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Abstract 

Background Disruptions in malaria control due to COVID‑19 mitigation measures were predicted to increase malaria 
morbidity and mortality in Africa substantially. In Uganda, long‑lasting insecticidal nets (LLINs) are distributed nation‑
wide every 3–4 years, but the 2020–2021 campaign was altered because of COVID‑19 restrictions so that the timing 
of delivery of new nets was different from the original plans made by the National Malaria Control Programme.

Methods A transmission dynamics modelling exercise was conducted to explore how the altered delivery of LLINs 
in 2020–2021 impacted malaria burden in Uganda. Data were available on the planned LLIN distribution sched‑
ule for 2020–2021, and the actual delivery. The transmission model was used to simulate 100 health sub‑districts, 
and parameterized to match understanding of local mosquito bionomics, net use estimates, and seasonal patterns 
based on data collected in 2017–2019 during a cluster‑randomized trial (LLINEUP). Two scenarios were compared; 
simulated LLIN distributions matching the actual delivery schedule, and a comparable scenario simulating LLIN distri‑
butions as originally planned. Model parameters were otherwise matched between simulations.

Results Approximately 70% of the study population received LLINs later than scheduled in 2020–2021, 
although some areas received LLINs earlier than planned. The model indicates that malaria incidence in 2020 was sub‑
stantially higher in areas that received LLINs late. In some areas, early distribution of LLINs appeared less effective 
than the original distribution schedule, possibly due to attrition of LLINs prior to transmission peaks, and waning LLIN 
efficacy after distribution. On average, the model simulations predicted broadly similar overall mean malaria incidence 
in 2021 and 2022. After accounting for differences in cluster population size and LLIN distribution dates, no substantial 
increase in malaria burden was detected.

Conclusions The model results suggest that the disruptions in the 2020–2021 LLIN distribution campaign in Uganda 
did not substantially increase malaria burden in the study areas.
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Background
Malaria remains a major public health problem, par-
ticularly in Africa [1]. Malaria control efforts have been 
challenged by insufficient funding, the emerging threats 
of anti-malarial drug and insecticide resistance [2–5], 
and more recently, the COVID-19 pandemic. Disrup-
tions in malaria control activities, including delays in 
distribution of long-lasting insecticidal nets (LLINs), 
due to the COVID-19 pandemic were predicted to sub-
stantially increase malaria morbidity and mortality [6, 7]. 
Decreased availability of anti-malarial medications and 
rapid diagnostic tests due to interrupted supply chains [8, 
9], and limited access to health facilities due to national 
lockdowns and travel restrictions [10, 11], were also 
raised as potential concerns. The World Health Organi-
zation (WHO) and others predicted that if LLIN distri-
bution was halted and malaria case management was 
significantly disrupted, malaria deaths in sub-Saharan 
Africa could double compared to 2018 [12, 13]. However, 
little evidence is available on the impact of the COVID-
19 restrictions on malaria burden. The LLINEUP trial in 
Uganda provided a unique opportunity to evaluate the 
impact of changes in the LLIN distribution timelines due 
to the pandemic on malaria indicators in Uganda.

LLINs are the cornerstone of malaria control in many 
African countries, including Uganda [14]. To achieve 
universal coverage, the WHO recommends delivering 
LLINs free-of-charge through nationwide mass distribu-
tion campaigns every 3 years [15]. Uganda’s Ministry of 
Health and supporting partners have conducted three 
national ‘universal coverage campaigns’ to deliver LLINs 
(in 2013–2014, 2017–2018, and 2020–2021). In Uganda, 
the Ministry of Health (MoH) collected household reg-
istration data to determine the appropriate number of 
LLINs to deliver to each household aiming to cover two 
people by each net delivered, rounding up if an uneven 
number of people reside in a household [14, 16]. The 
most recent campaign coincided with the COVID-19 
pandemic [17] and was disrupted by restrictions imposed 
by the Ugandan government, to restrict the spread of 
COVID-19. Although the Ugandan MoH endeavoured 
to deliver LLINs according to the original timelines, the 
COVID-19 restrictions led to alterations in the distribu-
tion schedule transmission with delivery delayed in some 
areas [11] and accelerated in others.

