
Walshe et al. Malaria Journal          (2024) 23:224  
https://doi.org/10.1186/s12936-024-05044-4

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Malaria Journal

Assessing receptivity to malaria 
using case surveillance and forest data 
in a near-elimination setting in northeast 
Thailand
Rebecca Walshe1,2, Kulchada Pongsoipetch1, Suwanna Mukem1, Tanong Kamsri3,4, Navarat Singkham5, 
Prayuth Sudathip6, Suravadee Kitchakarn6, Rapeephan Rattanawongnara Maude2 and 
Richard James Maude1,7,8* 

Abstract 

Background Thailand aimed to eliminate malaria by 2024, and as such is planning for future prevention of re-
establishment in malaria free provinces. Understanding the receptivity of local areas to malaria allows the appropri-
ate targeting of interventions. Current approaches to assessing receptivity involve collecting entomological data. 
Forest coverage is known to be associated with malaria risk, as an environment conducive to both vector breeding 
and high-risk human behaviours.

Methods Geolocated, anonymized, individual-level surveillance data from 2011 to 2021 from the Thai Division 
of Vector-Borne Disease (DVBD) was used to calculate incidence and estimated  Rc at village level. Forest cover was cal-
culated using raster maps of tree crown cover density and year of forest loss from the publicly available Hansen data-
set. Incidence and forest cover were compared graphically and using Spearman’s rho. The current foci classification 
system was applied to data from the last 5 years (2017–2021) and forest cover for 2021 compared between the clas-
sifications. A simple risk score was developed to identify villages with high receptivity.

Results There was a non-linear decrease in annual cases by 96.6% (1061 to 36) across the two provinces from 2011 
to 2021. Indigenous Annual Parasite Index (API) and approximated  Rc were higher in villages in highly forested 
subdistricts, and with higher forest cover within 5 km. Forest cover was also higher in malaria foci which consistently 
reported malaria cases each year than those which did not. An  Rc > 1 was only reported in villages in subdistricts 
with > 25% forest cover. When applying a simple risk score using forest cover and recent case history, the classifica-
tions were comparable to those of the risk stratification system currently used by the DVBD.

Conclusions There was a positive association between forest coverage around a village and indigenous malaria 
cases. Most local transmission was observed in the heavily forested subdistricts on the international borders with Laos 
and Cambodia, which are where the most receptive villages are located. These areas are at greater risk of importation 
of malaria due to population mobility and forest-going activities. Combining forest cover and recent case surveillance 
data with measures of vulnerability may be useful for prediction of malaria recurrence risk.
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spatiotemporal relationship between forest cover changes 
and malaria in the Amazon rainforest have included the 
malaria frontier hypothesis [17] and more recently the 
deforestation-malaria hypotheses [16, 18]. However, 
there are different ecological and human processes in the 
GMS: crucially, people more often engage in intermit-
tent forest-going activity for work than to establish per-
manent settlements in the forest [19]. The predominant 
vectors in the GMS (Anopheles minimus and Anopheles 
dirus) breed in and around forests. One study using data 
from Lao PDR and the Hansen forest dataset found that 
there was an increased malaria burden in the 2 years after 
deforestation within a 10 to 30 km radius of a village, fol-
lowed by a subsequent reduction [20]. This was more 
marked for Plasmodium falciparum, and there was no 
significant relationship with deforestation within a 10 km 
radius. In Thailand, active malaria foci are more likely to 
be found in areas with tropical forest or plantations, and 
disturbance of the forest [2]. The vulnerability of an area, 
or the risk of parasite importation via population move-
ment, is also higher in the forested border regions, where 
there are often migrant workers and forest-goers [2]. This 
mix of environmental and behavioural factors places for-
ested regions at a higher risk of re-emergence of local 
transmission where malaria has previously been cleared 
[16].

