findings and conclusions in this paper are those of 
the authors and do not necessarily represent the official 
position of the U.S. Centers for Disease Control and 
Prevention.
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