Transmission modelling can allow us to consider sce-
narios that cannot be tested in reality, and compare 
these to what actually happened, to estimate the impacts 
of various events. In this case, an established and freely 
available transmission model (malaria simulation, [18]) 
was employed to explore how the altered timing of LLIN 
delivery may have interrupted malaria control in Uganda. 
After making explicit assumptions, and maintaining 

parameters between scenarios with the exception of 
the timing of LLIN delivery, this specific impact of the 
COVID-19 induced challenges can be quantified. The 
LLINEUP study was a cluster-randomized trial embed-
ded into Uganda’s 2017–2018 LLIN distribution cam-
paign that collected data from 2017 to 2019 [16, 19]. 
This provides understanding of context for 100 distinct 
health sub-districts to help calibrate the transmission 
model simulations. In each health sub-district that was 
used as a cluster for the trial, model parameters were 
matched to reflect baseline pyrethroid resistance pro-
files of local mosquitoes, their species composition and 
bionomics, the initial net use across the community, how 
net use waned over time after receiving a new net, and 
assumed seasonal dynamics of the region. Uncertainty 
across these parameter estimates was generated using the 
trial data and understanding of LLIN performance in the 
context of pyrethroid resistant mosquitoes from previous 
work [20, 21]. This work explored how COVID-19 miti-
gation measures may have influenced malaria burden in 
Uganda, given the altered delivery of LLINs during the 
2020–2021 campaign.

Methods
LLINEUP trial
A total of 104 health sub-districts (clusters) in eastern 
and western Uganda were included in the LLINEUP trial, 
covering 48 of 121 (40%) districts [19]. Entomological 
and epidemiological data, collected in the LLINEUP trial 
from 2017 and 2019, were used to calibrate model simu-
lations in 100 of the original 104 clusters; in three clusters 
multiple LLINs were distributed. Because no dominant 
net type was received, these clusters were dropped prior 
to the analysis [16, 22]. One cluster (in Budiope) was 
dropped because pyrethroid-pyriproxyfen nets were dis-
tributed in this region and these nets are yet to be char-
acterized within the existing modelling framework. Data 
were available on the planned LLIN distribution sched-
ule for 2020–2021, and when LLINs were actually dis-
tributed. Clusters were further divided into sub-counties 
for LLIN distribution, but it was not possible to param-
eterize parasite prevalence or vector density estimates, 
nor estimate population sizes, for all regions at this finer 
scale. Instead, the study aimed to simulate the impact, 
at the cluster level, of delivering the most abundant net-
type during the 2020–2021 campaign, including LLINs 
with pyrethroid-piperonyl butoxide (PBO LLINs) and 
pyrethroid-only LLINs without PBO (non-PBO LLINs).

Model overview
An established transmission model [18] is used to sim-
ulate the trends in malaria prevalence (as measured 
by microscopy) from 2014 to 2023 for each of the 100 
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sub-districts using a transmission model for falciparum 
malaria [23, 24]. This process necessitates us estimat-
ing parameters from the trial data. The parameters for 
the transmission model are taken directly from the data 
collected during the LLINEUP trial wherever possible 
(detailed below) and otherwise default estimates are used 
(Supplementary Data). The transmission model is used 

to ensure the scenario simulated best-reflects what is 
understood to have happened during the trial years. To 
calibrate the model, the number of mosquitoes per per-
son was arbitrarily adjusted so that simulated malaria 
prevalence in children aged 2–10  years old, averaged 
across the previous year, matched that observed in the 
same age group during baseline measurements (Fig. 1A) 

Fig. 1 A demonstration of the model process. A The transmission model simulation of Buliisa sub‑district. The entomological inoculation rate 
in the model is arbitrarily varied so that averaged annual prevalence (blue polygon) matches the empirical trial estimate measured at baseline 
for children aged 2–10 years (red point). In the Buliisa example, LLINs were distributed in May 2017 (first vertical grey arrow). The model simulated 
estimate for prevalence in the same age cohort is shown for the simulation distributing nets as originally scheduled (red line) and for the simulation 
distributing nets given the COVID‑19 mitigation efforts (green line). Uncertainty draws, derived from varying model parameters associated 
with LLIN performance as determined from trial estimated data or statistical analysis of LLIN entomological impact [21], are shown as grey 
or green lines for the respective simulations. The mass campaign in 2020 for this location was scheduled to take place in December (dark red 
arrow), but took place earlier, 9th–21st August 2020 (green dot‑dashed arrow). B Cross‑sectional surveys of prevalence in children aged 2–10 years 
completed at baseline (red) and at 25‑months (black) after the LLIN campaigns are compared to model simulated estimates for all 100 clusters 
in the LLINEUP trial demonstrating the model’s validity. C An example of the full simulation for Buliisa health sub‑district. Here, the simulation 
is calibrated to baseline prevalence data (red point), and shown to reasonably recover the 6‑month (grey), 12‑month (light blue), 18‑month (dark 
blue) and 25‑month (black) empirical data estimates (Supplementary Fig. 1 shows results for all 100 clusters). Net distribution is then simulated 
given the scheduled date (dark red) or actual distribution date (dark green). As some distributions, like this example, went out before, and others 
after (see Supplementary Fig. 1), the 3‑years from Jan 1st 2020 onward (blue polygon) are simulated for comparisons