Foci management is resource-intensive, so it is 
important to accurately identify (a) local malaria trans-
mission and (b) receptive areas. In Thailand at present, 
malaria risk stratification is based on case surveil-
lance data and the presence of vectors [1]. The opera-
tional definition of an indigenous case in this setting is 
a malaria case acquired within the village of residence, 
which is determined by case investigation [1]. Since 
2017, villages in Thailand have been stratified into four 
foci types [1, 21, 22] per Fig. 1. A1 foci, defined as “vil-
lages with reported indigenous cases in the current fis-
cal year”, receive passive as well as biannual active case 
detection; supervised radical cure; case investigation; 
insecticide-treated nets (ITNs) and indoor residual 
spraying (IRS); and entomological studies if cases per-
sist for over 4 weeks [1, 21]. If they subsequently have 
no cases the following year, they are classified as A2 
foci for the next 3 years and receive less frequent active 
case detection. B1 foci are villages with no indigenous 
transmission in the last 3  years that are still consid-
ered receptive to malaria due to the presence of vec-
tors. Vectors have not been found in B2 villages, and 
so they are not considered to be receptive. The main 
intervention difference between B1 and B2 villages is 
the delivery of malaria education for residents whose 
occupation involves going into the forest at night 

Background
As countries approach the elimination phase of malaria 
control, universal interventions yield diminishing 
returns. The identification of local areas which are recep-
tive to malaria allows the rationalization of resources 
to focus efforts on reducing the risk of re-emergence in 
these areas.  In 2016, Thailand, in the Greater Mekong 
Subregion (GMS), set the goal to eliminate malaria by 
2024, where elimination is defined as “the reduction to 
zero of local, or indigenous, malaria incidence” [1]. As 
such, Thailand is doing prevention of re-establishment 
(POR) planning for malaria free provinces [2]. The World 
Health Organization (WHO) recommends that malaria 
endemic countries identify areas which are receptive to 
malaria, including where transmission has been curtailed 
by current interventions [3]; however, there is no estab-
lished method to measure this and no “gold standard” 
available to evaluate assessment methods [4].

The WHO defines receptivity as “(The) degree to which 
an ecosystem in a given area at a given time allows for the 
transmission of Plasmodium spp. from a human through 
a vector mosquito to another human” [5]. This concept 
reflects the vectorial capacity of the mosquito, suscep-
tibility of the human population to malaria infection 
and the strength of the health system, including malaria 
interventions. It is therefore influenced by local ecologi-
cal and climatic factors.

A challenge facing countries aiming to use receptiv-
ity mapping to inform future malaria control strategies 
is the lack of standardized methods to achieve this [4]. 
Approaches are therefore diverse and depend on the data 
available [4]. Quantitative methods largely use an esti-
mated form of the reproduction number (R): commonly 
 Rc (R where control interventions are in place) and  Re 
(R accounting for acquired immunity) [6–9]. Where a 
strong surveillance system is not in place, vectoral capac-
ity approximated as biting rate [10, 11] and historical or 
approximated parasite rate [12, 13] has been used. Other 
approaches include the use of environmental data [14] 
and entomological surveys [4, 10, 15]. The absence of 
malaria vectors in an area can be used to infer that it is 
not receptive [3]. However, this relies on collecting and 
identifying an adequate sample of potential vectors and 
is susceptible to sampling error. In most cases, the best 
approach is that which uses the best available relevant 
data.

The relationship between forests and malaria is com-
plex and has not been fully characterized throughout 
the GMS. Forested areas are conducive to malaria trans-
mission due to a combination of environmental factors 
including vegetation cover, temperature, rainfall, humid-
ity and lack of infrastructure [16]. Attempts to define the 
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time [1]. Such targeted educational efforts and other 
interventions, including on the use of ITNs, can have 
mixed uptake [19]. Thailand has also been implement-
ing the 1-3-7 surveillance strategy since 2016 [21, 22]. 
This requires case notification within 1  day, investiga-
tion within 3 days, and foci investigation within 7 days 
of each confirmed malaria case. Likely in response to 
this intensive elimination strategy, malaria incidence 
is decreasing and adherence to the surveillance pro-
gramme is improving [22].

