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Abstract 

Background Malaria risk maps are crucial for controlling and eliminating malaria by identifying areas of varying 
transmission risk. In the Greater Mekong Subregion, these maps guide interventions and resource allocation. This 
article focuses on analysing changes in malaria transmission and developing fine-scale risk maps using five years 
of routine surveillance data in Laos (2017–2021). The study employed data from 1160 geolocated health facilities 
in Laos, along with high-resolution environmental data.

Methods A Bayesian geostatistical framework incorporating population data and treatment-seeking propensity 
was developed. The models incorporated static and dynamic factors and accounted for spatial heterogeneity.

Results Results showed a significant decline in malaria cases in Laos over the five-year period and a shift in trans-
mission patterns. While the north became malaria-free, the south experienced ongoing transmission with sporadic 
outbreaks.

Conclusion The risk maps provided insights into changing transmission patterns and supported risk stratification. 
These risk maps are valuable tools for malaria control in Laos, aiding resource allocation, identifying intervention gaps, 
and raising public awareness. The study enhances understanding of malaria transmission dynamics and facilitates 
evidence-based decision-making for targeted interventions in high-risk areas.

Background
Effective malaria control measures and increased fund-
ing for malaria programmes have led to a substantial 
decrease in malaria cases and deaths in the Greater 
Mekong Subregion (GMS) in recent years [1]. However, 
significant challenges continue to persist in the GMS, 
namely, the emergence and spread of anti-malarial drug-
resistance for Plasmodium falciparum [2, 3], the presence 
of insecticide resistance among mosquito populations 
[4], the fluidity of cross-border movement between high 
transmission intensity regions and low transmission 
regions, and difficulty in reaching vulnerable populations 
in remote areas [5, 6].
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Despite these hindrances, the Lao People’s Democratic 
Republic, commonly known as Laos, has made consid-
erable efforts to combat malaria. These efforts involve 
enhancing access to diagnosis and treatment, implement-
ing targeted vector control interventions (particularly for 
vulnerable populations such as forest-goers), deploying 
community-based malaria control programmes includ-
ing insecticide-treated bed nets distribution, and cross-
border collaboration [7]. However, formidable obstacles 
persist, such as remote transmission areas and the emer-
gence of drug-resistant strains. Therefore, sustained col-
laboration and increased investment are imperative for 
achieving malaria elimination goals in Laos and the GMS.

Between 2010 and 2019, Laos witnessed an impres-
sive 94% decrease in malaria cases and a 99% decrease in 
malaria-related deaths [8]. In 2021, only 35% of reported 
cases were P. falciparum infections, compared to 99% in 
2009. Approximately 85% of all reported malaria cases in 
Laos were reported in three provinces: Xekong, Attapeu, 
and Salavan [9]. Under the guidance of the World Health 
Organization’s (WHO) Global Technical Strategy for 
malaria [10], Laos successfully implemented phase 1 of 
its National Strategic Plan to eliminate P. falciparum in 
northern and central provinces and reduce the annual 
incidence to less than 5 cases per 1000 population in 
southern provinces by 2020. By 2025, Laos aims to elimi-
nate P. falciparum and Plasmodium vivax from all north-
ern provinces and eliminate P. falciparum in the five 
southernmost provinces [7]. As Laos approaches elimina-
tion, it has been experiencing shifts in its malaria trans-
mission. An increasing number of areas in the north have 
become malaria-free, with occasional focal outbreaks 
detected through routine surveillance systems, while 
the five southernmost provinces remain an area of sta-
ble transmission, characterized by continual geographi-
cal fluctuations [8]. These ever-changing shifts in the 
transmission profile have made it increasingly important 
to have a strong and enhanced surveillance system that 
can monitor the burden of the disease at the sub-national 
level.

Understanding the risk landscape of diseases is a 
critical part of any disease surveillance system and 
becomes even more important when striving for elimi-
nation. In malaria, risk is often described through the 
use of predicted maps, which are a graphical depiction 
of regions with high, moderate, or low risk of transmis-
sion. They are created by analysing data on malaria bur-
den such as incidence or prevalence, vector distribution 
[4], environmental covariates, and other pertinent fac-
tors [11]. In the absence of truly complete data, geosta-
tistical models offer the ability to predict the expected 
risk to unobserved space and provide a complete pic-
ture of transmission [12]. For example, fine-scale risk 

maps have been designed to support evidence-based 
risk stratification in Haiti, where prevalence is less than 
1% [13]. In China, prior to certification, risk maps were 
used in identifying hotspots near the China-Myanmar 
border [14].