Page 4 of 11Okiring et al. Malaria Journal          (2024) 23:180 

for each study cluster (health sub-district) (Fig.  1B, red 
points), prior to the 2017 mass campaign [16]. Each 
sub-district was parameterized to reflect understanding 
of local mosquito bionomics, net use and levels of pyre-
throid resistance in local mosquito populations. Model 
predictions of the parasite prevalence in children age 
2–10 years could then be compared visually and statisti-
cally to malaria prevalence measured empirically during 
the LLINEUP trial at 6, 12, 18  months (in 104 clusters) 
and at 25  months (in 90 clusters, 14 clusters lacked 
25-month data due to COVID-19 restrictions) [22] (Sup-
plementary Fig. 1). To do this statistically, linear regres-
sions were fitted to each of the 4 cross-sectional surveys 
using the model simulated prevalence as a predictor of 
the empirical data estimate recorded. The absolute dif-
ference between the modelled output and empirical data 
were also compared to zero at each cross-sectional sur-
vey across clusters.

For the 2020–2021 campaign, the model simulated the 
delivery of LLINs at the (pre-pandemic) scheduled date, 
and then repeated this process but simulated net cam-
paigns to match the actual delivery dates. The timing of 
LLIN distribution was adjusted due to challenges driven 
by COVID-19 mitigation measures [25]. The modelled 
malaria prevalence for the 2 to 10-year-old age-group 
(Fig.  1C) and all-age clinical incidence was estimated 
across the 3-years from January 2020–December 2022. 
Given that population size estimates for each sub-dis-
trict varied, clinical incidence and the total number of 
cases were calculated for each sub-district, to under-
stand whether there was any change in the benefit of nets 
resulting from the COVID-19 pandemic.

The falciparum transmission model
Mechanistic models enable us to explore, whilst hold-
ing explicit assumptions, differences in potential inter-
vention effects. In this case, the timing of intervention 
distributions is compared, contrasting what is expected 
given the actual LLINs delivery times to that given the 
timing of the scheduled delivery. All other parameters 
are matched for comparable simulations. A falciparum 
malaria transmission model [23, 24, 26, 27] is used that 
has been validated to demonstrate its capacity to simu-
late impacts from pyrethroid- and pyrethroid-PBO nets 
as measured in cluster-randomized trials [21]. The model 
has been described comprehensively elsewhere [28, 29], 
and the code is publicly available [18]. The human com-
ponent of the model takes a non-spatial, stochastic, indi-
vidual-based framework that captures the mechanisms 
driving malaria transmission between people and mos-
quitoes. The mosquito component is similar, but com-
partmental. Mosquito behaviours play a large role in the 
outcomes simulated by the model that are driven by nets. 

Keeping the compartmental framework means it is pos-
sible to compare ‘like-with-like’ when exploring how the 
timing of net distributions could change the expectation 
of the protection provided by LLINs, essentially reduc-
ing the stochasticity in model simulations (which can 
be generated using the individual-based model for the 
human population), helping interpretation of the results 
as differences restricted to the timing of LLIN distribu-
tions, or stochasticity from assumptions around human 
behaviours. In the model, individual humans are suscep-
tible at birth to Plasmodium falciparum infection, given 
some level of maternal immunity which subsequently 
decays over the first 6-months of a person’s life [30]. The 
rate of exposure to infectious mosquito bites depends on 
local human and mosquito ecology, and the prevalence 
of parasites in mosquitoes [24, 27]. As humans age, their 
risk of developing infection is assumed to decline due to 
the development of acquired immunity, following con-
tinual exposure in endemic areas. Exposed humans are 
susceptible to clinical and severe disease, which can lead 
to death [24]. The transmission model was parameterized 
to the cluster data from the LLINEUP trial [16, 17, 19, 22, 
31–33], and calibrated to baseline estimates of prevalence 
in children, as described below.