When assessing the receptivity of individual villages to 
malaria, it is useful to consider malaria cases identified 
as having been transmitted within the village: if a person 
is infected by an anopheles mosquito which in turn has 
been infected from a nearby human blood meal, it fol-
lows that the local environment is receptive to malaria 
transmission. The current risk stratification system rec-
ommended by the Thai Division of Vector-Borne Disease 
(DVBD) involves the most active interventions in villages 
with recent reported cases, and the collection and iden-
tification of vectors in mosquito traps in villages which 
have not reported indigenous cases within the last 3 years 
(Fig. 1) [1]. However, this approach can be labour-inten-
sive, prone to sampling error, and requires entomological 
training to accurately identify the mosquito species [4, 
23, 24]. Based on a large dataset of malaria surveillance 
records and publicly available satellite forest data, the 
aim was to quantify the relationship between local forest 
cover and malaria transmission in order to help to inform 
an objective and resource-efficient way of stratifying 
individual village receptivity and malaria risk as Thailand 
reaches the POR phase, which the DVBD is currently 
developing [2].

Methods
Study setting
The study areas were Si Sa Ket and Ubon Ratchathani 
provinces in Northeast Thailand, which are subdivided 
into 22 and 31 districts, respectively. Ubon Ratchathani 
borders Lao PDR to the east, and Cambodia to the south. 
Si Sa Ket is located to the west of Ubon Ratchathani and 
shares its forested southern border with Cambodia.

Village population and location
All villages in the 12 districts contributing 95% of all 
malaria cases in their province were included in this 
analysis (Fig.  2; outlined in red). 1640 villages were 
geolocated in the 12 districts, representing 29.79% (786 
villages) of all villages in Si Sa Ket and 31.58% (854 vil-
lages) of those in Ubon Ratchathani. Three sources were 
used: (1) Manual validation of GPS co-ordinates from the 
DVBD surveillance database (2) GPS co-ordinates manu-
ally collected by MORU field staff covering all villages in 
four districts and (3) Street View in Google Maps. The 
co-ordinates were added to a list of annual population 
counts of villages in the study districts, published online 
by the Administration and Registration Technology 
Development Division, Bureau of Registration Admin-
istration, Department of Provincial Administration 
(DOPA), Ministry of Interior [25].

Malaria case data
Individual anonymized records of malaria cases in Si Sa 
Ket and Ubon Ratchathani from 2011 to 2021 were pro-
vided by the Thai DVBD. The majority of malaria cases 
in Thailand are diagnosed by passive case detection at 
malaria posts, health-promoting hospitals, and district 

Fig. 1 Current risk classification system applied to individual villages in Thailand
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hospitals. A positive malaria blood smear or rapid diag-
nostic test (RDT) result is reported by government 
health workers [1] to the Thai DVBD.

From 2011 to 2021, there were 7942 cases of malaria 
in Si Sa Ket and 16,283 cases in Ubon Ratchathani in the 
raw dataset. 7825 cases (98.53%) in Si Sa Ket and 15,745 
cases (96.69%) in Ubon Ratchathani were included in 
the full analysis following the exclusion of cases with 
incomplete village data. Indigenous malaria transmis-
sion was considered at two levels: within the village of 
residence, and within the subdistrict of residence. Cases 
were therefore respectively aggregated by blood draw 
year and village, or subdistrict, of likely infection.

The approximated R number under control  (Rc) was 
calculated as the ratio of indigenous (to the village) and 
imported cases per year, per village [26]. API was cal-
culated as the annual number of cases per 1000 of the 
population.

Forest cover
Forest cover was calculated at the subdistrict and vil-
lage levels using the 2021 update of the publicly avail-
able Hansen forest data [27] (Globa l Fores t Change). The 
Hansen  dataset consists of layers produced from Landsat 
data using decision tree classifiers, at a 30 m spatial reso-
lution. Tree cover is defined as “all vegetation taller than 
5 m in height” [27].