The maps from geostatistical approaches offer mul-
tiple benefits for malaria control and elimination pro-
grammes. Firstly, they enable efficient allocation of 
limited resources by helping to prioritize resources and 
target interventions in areas with high risk of malaria 
transmission, thus achieving maximum impact [15]. Sec-
ondly, they facilitate the identification of gaps in exist-
ing malaria control measures, allowing for the design 
of appropriate interventions to address these gaps. For 
example, in areas with high risk of malaria transmission 
but low coverage of insecticide-treated bed nets, health 
authorities can prioritize the distribution of bed nets 
[16]. Thirdly, malaria risk maps can be used to identify 
areas of persistent malaria that may need social behav-
iour change communications interventions, encourag-
ing people to take preventive measures such as using bed 
nets, seeking early diagnosis and treatment, and avoiding 
mosquito bites [15].

A series of fine-scale maps was produced in collabo-
ration with the Centre of Malariology, Parasitology and 
Entomology (CMPE), Clinton Health Access Initiative 
(CHAI) and WHO to support malaria risk stratification 
in Laos [17]. These maps were used to validate confirmed 
malaria case data from health facilities for their health 
facility catchment area. They also provided estimates 
of malaria cases when data from health facilities were 
deemed unreliable due to low reporting and/or testing 
rates. The study employed a novel Bayesian geostatistical 
framework to analyse routine surveillance malaria case 
data spanning from 2017 to 2021 in Laos. The current 
framework incorporated the population’s treatment-seek-
ing behaviour, high-resolution environmental covariates, 
and health facility catchment population. The incidence 
rates were estimated at each health facility in the country, 
as well as at a spatial resolution of 1 km × 1 km for the 
entire country. Risk maps that covered a five-year period 
were presented, offering valuable insights into the spatio-
temporal changes in malaria transmission and a detailed 
breakdown by species for the most recent three years, 
2019 to 2021.

Through this comprehensive framework, the study 
enhanced understanding of malaria dynamics, informs 
risk stratification, and facilitates targeted interven-
tions. The resulting fine-scale risk maps offered a valu-
able resource for malaria control and elimination 
programmes, aiding in resource allocation, intervention 
planning, and public health awareness campaigns in 
Laos.
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Methods
Routine surveillance data
The primary dataset comprised of annual malaria case 
counts from 2017 to 2021 for 1243 health facilities in 
Laos. As 83 health facilities did not have spatial coordi-
nates, the analysis was performed on 1160 geolocated 
health facility points (health facilities with longitude and 
latitude). Figure  1 displays the observed malaria cases 
at health facilities throughout Laos from 2017 to 2021. 
The number of reported malaria cases had considerably 
declined in Laos over the five years, from approximately 
9300 cases in 2017 to less than 4000 cases in both 2020 
and 2021, with a further reduction to 2305 cases in 2022 
[8]. The data from 2019 to 2021 included a breakdown by 
P. falciparum and P. vivax across health facilities in Laos 
[see Figure 1 in Supplementary Information (SI)].

Treatment‑seeking propensity
The continuous treatment-seeking propensity was esti-
mated using a distance-decay-based model [18, 19] to 
any health facility. Here distance was defined as travel 
time using a road and terrain-informed friction surface 
from the Malaria Atlas Project [20]. The decay model was 

compared against survey data from the Lao PDR Social 
Indicator Survey II 2017 [21] (see Figure 2 in SI). Accord-
ing to the survey, the national treatment-seeking rate 
was 58%, with province-specific rates ranging from 28 to 
77.8%. The minimum and maximum values of the decay 
curve were then calibrated to better match the national 
average.

High resolution environmental covariates and model 
selection
The incidence model utilized a range of environmental 
covariates with a spatial resolution of 1 km × 1 km, that 
are known to influence and impact malaria outcomes. 
The selection of covariates was informed by a compre-
hensive review that identified robust associations with 
malaria (see [22]). The covariates are described in detail 
in Table 1. A suite of static and dynamic covariates were 
used.