Mosquito vector model
The mosquito vector model employed here is a deter-
ministic, compartmental model for adult mosquitoes 
[27]. Mosquitoes hatch from eggs then progress through 
early and late larval stages, and develop into pupae. Only 
female adult mosquitoes are explicitly tracked as adults, 
and are assumed susceptible to malaria infection on 
emergence. Adult females are assumed to pursue gono-
trophic cycles, whereby they host-seek (to blood-feed) 
and then search for aquatic habitats in which to oviposit. 
In the model, adult female mosquitoes are assumed to die 
at a constant rate, in the absence of interventions. The 
host-seeking, ovipositing and rate of death are affected by 
the presence of mosquito nets [23]. The efficacy of these 
nets depends on the level of pyrethroid resistance in local 
mosquitoes and the type of net; that is, whether it was a 
conventional, pyrethroid-only, or a PBO LLIN [5, 20, 21].

Seasonality of transmission
Uganda is thought to have perennial rainfall and malaria 
transmission, although there is some temporal variation 
in both across the different sub-regions. A Fourier func-
tion with 3 cycles was fitted to sub-unit 1 level (district 
level) rainfall data from years 2015–2019, following Gar-
ske et al. [34], and noted in Griffin et al. [24]. In the mech-
anistic model, it is assumed that a 35-day lag in mosquito 
densities and, subsequently, trends in malaria incidence 
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(peaking about 1 month after peaks in mosquito density) 
given this functional form.

Mosquito species composition
Mosquito species composition is important given the 
different behaviours expected across species. The effects 
are included within the modelling framework by assum-
ing species-specific parameters that are represented 
depending on the ratio of each species present in the 
respective clusters. For the purposes of modelling the 
efficacy of LLINs, experimental hut data are used to esti-
mate statistically the average effects that induce mortal-
ity or repellence behaviours in mosquitoes [20]. There 
is currently insufficient data to reasonably differentiate 
species-specific efficacy of the different mosquito nets 
[20]. Therefore, it is assumed that the entomological effi-
cacy is equivalent across all species, should a mosquito 
encounter a house with a net present. In the model, how-
ever, mosquito species can exhibit different propensities 
to feed indoors or on humans. As a result, the effect of 
the nets may vary with species composition. In the trial 
data, the primary and dominant mosquito species com-
plex present was Anopheles gambiae sensu lato (s.l.) [32], 
unpublished estimates of species composition indicated 
that An. gambiae sensu stricto (s.s.), Anopheles arabien-
sis and Anopheles funestus were present. Where available, 
trial data are used to parameterize the model; in clusters 
without this information, the average proportion of each 
species is used (Supplementary data). In the modelling 
exercise, the following estimates for mosquito bionom-
ics are assumed for each species respectively: proportion 
of species feeding on humans (An. gambiae s.s., 0.92; An. 
arabiensis 0.71; An. funestus 0.94), proportion of mosqui-
toes feeding on people in bed (0.85, 0.80, 0.78) [23, 35]. In 
the transmission model, the gonotrophic cycle is defined 
using the blood feeding rate (the regularity of feeds on 
humans) assuming that this happens every 3 days, result-
ing in a rate per day of 0.33, and the foraging time (the 
duration of host-seeking behaviour), which is assumed to 
be 0.69  days following Griffin et  al. [23]. This is key for 
estimating the probability of surviving one feeding cycle 
and how this survival is influenced by the presence of 
vector control interventions to define the death rate.

Pyrethroid resistance in local mosquitoes
Lynd et  al. [32], observed that in Uganda there is near-
universal presence of the Vgsc-L1014F/S marker in An. 
gambiae s.s., which infers resistance to pyrethroids (and 
DDT). The wild-type marker is nearly universal in An. ara-
biensis. Metabolic resistance in An. gambiae s.s., inferred 
by Cyp4j5-L43F (a non-synonymous change in the P450 
gene) and Coeae1d (change in the carboxylesterase gene), 
is also relatively high with slightly higher median estimates 

of metabolic resistance in the Olyset Net and Olyset Plus 
arms of the trial relative to PermaNet 2.0 or PermaNet 3.0 
trial arms.

There is not yet sufficient understanding of the associa-
tion between genotypic information and the phenotypic 
measures of pyrethroid resistance required for the model-
ling exercise. Although phenotypic measures of insecticide 
resistance are available from Uganda [36], data from all the 
different sub-districts are lacking. Therefore, estimates of 
the current level of pyrethroid resistance are used, derived 
from a publicly available database of discriminating dose 
WHO susceptibility bioassay tests [37]. Mean bioassay 
mortality were estimated at the district level for 2014, 2017 
and 2020, across Uganda. The efficacy of the mass mos-
quito net campaign was assumed to depend on the class of 
net deployed, as PBO LLINs are expected to work slightly 
better than conventional LLINs, at most levels of resistance 
[38]. Information on the type of net distributed at each sub-
region was used, although any potential difference between 
different products within the same net class are currently 
ignored. The level of resistance, as determined by the dis-
criminating dose bioassay, was used to estimate the aver-
age efficacy of pyrethroid-only LLINs, following methods 
outlined in Nash et al. [20], and including pyrethroid-PBO 
LLINs following an updated parameterization recently 
presented in Sherrard-Smith et  al. [21]. Uncertainty was 
carried through from the statistical analyses for model 
parameters estimating mosquito net efficacy [20, 21].