Forest cover was calculated using raster maps of tree 
crown cover density in the year 2000 by 30 m pixel; and 
of year (2001–2021) of forest loss in those pixels from 
the relevant geographic area (20N 100E). The rasters 
were cropped to the administrative boundaries of Si Sa 
Ket and Ubon Ratchathani, with a surrounding buffer. 
For each subdistrict, the mean percentage tree crown 
cover density was calculated across all pixels within the 
subdistrict administrative boundaries in the year 2000. If 
marked as deforested in the forest loss dataset in a year 

Fig. 2 Percentage forest cover by subdistrict in 2021. Red lines outline the study districts

https://storage.googleapis.com/earthenginepartners-hansen/GFC-2022-v1.10/download.html
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between 2001 and 2021, the pixel value was subsequently 
set to zero. The mean cover was then re-calculated for 
each subdistrict, accounting for these deforested pixels, 
to give an approximation of forest cover in the year 2022, 
per the method described by Rerolle et  al. [20]. Forest 
cover loss was calculated as the difference between the 
cover in 2011 and 2021.

Using QGIS [28], the percentage forest cover surround-
ing each village was calculated by producing a circular 
buffer zone around each village point location and cal-
culating the zonal statistics, including mean percentage 
forest cover, for pixels within that buffer zone. This was 
calculated within a 1 km, 2 km and 5 km radius of each 
village, to account for potential variation in the flight dis-
tance of local mosquito species, the size of different vil-
lages and patterns of frequent human travel around their 
identifying point.

A nearest neighbour analysis was performed to identify 
the minimum distance to a forested pixel for each vil-
lage co-ordinate using the distance to nearest hub tool in 
QGIS. Due to the small 30   m2 pixel size for forest data, 
a minimum percentage forest cover was set as 25% tree 
crown density per Hansen et al. [27].

Analysis
Correlations between percentage forest cover metrics, 
estimated  Rc and API were examined graphically using R 
[29], and quantified with Spearman’s rank using the cor.
test() function in R. Spearman’s rank was used due to the 
non-normal distribution of the data. Due to the cluster-
ing of low forest cover and API values, the natural log of 
both was taken when comparing API and the percentage 
forest cover within a 1 km, 2 km and 5 km radius of each 
village point.

A sub-analysis was performed using only malaria data 
from 2017 to 2021, when the 1-3-7 reporting system and 
new malaria elimination strategy were introduced. The 
numbers of years in which villages reported malaria cases 
were plotted against indigenous API and forest cover. The 
villages were classified into A1, A2 and B per Fig.  1 for 
the years 2020 and 2021. Then, based on whether they 
subsequently reported indigenous malaria cases, they 
were categorized into (1) A1/A2 foci with subsequent 
indigenous cases (2) A1/A2 foci without subsequent 
cases and (3) No cases in past 5 years. There were no vil-
lages in the B classification (which reported no cases in 
2017–2019) which subsequently reported an indigenous 
case in 2020 or 2021. Forest metrics were then compared 
between categories.

A new village malaria risk classification tool was devel-
oped based on the above data. This included the number 
of years in the past 5 with reported indigenous malaria 
cases, and percentage subdistrict forest cover. Villages 

were categorized into high risk; medium risk; low risk; 
and not receptive. These approximate roughly to the 
A1; A2; B1; and B2 classifications currently used by the 
DVBD. Maps of the classified villages were created and 
compared visually.

Results
API
From 2011 to 2021, there has been an overall negative 
trend in all-case and indigenous API in both provinces 
(Fig.  3). All-case API was higher in Si Sa Ket in most 
years, except between 2014 and 2016. There was a cross-
border outbreak between Laos and southeast Ubon Rat-
chathani (Ubon) in 2014 [23], resulting in a large peak of 
cases mainly concentrated in the districts adjacent to the 
Laotian border. The 2014 peak in cases indigenous to the 
village of residence was relatively small, suggesting that 
the outbreak consisted of largely imported or unclassified 
malaria cases. Indigenous API was otherwise higher in Si 
Sa Ket than Ubon, with an extended peak in API between 
2017 and 2020.