To evaluate the performance of the modelling 
approach, an extensive cross-validation analysis was con-
ducted. This involved testing different model combina-
tions, including a full model comprising both covariates 

Fig. 1 Observed malaria cases (P. falciparum and P. vivax combined) per year at health facilities across Laos. The observed malaria cases have 
considerably declined in Laos over the five years



Page 4 of 13Kang et al. Malaria Journal          (2024) 23:196 

and spatial random effects, a model with covariates only, 
and a model with spatial random effects only.

Additionally, the performance of two different parasite 
models were assessed using the data from 2019 to 2021 
which included a breakdown by P. falciparum and P. 
vivax. The first model simultaneously fitted P. falciparum 
and P. vivax, while the second model fitted these two par-
asites separately. By comparing the performance of these 
different models, the most effective approach for predict-
ing and understanding malaria transmission dynamics 
was determined.

Overall, the modelling approach used here provided 
valuable insights into the environmental factors that 
contributed to malaria transmission and helped identify 
high-risk areas for malaria. Furthermore, the compari-
son of different model combinations and parasite models 
aided in improving the accuracy and reliability of pre-
dictions and ultimately informed more effective malaria 
control strategies.

Estimating catchment population
To calculate the appropriate incidence rates for the cases 
observed at health facilities, the specific catchment popu-
lation for each health facility was estimated. Catchment 
population in this case was defined as the number of peo-
ple likely to seek treatment at each facility. The popula-
tion data were derived from High Resolution Settlement 
Layer (HRSL) representing population in Laos in 2018. 
District-level population estimates for 2019− 2021 were 

used to adjust for HRSL population estimates using rak-
ing. In this analysis, a modified gravity style model was 
used to estimate these catchment populations based on 
travel time to the health facilities, using the latest global 
maps of travel time to healthcare facilities [20].

For the catchment model, the probability that an indi-
vidual in the i-th pixel seeked treatment at the j-th health 
facility, p̄(pixeli → hfj) , was modelled as the relative 
attractiveness of that facility, p(pixeli → hfj) , normalized 
in relation to the relative attractiveness of all accessed 
facilities, σi , i.e.,

This relative attractiveness was modelled as the combina-
tion of an inherent decline proportional to the square of 
the travel time to that health facility, tt(pixeli → hfj) , and 
a catchment weighting, Wj , intended to capture the varia-
tion in services available at each facility that would likely 
attract an individual seeking care, i.e.,

The catchment weightings were treated as a model 
parameter to be inferred jointly with the clinical inci-
dence rate during fitting, and a Bayesian prior of form 
logWj ∼ Normal(0, 0.252) was used to regularise their 
variation. Combining this attractiveness model with the 

p̄(pixeli → hfj) =
p(pixeli → hfj)

∑

k∈σi
p(pixeli → hfk)

.

p(pixeli → hfj) =
Wj

tt(pixeli → hfj)2
.

Table 1 List of covariates

Static covariates Description Category

Access to cities [23] Travel time distance to cities with population > 50, 000 Urban/rural

AI [24] Aridity Index Vegetation

Distance to water [25] GIS-derived surface that measures distance to permanent and semi-permanent water based on presence 
of lakes, wetlands, rivers and streams, and accounting for slope and precipitation

Hydrology

Elevation [26] Elevation as measured by the shuttle radar topography mission (SRTM) Topography

Night-time lights Index that measures the presence of lights from towns, cities and other sites with persistent lighting Urban/rural

PET [24] Potential evapotranspiration Hydrology

Population density World population estimates, UN adjusted Urban/rural

Slope [26] GIS-derived surface calculated from SRTM elevation surface Topography

TSI [27] Temperature suitability index for P. falciparum Temperature

Tree fraction Percentage of forest cover change Vegetation

Dynamic covariates Description Category

Rainfall [28] Climate hazards group infrared precipitation with station data Hydrology

EVI [29] Enhanced vegetation index Vegetation

LST Day [30] Daytime land surface temperature Temperature

LST Night [30] Night-time land surface temperature Temperature

TCB [31] Tasselled cap brightness; measure of land reflectance Vegetation

TCW [31] Tasselled cap wetness; measure of land moisture Hydrology
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treatment-seeking and population surfaces—denoted 
here as TSi and populationi , respectively—allowed the 
catchment population of the j-th health facility to be 
defined as