Net use
Mass net distribution, 3-years prior to the 2017 net dis-
tributions, is simulated and the proportion of nets in use 
is checked to match those recorded for each sub-district. 
In 2017, it was assumed that trial nets were distributed 
instantaneously on a specified date (as actually occurred, 
or as planned for the original pre-pandemic schedule) 
and that nets were then immediately used by the recipi-
ent household replacing any older nets previously pre-
sent, at the usage level recorded in the trial. No nets were 
assumed to be received through routine continual distri-
bution, throughout the modelled post-pandemic period. 
For each sub-district, it is assumed the same initial net 
use and waning net use, for the subsequent 2020–2021 
campaign as was achieved in this location during the 
2017 efforts. The proportion of people sleeping under a 
net the previous night (net use) was recorded for each 
sub-region from the 6-, 12-, 18- and 25-months, during 
the LLINEUP trial (Fig.  2). A constant decay function 
was fitted to these data for each sub-region (Eq. 1),

where σ is a parameter determining the rate at which 
people stop using nets over time t, following the mass 

(1)Usagei = e−σit
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campaign in Health sub-region I of the trial. Credible 
intervals for each fit were included, using 50% of the 
range in posterior draws, given the wide uncertainty esti-
mated and the fact that this approach fits a single time 
series per cluster.

The proportion of clinically symptomatic malaria cases 
treated with artemisinin-based combination therapy 
(ACT) was fixed before and after the trial at 41%, with 
those receiving monotherapy at 14%. In the model, it 
is assumed that treatment with ACT clears gameto-
cytes and provides a longer window of post-treatment 
prophylaxis than treatment with non-ACT drugs. No 
anti-malarial drug resistance was assumed in the para-
sites. Cluster-specific data were not known for clinical 
treatment, so it is assumed that this was constant across 
clusters.

Uncertainty
Twenty uncertainty draws for parameters associated with 
the impact from nets were generated. The three model 
parameters defining; (i) induced mortality at net distribu-
tion; (ii) expected repeating behaviour at net distribution, 

and; (iii) the half-life of these impacts which depicts how 
the ITN protection wanes over time—vary with the level 
of pyrethroid resistance [5, 20, 21]. The posterior dis-
tribution of statistical fits to the meta-analysis of either 
pyrethroid-only LLINs, or pyrethroid-PBO LLINs were 
determined as needed for each cluster. A random bino-
mial distribution was used to generate uncertainty in the 
ITN net use estimates at baseline 2017, and for 2020. The 
adherence to using nets (Fig.  2) was also varied using a 
normal distribution around the mean fits for each cluster 
with standard deviation 1.

Results
Performance of the model
A demonstration of the model process is provided in 
Fig. 1. Overall, the models depict a decline in prevalence 
of malaria among children aged 2–10  years, just after 
net delivery (first vertical arrow, Fig.  1A) in 2017–2018 
across all health sub-districts (Supplementary Fig.  1). It 
is assumed that pyrethroid-only LLINs (PermaNet 2.0 
and Olyset Net) were equivalent, and that pyrethroid-
PBO LLINs (PermaNet 3.0 and Olyset Plus) were also 

Fig. 2 Variability in model parameters between simulated clusters. A Assumed and scaled seasonal profiles that determine mosquito densities 
in model simulations for each of 100 clusters in the model simulations. B Change in net use over time since the start of the mass campaign for each 
simulated cluster (sub‑district noted alphabetically). Net use tends to drop over time, though the rate varies across sub‑regions, as determined 
via cross‑sectional surveys. Points indicate survey data from the trial (percentage of affirmative responses to question: were nets used the previous 
night). These data were used to fit a constant rate of net loss over time (Eq. 1, solid lines) for each health sub‑district. The same net use patterns 
were assumed for the 2020–2021 campaign, for the respective sub‑districts. C Model assumptions for the pyrethroid resistance (approximated 
as the proportion of surviving mosquitoes when tested in a discriminating dose tube bioassay exposing mosquitoes to pyrethroid insecticide) 
as of 2014 (grey points) and 2017 onward (black points). Assuming LLIN coverage immediately after the mass campaign (blue asterisk, right side 
axis)
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equivalent, in terms of their performance at a given level 
of pyrethroid resistance [5, 20]. Statistically, comparing 
the empirical prevalence in children aged 2–10 years to 
the model simulated prevalence in the same age group 
at 6-months (linear regression adj-R2 = 0.87,gradi-
ent = 0.48 where 1 indicates exact agreement, degrees 
of freedom = 99), at 12- (adj-R2 = 0.82, gradient = 0.52, 
df = 99), 18- (adj-R2 = 0.85, gradient = 0.54, df = 99), 
and 25-months (adj-R2 = 0.92, gradient = 0.79, df = 86) 
after the 2017–18 mass distribution campaign, provides 
some validation of the model process. While the model 
underestimates the measured impact early on (simu-
lating higher prevalence estimates for the 6–18-month 
period), it captures the 25-month data (68% of clusters 
are matched within 10-percentage points)—the most 
recent estimate of burden—reasonably well (Fig. 1B). The 
underestimations at earlier time points are likely due to 
mismatching the seasonality profile in the clusters for 
the trial year (or seasonal behaviour of mosquito vec-
tors), perhaps mischaracterizing pyrethroid resistance in 
the model compared to locally, or indicates the method 
underestimates initial impacts from LLINs more gener-
ally. Given that the aim was to assess the likely impact 
of shifting LLIN deployment due to COVID-19 inter-
ruptions, any mis-matches here will carry through for 
both scenarios allowing the analysis to continue. Nev-
ertheless, this is recognized as a limitation. It was also 
assessed whether clusters that received LLINs earlier 
than originally scheduled during the 2020–21 campaign 
were simulated equivalently well to those receiving nets 
later than scheduled by fitting regressions to the cross-
sectional surveys with a binary predictor for early or 
late nets. There were no substantial differences (Supple-
mentary Fig. 2) indicating the model simulations should 
be reasonable moving forward for the purposes of the 
addressed question.

Effect of delayed LLIN delivery on malaria burden
Most people (approximately 64% of the recipient popu-
lation, across 66 of the 100 clusters) received LLINs 
later than scheduled in 2020–21, although some clus-
ters received LLINs over 3 months earlier than planned 
(Fig.  3a). Using the same example cluster as Figs.  1, 3b 
demonstrates the model simulated, all-age, clinical inci-
dence estimates for the two scenarios in Buliisa where the 
mass campaign in 2020 was scheduled to take place in 
December, but was actually delivered earlier, from 9th–
21st August 2020. The summed clinical incidence pro-
jected in 2019–2023 was compared (Fig. 3c).

By chance, on average, clusters that received LLINs 
earlier than planned had a higher incidence of malaria 
cases in 2019, prior to the 2020–21 mass distribution 
campaign (Fig. 3c). Taking into consideration the timing 

of the LLIN distribution, seasonality in transmission, the 
waning efficacy of nets, and their loss of use over time, 
the model indicates that those sub-districts that received 
LLINs late had substantially higher incidence of cases 
in 2020. This is likely because of the assumptions for 
this analysis on the seasonal transmission of malaria in 
Uganda. This is evident in the example (Fig.  3b): in the 
model, it is assume that malaria parasite transmission 
will be lower in February–March (due to a dip in mos-
quito densities) and then increase again for most of the 
year. This pattern is repeated every year. Nets are contin-
ually losing efficacy in the model, and net use by residents 
is also assumed to reduce steadily following distribution. 
Thus, just prior to a campaign, net efficacy and use will 
be at the lowest point. But in these simulations, the low-
est burden of malaria is expected in the early months of 
the calendar year so that there are fewer cases to avert 
by any intervention. In some circumstances, early LLIN 
distributions might be less impactful than the originally 
scheduled plan (which may have seen LLINs arrive as 
transmission increases, so that there are many cases to 
avert).

On average, simulations predict broadly similar mean 
incidence of cases in 2021 and 2022. Once differences in 
cluster population size and the timing of the LLIN dis-
tributions were taken into consideration, the model pre-
dicts no substantial increase in malaria burden caused by 
COVID-19 mitigation measures, with similar numbers 
of malaria cases predicted whether the mass campaign 
happened as scheduled (total cases predicted across all 
100 clusters: 4,398,500 in 2020, 1,372,000 in 2021, and 
3,722,100 in 2022 rounded to nearest 100) or as the LLIN 
were delivered (4,212,300 in 2020, 1,468,800 in 2021, 
3,679,400 in 2022) (Fig. 3d).