In the i-th pixel, residents’ access to facilities was lim-
ited to those within a 3-hour (180  min) travel time. It 
was assumed that individuals generally would not bypass 
numerous nearby health facilities to visit a more distant 
one. This assumption was reflected in the model, par-
ticularly in areas with sparse health facility distribution, 
where the accessible set, σi , included only the five near-
est facilities. In contrast, in areas where several health 
facilities were within a 20-minute travel distance, σi con-
sisted of these facilities plus the next four nearest ones. 
Catchments were modelled as static and did not vary 
on a monthly nor yearly basis, mainly owing to lack of 
information on dynamic activities of health facilities and 
treatment-seeking rates.

Incidence model
A Bayesian geostatistical framework was employed to 
represent the underlying incidence rate at each pixel, i, 
for each year, y, with the above catchment model con-
necting this latent risk surface, Ii,y , to the available case 
data.

For each year, the matrix of covariates, Xy , was formed 
by joining the collection of static covariates with the 
time-varying covariates matching that year. The linear 
predictor for the i-th pixel in year y was then formed by 
multiplication of the i-th row in Xy against an annual 
slope vector, βy . A fixed annual intercept term, cy and an 
annual spatial offset term, foffset,i,y , completed the for-
mula for Ii,y as

The annual spatial offset term was drawn from a spatial 
Gaussian random field as

with the hyper-parameters assigned hyper-priors, 
rangeoffset ∼ Normal(1, 0.52) and scaleoffset ∼ Normal

(−1, 0.52) . A modest shrinkage penalty was placed 
on the annual slope vector via the prior choice, 
βy ∼ Normal(0, 12).

The expected cases at the j-th facility in year y, were 
computed by summation over all pixels of the product of 
the latent incidence surface with the catchment model; 
namely,

CPj =

Npixel
∑

i=1

TSi × populationi × p̄(pixeli → hfj).

log Ii,y = cy + (Xy)
′
iβy + foffset,i,y .

foffset,·,y ∼ GP(rangeoffset, scaleoffset)

To allow for over-dispersion relative to the nominal Pois-
son sampling distribution for case data, the annual case 
totals observed at each facility were drawn from a Nega-
tive Binomial distribution parameterized as

with σ assigned a hyper-prior, log σ ∼ Normal(−1, 12).
Model fitting was performed in the Template Model 

Builder (TMB) and Integrated Nested Laplace Approxi-
mation (INLA) packages [32, 33] for R using a Laplace 
approximation over the random field components and 
the (logarithm of ) catchment attractiveness weights, with 
a Multivariate Normal approximation in the remaining 
hyper-parameters centred on the empirical Bayes esti-
mator. Model uncertainty was derived from 300 samples 
drawn from a Laplace approximation of the posterior and 
quantified using the standard deviation of the posterior 
distribution, as well as threshold exceedance and non-
exceedance probabilities.

Data for the years 2019 to 2021 provided informa-
tion on species breakdown to P. falciparum and P. vivax 
cases for all ages. The methodology described above was 
applied independently to each species, generating inci-
dence maps tailored to individual species and averaged by 
year. To explore overlapping risk profiles, these species-
specific incidence maps were superimposed, enabling 
a comprehensive assessment of risk both for individual 
species and their collective impact. The model valida-
tion outcomes, tables of goodness-of-fit measures, and 
diagnostic figures were included in the Supplementary 
material. These resources were intended to aid readers in 
evaluating the effectiveness of the geospatial model.

Results
By employing a Bayesian geostatistical framework fitted 
to the yearly routine surveillance data from 2017 to 2021 
in Laos, valuable insights into the spatial distribution and 
trends of malaria incidence were obtained. Figure 2 dis-
plays the predicted malaria incidence in units of cases per 
1000 person-year-observed (PYO) at a spatial resolution 
of 1 km × 1 km in Laos from 2017 to 2021. The maps viv-
idly portray the geographical variations in malaria inci-
dence, highlighting higher transmission rates in rural and 
remote areas compared to urban centres [34]. Notably, 
the southern provinces of Sekong, Savannakhet, Salavan, 
Champasak, and Attapeu are observed as persistently 
high-risk areas for malaria transmission. The maps clearly 

expected casesj,y =
∑

i
Ii,y × TSi × populationi × p̄(pixeli → hfj).