Discussion
The impact of COVID-19 on global public health cannot 
be overstated [6]. The pandemic and subsequent restric-
tions imposed to limit transmission and combat COVID-
19 disrupted malaria control activities across Africa, 
interfering with the mass distribution of long-lasting 
insecticidal nets and access to diagnostic testing and 
effective anti-malarial treatment, and raising concerns 
that malaria morbidity and mortality would increase 
markedly [1, 6, 7]. In March 2020, the government of 
Uganda acted quickly to enforce strict COVID-19 restric-
tions, disrupting the 2020–2021 universal coverage 
campaign (UCC) to distribute LLINs nationwide [25]. 
A recent analysis of Uganda’s 2020–2021 UCC found 
that, despite the COVID-related challenges, 27,789,044 
LLINs were distributed to 11,287,392 households, with 
2.5 LLINs distributed per household on average. Overall, 
94% of households in Uganda received at least one net, 
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surpassing the goal of 85% household net ownership [25]. 
In Uganda, there are an average 5.1 people per house-
hold [25], suggesting the country may have been able to 
achieve high usage, however explicit data on this metric 
is lacking within the current study.

The model suggests that the altered timing of the 
LLIN delivery by a few months during the 2020–2021 
UCC did not substantially impact malaria burden in 
the LLINEUP study area in 2021–2022. These findings 
are consistent with those reported from 17 rural health 
facilities in Uganda during the first year of the COVID-
19 pandemic showing no major effects on malaria disease 
burden and indicators of case management [39]. It was 
found that LLINs were distributed earlier than originally 
planned in some study areas, which may have offset the 
impact of delays in distribution elsewhere, explaining 
the lack of impact on total malaria burden. However, in 
some circumstances, early LLIN distribution appears to 
have had less of an impact than the originally planned 

delivery schedule due to attrition of nets prior to the peak 
of transmission, and reduced protection due to naturally 
waning efficacy of LLINs over time (both of which were 
assumed to match observed data for net use and efficacy 
from the trial). A study conducted in 12 districts across 
Uganda [17] found that 1–5 months post-LLIN distribu-
tion most households (93.4%) owned at least one LLIN 
distributed through the UCC, but only 56.8% were ade-
quately covered by UCC LLINs (owning at least 1 UCC 
LLIN for every 2 residents), suggesting that the number 
of nets distributed to many households was insufficient.

The most recent WHO World Malaria Report indicates 
that the number of presumed and confirmed malaria 
cases nationwide, which fell from 17.5 million cases in 
2020 to 15.1 million in 2021, increased by 32% to 20 mil-
lion in 2022 [1]. The 2022 World Malaria Report [40] sug-
gests that the retention of LLINs in Uganda is less than 
2 years, based on work from [41] together with the expec-
tation that the mortality inducing impact from LLINs will 

Fig. 3 Modelled estimates of the impact on malaria of changing the timing of the mass LLIN campaign in 2020–21 caused by the COVID‑19 
pandemic. In A, the population size in each sub‑district varied, with most people residing in the sub‑districts where net distributions were 
delayed compared to those distributed early relative to the schedule prior to interruptions from the pandemic (numbers of sub‑districts 
in each category shown). The transmission model simulated all‑age clinical incidence daily so that it was possible to compare 2019–2023 
impacts given the scheduled, or delivered mass campaign. B Illustrates this for the Buliisa health sub‑district which was scheduled to receive 
LLINs in Nov‑Dec 2020 (red simulation), but received the nets in August 2020 (green). The polygons mark the years for comparison. In C, 
the model‑estimated clinical cases per 1,000 people were calculated across the 4 years from January 2019 for clusters (individual points), according 
to whether nets were delivered before or after the scheduled time. D Shows the estimated total number of cases in the region (thousands of cases) 
for each year, given the schedule or the actual campaign dates across the 100 clusters
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wane relatively rapidly because of pyrethroid resistance 
in vector populations, the lower estimates of cases in 
2021 and slight resurgence in 2022 reported in the World 
Malaria Report 2023 [1] make sense, and the presented 
simulations are in line with these trends. Multiple fac-
tors have likely contributed to this surge in malaria cases 
in Uganda, including inadequate coverage with current 
malaria control tools, widespread insecticide resistance, 
emerging artemisinin resistance, dynamic vector species 
composition and behaviours, and inadequate funding [1]. 
This modelling study suggests that LLIN attrition, pos-
sibly due to delivery of an insufficient number of top-up 
nets after the mass campaign and limited LLIN lifespan 
[25, 42, 43], was potentially a more important contrib-
uting factor than the COVID-19 related disruptions in 
LLIN delivery. The important issues of adequate cov-
erage and net attrition have been raised previously in 
Uganda [17, 22], including the need for more frequent 
mass campaigns (every 2 years)—particularly if the effect 
of PBO on pyrethroid-PBO nets wanes quickly [44]—
transmission and strategies to ensure high levels of LLIN 
coverage during national distribution campaigns [17]. 
Expanding distribution of new generation LLINs, includ-
ing pyrethroid-PBO LLINs and dual active ingredient 
LLINs, which have been shown to provide superior pro-
tection against malaria as compared to pyrethroid-only 
LLINs [16, 22, 44, 45], is also needed given widespread 
metabolic resistance of Anopheles vectors to pyrethroid 
insecticides across sub-Saharan Africa. However, the 
trend of reduced cases in 2021 followed by resurgence in 
2022 may also be partly due to strict restrictions brought 
in by the Ugandan Government in 2020. These included 
social distancing and the suspension of public gatherings, 
school closures and curfews [25]. The last restriction 
is particularly interesting because it may have resulted 
in people going to bed earlier and, therefore, benefiting 
more from the use of an LLIN in the context of malaria 
transmission through 2021.