casesi,y ∼ NegBinom
(

mean = expected casesi,y,

variance = mean× (1+ σ))
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demonstrate a declining trend in malaria incidence rates 
over the course of the five-year study period. Particularly 
noteworthy is the significant reduction observed in the 
northern region, where the incidence dropped to less 
than 0.5 cases per 1000 PYO in 2020 and 2021, indicating 
substantial progress towards malaria elimination. In the 
context of the risk stratification exercise, it is noteworthy 
that the geospatial model demonstrates a robust fit to the 
observed data (see Figure 3 in SI).

Figure  3 presents the posterior probability that the 
malaria incidence in Laos exceeds the threshold of one 
case per 1000 PYO. This threshold is a pivotal bench-
mark according to the WHO’s directives for the elimina-
tion of malaria within the GMS [1]. The representation 
in Fig. 3 conveys the extent to which the observed inci-
dence aligns with this elimination target, allowing for 
informed assessments of progress toward malaria elimi-
nation goals. Over the five-year period, the maps exhibit 

a growing level of certainty, signifying significant strides 
made towards malaria elimination in the majority of the 
country.

The most influential covariates under the fitted model 
for the annual malaria incidence rate averaged across 
2017 to 2021 are highlighted in Fig. 4, which shows the 
dominant positive and negative covariate in each pixel. 
To enhance interpretability, the 16 covariates outlined 
in Table  1 have been organized into distinct categories. 
These categories encompass Urban/Rural indicators 
(Access to cities, Night-time lights, Population density), 
Vegetation factors (AI, Tree fraction, EVI, TCB), Hydrol-
ogy metrics (Distance to water, PET, Rainfall, TCW), 
Topographical attributes (Elevation, Slope), and Tem-
perature variables (TSI, LST Day, LST Night). Of par-
ticular interest is the observation that factors related to 
urban/rural settings, hydrology, and vegetation seem 
to exhibit associations with an elevated risk of malaria 

Fig. 2 Fine-scale maps (1 km × 1 km) of the estimated median of annual malaria cases per 1000 person-year-observed in Laos for years 2017–2021 
produced from the geospatial model. The maps highlight higher transmission rates in rural and remote areas compared to urban centers. Notably, 
the southern provinces of Sekong, Savannakhet, Salavan, Champasak, and Attapeu consistently emerge as high-risk areas for malaria transmission
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transmission, particularly within the southern region of 
the country. Nonetheless, it is crucial to avoid interpret-
ing these outcomes as indicative of causal significance. 
Figure  4 is presented solely to offer insights into the 
structure of the fitted regression model.

Figure 5 illustrates a comparison between the observed 
and predicted annual malaria cases within each health 
facility catchment area, averaging across the years 2017 
to 2021. With a strong resemblance evident in the two 
maps, the figure clearly demonstrates the geospatial 
model’s predictive capabilities and its ability to estimate 
catchment populations effectively (also see Figure  4 in 
SI).

Figure  6 displays the annual average of malaria inci-
dence rates in Laos for two distinct periods: 2017–2018 
and 2019–2021. The final model estimates were averaged 
across the two and three years, respectively, to provide an 
annual average estimate. These maps played a pivotal role 
in informing risk stratification efforts, specifically in 2019 

and 2022, respectively [17]. Notably, the map represent-
ing the period of 2019–2021 demonstrates a substantial 
reduction in malaria transmission in the northern region 
of the country. Malaria incidence rates in this region pre-
dominantly fell below the threshold of 0.5 cases per 1000 
PYO, highlighting the effectiveness of malaria control 
interventions implemented in these areas.

The Bayesian geospatial model was applied to species-
specific routine surveillance data spanning from 2019 to 
2021. As a result, fine-scale incidence maps of the pre-
dicted posterior median of P. falciparum and P. vivax 
incidence per 1000 PYO were generated at 1 km × 1 km 
across Laos (see Figure  5 in SI). The detailed, fine-scale 
bivariate map (1 km × 1 km) depicting the incidence of 
P. falciparum and P. vivax in Laos from the species-spe-
cific incidence model is presented in Fig.  7. The results 
revealed that P. falciparum demonstrates broader spatial 
distribution within the southern provinces, which include 
Sekong, Savannakhet, Salavan, Champasak, and Attapeu, 

Fig. 3 The posterior probability that the incidence cases of malaria in Laos do not exceed 1 case per 1000 person-year-observed in each pixel 
for years 2017–2021 based on the Bayesian geospatial model fit. The maps exhibit a growing level of certainty over the five years, signifying 
significant strides made towards malaria elimination in the majority of the country
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Fig. 4 The dominant covariates in fine-scale prediction of the case incidence rate for Laos (averaged across 2017 to 2021). Each pixel’s color 
corresponds to the covariate exerting the A greatest positive impact (contributing to heightened local malaria risk estimates) and B greatest 
negative impact (leading to reduced local malaria risk estimates), aligned with the legend

Fig. 5 A comparison between the observed and predicted annual malaria cases within each health facility catchment area (HFCA), averaging 
across the years 2017 to 2021. The predicted map indicates the geospatial model’s predictive capabilities and its ability to estimate catchment 
populations effectively
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in contrast to P. vivax. Nevertheless, a significant differ-
entiation emerges as P. vivax showcases higher preva-
lence in the central provinces such as Khammouane and 
Bolikhamxay, as well as selected northern provinces like 
Luang Prabang and Xieng Khouang in the country. These 
findings contribute to the understanding of the distribu-
tion and prevalence of the two malaria parasite species, 
aiding in the design of targeted intervention strategies.

Discussion
Malaria risk stratification plays a vital role in effective 
malaria prevention and control planning [35]. The use of 
temporal and spatial data on malaria incidence in Laos 
allows for the identification of areas with a high burden 
of malaria transmission and the detection of changes 
in risk profiles over time. This information guides the 
implementation of targeted interventions, resource allo-
cation, and outreach to high-risk populations and has 
been used to support the 2022 risk stratification planning 
conducted by CMPE [17] for the Global Fund RAI4 appli-
cation. The risk maps produced highlight the remarkable 
effort and successive decline of malaria transmission in 
the northern regions and persistent transmission that 
remains predominantly in rural and remote areas, par-
ticularly in the southern regions of the country [34]. This 
work acts as supporting evidence for ongoing opportu-
nities for targeted approaches and accelerator strategies 
being deployed across southern provinces [36, 37] as well 

Fig. 6 Fine-scale annual average risk maps for 2017–2018 and 2019–2021: The left panel shows the posterior median incidence rate for 2017–2018 
while the right panel shows the same metric for 2019–2021. A substantial reduction in malaria transmission in the northern region of the country 
has been observed in the period of 2019–2021

Fig. 7 Fine-scale bivariate map of the predicted posterior median 
of P. falciparum and P. vivax incidence per 1000 PYO at 1 km × 1 km 
across Laos for 2019 to 2021. P. falciparum is more spatially spread 
across the southern provinces compared to P. vivax. A notable 
distinction arises as P. vivax exhibits higher prevalence in the central 
and some northern provinces of the country
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as an opportunity to monitor and maintain gains in the 
north.

The rising heterogeneity of malaria exposure amidst 
an overall decline in prevalence, as illustrated in Fig. 2, 
is a distinctive feature of malaria epidemiology in 
regions nearing elimination. Similar trends have been 
observed in previous studies across the GMS, includ-
ing Cambodia [38], the Yunnan Border [14], Vietnam 
[39], and Thailand [40]. The spatial heterogeneity 
of malaria incidence in Laos is influenced by various 
environmental, social, and economic factors [35]. High 
risk in urban/rural areas highlights the need for tar-
geted interventions, while hydrology’s role under-
scores the significance of water bodies. Vegetation’s 
influence on mosquito habitats suggests environmen-
tal management. The interplay of these factors results 
in the varying risk profiles observed across different 
regions. To effectively control the disease, targeted 
interventions in high-risk areas are necessary [15]. 
These interventions should take into account the local 
context and focus on addressing the specific risk fac-
tors contributing to malaria transmission. For exam-
ple, across Laos, forested regions are known to be a 
high risk for transmission and forest-goers remain a 
high-risk population. Strategies have been put in place 
to curb the transmission in these populations as part 
of Laos malaria accelerator strategies towards elimina-
tion [41].