This modelling study had several limitations. First, only 
90 of the 104 clusters were included in the main trial at 
25  months due to COVID-19 restrictions. Fortunately, 
this reduction in cluster number had little impact on 
the power of the study. Second, all modelling analyses 
have limitations resulting from the explicit assumptions 
made by the modelling process. The full model code and 
assumptions have been presented previously [21]. In the 
present analysis, while specified for clusters, data were 
assumed to be consistent across health sub-districts over 
time given the information recorded through the trial, 
including net use, trends in mosquito abundance and 
drug treatment. It was also assumed no routine continual 
distribution. Some of these assumptions may not have 
been correct although they may not alter the inference 

for within-district comparison—as they would equally 
impact on both the counterfactual and alternative sce-
narios simulated. Uncertainty draws were determined 
around key parameters that may interact with simulated 
impacts from ITNs to mitigate for this. Some specific 
limitations that apply to the present analysis are: (i) that 
it was assumed net use as measured in the LLINEUP 
trial is consistent for each health sub-district in the fol-
lowing mass LLIN campaign; (ii) that mosquito abun-
dance patterns, and corresponding peaks in seasonal 
malaria transmission (see Figs.  1B, 3B), are consistent 
across all the years simulated; (iii) that mosquito bio-
nomics are constant and these estimates account for the 
overlap in activity between people and mosquitoes, so 
the analysis is also assuming no major changes in social 
behaviour associated with risk of mosquito biting; (iv) 
that the reduced impact from mosquito nets in the pres-
ence of mosquitoes that are able to survive exposure to 
pyrethroid insecticide is predictable [20, 21]; (v) that the 
same net type (either conventional LLIN or PBO LLIN) is 
deployed across the health sub-district in the 2020–2021 
campaign; (vi) that drug treatment is consistent across all 
health sub-districts. In addition, malaria transmission is 
sensitive to environment and weather changes that play 
out year-on-year. Here, a Fourier function is assumed 
that repeats annually so any environmental effects that 
are specific to the focus year will be missed. This varia-
tion, were it explicitly modelled, would be the same in 
the comparable simulations, however, so would not likely 
impact the conclusions. The key question that was the 
aim to address with this analysis is how much did chang-
ing the delivery dates of the mass campaign distribution 
impact malaria control efforts in Uganda? Therefore, 
the decision was made to explicitly keep all parameters 
constant for each health sub-district for which data were 
available from the LLINEUP trial, while varying the tim-
ing of the net distributions. Consequently, with the limi-
tations and assumptions listed, the modelling approach 
can reasonably serve the purpose to estimate differences 
in protective impact.

Conclusions
Initial models suggested that interruptions in LLIN dis-
tribution campaigns and other health services could 
result in substantial increases in malaria cases and deaths 
[6, 7], however, evidence of this impact is mixed [1, 46]. 
It was found that the altered timing of LLIN delivery in 
2020–21 due to stringent measures instituted by Ugan-
dan government did not substantially impact overall 
malaria burden. The model suggests that a similar level of 
protection for the community was maintained, as would 
have been expected in the absence of the pandemic. 
In some circumstances, the model suggests that early 
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LLIN distribution appears to have had less of an impact 
than the originally planned schedule. This is due to the 
assumptions in the model of net attrition prior to the 
peak of transmission, and reduced protection due to nat-
urally waning efficacy of LLINs to induce mosquito death 
over time.
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