The declining incidence of malaria in Laos can be 
attributed to several factors besides environmental 
changes [42]. Improved access to effective malaria pre-
vention and control interventions, such as the distri-
bution of insecticide-treated bed nets [16, 43], early 
diagnosis and treatment, and indoor residual spraying, 
have played a significant role [44]. Additionally, the 
establishment of better surveillance and response sys-
tems has enhanced the detection and management of 
malaria cases [45]. Strengthened cross-border collabo-
ration with neighboring countries has also contributed 
to the overall reduction in malaria transmission in the 
region [46]. Changes in the risk profile of malaria inci-
dence over time can be influenced by various factors, 
such as environmental changes, social and economic 
changes, or the effectiveness of existing control strate-
gies. As malaria transmission decreases in some areas, 
new hotspots may emerge, necessitating a re-evalua-
tion of operational strategies. Flexibility and adaptabil-
ity in malaria prevention and control approaches are 
crucial to respond to changing risk profiles effectively. 
This includes the maintenance of a strong surveillance 
system that can identify and monitor malaria cases, 
including asymptomatic infections and reduced case 
detection [47].

The reduction in malaria cases in Laos [37] and 
the GMS [48] is also partly attributed to deforesta-
tion, which disrupts habitats of malaria-carrying 
mosquitoes. As forests are cleared for agriculture, 
urbanization, and infrastructure, mosquito breed-
ing sites diminish, reducing their population density 
and malaria transmission [49]. While this unintended 
consequence aids malaria elimination, it highlights 
broader environmental and socio-economic impacts. 
Addressing deforestation necessitates balancing eco-
nomic development with environmental conservation 
and public health priorities.

It is important to highlight that the decline in 
malaria cases in Laos in 2020 and 2021 may be par-
tially linked to the indirect effects of the COVID-19 
pandemic. Measures to control COVID-19, such as 
lockdowns and travel restrictions, likely disrupted the 
movements of malaria vectors and human populations, 
thereby reducing malaria transmission. Additionally, 
public health campaigns related to COVID-19 may 
have increased awareness about preventive measures 
against malaria, further contributing to the decline 
in transmission. However, it is important to note that 
ongoing malaria control efforts have also played a sig-
nificant role in reducing malaria transmission in Laos 
in recent years. According to the WHO, malaria cases 
in Laos have plummeted from an estimated 462,000 in 
1997 to 2305 in 2022 [41]. Moreover, according to the 
Mekong Malaria Elimination Programme, there were 
only 96 reported malaria cases in Laos from April to 
June 2023, marking an 88% decrease compared to the 
corresponding period in 2022 [50].

The maps provided Fig. 5 not only facilitate the assess-
ment of the prediction accuracy but also provide valuable 
information about the catchment populations for indi-
vidual health facilities. By showcasing the observed cases 
in relation to the predicted cases, the figure serves as a 
means to gauge the model’s performance and the extent 
to which it captures the real-world dynamics of malaria 
cases across different catchment areas. This approach 
contributes to a comprehensive evaluation of the model’s 
predictive capabilities and its ability to estimate catch-
ment populations effectively, enhancing the overall reli-
ability of the study’s findings. During stratification, These 
risk maps were used to identify discrepancies between 
observed case counts and predicted. Facilities with large 
deviations were audited more deeply to confirm correct 
case counts. In the absence of health facility catchment 
estimations and case information, the model provided 
predicted estimates to support stratification. The details 
of the steps taken for Laos stratification are described 
here [17].
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Disaggregated species maps (see SI) and the bivariate 
map (Fig. 7) presented here hold immense value when it 
comes to the country’s goal of eliminating P. falciparum 
malaria by 2023 and eliminating P. vivax malaria in the 13 
Northern provinces by 2025. While P. falciparum elimi-
nation is the primary objective, P. vivax cannot be over-
looked due to its unique characteristics and challenges. 
Plasmodium vivax has the ability to form dormant liver 
stages, leading to relapses and making it more difficult to 
eliminate completely. Therefore, understanding the spe-
cific distribution and transmission patterns of P. vivax 
through disaggregated species maps becomes essential 
for targeted interventions. By utilizing different strategies 
for each species, such as targeted treatment regimens, 
vector control measures [4], and surveillance approaches, 
Laos can address the distinct challenges posed by P. falci-
parum and P. vivax. This comprehensive approach takes 
into account the evolving dynamics of malaria trans-
mission and ensures that efforts are optimized for both 
species, ultimately leading to a more effective and sus-
tainable elimination strategy.

Continued investment in malaria prevention and 
control efforts in Laos is crucial for sustaining the pro-
gress made in reducing malaria incidence. This includes 
ongoing support for surveillance systems, strengthening 
healthcare infrastructure, capacity building, and com-
munity engagement [51]. Sustained efforts are needed to 
address the remaining challenges, such as the persistence 
of malaria in high-risk provinces and the potential for the 
emergence of new hotspots. By maintaining a compre-
hensive and adaptive approach, Laos can further reduce 
the malaria burden and progress towards the ultimate 
goal of malaria elimination.

With regard to the modeling choice, it is notable that 
both a negative binomial (NegBin) and a zero-inflated 
Poisson model were evaluated. The NegBin model dem-
onstrated superior performance in terms of goodness-
of-fit measures for the data, which exhibited significant 
overdispersion—a key factor that the NegBin model was 
particularly adept at handling. Although the NegBin 
model did not explicitly model the non-independence 
of cases (underdispersion), it remained effective for the 
current dataset where overdispersion was the predomi-
nant issue [52]. In addition to its empirical suitability, 
the NegBin model offered computational simplicity and 
ease of interpretation, which were valuable in complex 
epidemiological modeling. While the limitations regard-
ing underdispersion were acknowledged, the decision to 
use the NegBin model was based on its overall utility in 
capturing the variability observed in the data more accu-
rately than alternative models.

The feasibility of employing a Bayesian spatio-tem-
poral model for the observed dataset was examined. 

However, it was observed that the temporal component 
in the resulting annual maps tended to dominate the 
inter-annual variation in malaria transmission. These 
oversmoothed outcomes could stem from several fac-
tors, including inappropriate temporal aggregation, an 
inadequate temporal correlation structure, or subop-
timal smoothing parameter selection [53]. When data 
are aggregated over extensive spatial or temporal units, 
fine-scale variability can be lost, leading to patterns that 
appear oversmoothed. Coarse-resolution data aggrega-
tion has the potential to conceal local variations and 
create an overall pattern that appears smoother. For the 
temporal effect, an autoregressive model of first-order 
(AR1) was employed. Nevertheless, alternative choices 
such as the Gaussian random walk model of order 1 
(RW1) or order 2 (RW2) can be explored in future 
investigations to address the oversmoothing issue [54]. 
It is important to note that a highly flexible model with 
numerous parameters can overfit the data, resulting in 
smoothed outcomes that may not align with the actual 
patterns supported by the data. By considering these fac-
tors and potential improvements in model specifications, 
the accuracy and effectiveness of spatio-temporal model-
ling for malaria transmission can be enhanced.

It is important to acknowledge some limitations of the 
study. The analysis is based on routine surveillance data, 
which may be subject to under-reporting or other biases. 
Additionally, the models rely on assumptions and simpli-
fications that may influence the accuracy of the predic-
tions. Future research could incorporate additional data 
sources, such as entomological data, socioeconomic fac-
tors, and human movement patterns, to further improve 
the accuracy and understanding of malaria transmission 
dynamics in Laos. Additional data such as serological 
surveys can strengthen the accuracy of risk maps as laos 
proceeds to extremely low numbers [13]. Reactive case 
detection supplemented by GPS locations of villages can 
strengthen the accuracy in catchment estimations and 
provide deeper insight into the dynamic changes that 
occur year on year.

In conclusion, the study provides valuable insights 
into the spatial patterns, trends, and species-specific 
variations in malaria incidence in Laos. The reduction 
in malaria incidence, particularly in high-risk areas, 
demonstrates the effectiveness of malaria prevention 
and control interventions. However, challenges remain, 
and targeted interventions adapted to the changing risk 
profiles are necessary. Malaria risk stratification and a 
flexible operational approach are crucial for sustaining 
progress and achieving malaria elimination in Laos. Con-
tinued investment and collaboration at local, regional, 
and international levels are essential to overcome these 
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challenges and further advance malaria control efforts in 
the country.
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