Forest cover
The subdistricts with the highest percentage of land area 
as forest cover were those on the southern borders in 
both provinces (Fig. 2). Dong Rak in Si Sa Ket had 66.5% 
forest cover; Huai Kha in Ubon Ratchathani 53.75%; and 
Lalai in Si Sa Ket 53.5%. The lowest forest cover percent-
age was in Chot Muang and Ta Ut subdistricts in Si Sa 
Ket (0.02%). The 19 least forested subdistricts were in 
Si Sa Ket, whereas the most forested subdistricts were 
found in both Ubon Ratchathani and Si Sa Ket.

Forest cover and malaria cases
When subdistrict percentage forest cover was plotted 
against API for indigenous cases transmitted within the 
village or subdistrict of residence (Fig.  4A), there was 
initially a relatively flat trend below 10% cover, beyond 
which there was a moderately positive relationship 
(Table 1: Spearman’s rho = 0.523). A similar pattern with 
a positive trend beyond 25% forest cover was observed 
when defining indigenous transmission as within the 
reporting village only (Fig.  4B; rho = 0.458). The corre-
lation between subdistrict forest cover and all-case API 
was also moderately strong (rho = 0.456).

There were weakly positive relationships between API 
(all case) and forest cover within a 1  km (rho = 0.266); 
2 km (rho = 0.294); and 5 km (rho = 0.388) radius of the 
village (Table 1).

When comparing API with forest cover within a 1, 2, 
or 5  km radius of the village (Fig.  5), there was a linear 
relationship above 1% forest cover (log[forest cover] = 0) 
within 1 km and 2 km; and an increasing gradient above 
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7.4% forest cover (log[forest cover] = 2) within 5  km. 
There were fewer non-zero data points for village indig-
enous cases, for which the relationship with forest cover 
was less clear. There was a mostly negative relationship 
between 2 and 5% forest cover (log[forest cover] = 0.8 to 
1.6) within 1  km and between 2.7 and 4.5% (log[forest 
cover] = 1 to 1.5) within 2  km. Within a 5  km radius, 
there was a strong relationship between percentage for-
est cover and indigenous API above 20% cover (log[forest 
cover] = 3), but overall a low correlation (rho = 0.235).

Since 2017, malaria surveillance has been performed 
in Thailand using the 1-3-7 system [21]. Figure 6 shows 
the individual villages that have reported indigenous 
cases since 2017 as well as the raw (black) and median 
(orange) values for indigenous API in those villages. The 
colour of the bars indicates forest cover within a 5 km 
radius. Since 2017, only villages with  greater than 5% 
forest cover within a 5 km radius have reported indig-
enous cases in more than 2 of the 5 years. Of the 22 vil-
lages reporting in 3–5 of the past 5 years, only one had 
less than 10% forest cover within 5 km. The majority of 
these villages are located in the highly forested border 
subdistricts. There was also an association between 
the proportion of recent years in which a village has 

reported an indigenous case and the maximum indig-
enous API. APIs greater than 5 were only reported in 
villages which had reported cases in 2 or more of the 
previous 5 years, and APIs greater than 20 (or median 
APIs greater than 10) were only reported in villages 
which had cases in at least 4 of the past 5 years. Some 
villages which consistently reported cases reported low 
APIs; but high APIs were not seen in villages which did 
not consistently report cases.

Estimated  Rc
Over the study period, an  Rc greater than 1 was not 
reported in any village in a subdistrict with less than 25% 
forest cover (Fig.  7), indicating that endemicity would 
not be established. As when using API values, the asso-
ciation with percentage forest cover was less clear within 
a 2 or 5  km radius of the village (Fig.  8). An  Rc > 1 was 
not reported in any village with less than 2% forest cover 
within 5 km, but the majority of villages had greater for-
est cover than this. There were weakly positive correla-
tions between  Rc and subdistrict forest cover, and % 
forest cover within a 5  km radius (Table  1; rho = 0.228 
and 0.271, respectively).

Fig. 3 Annual Parasite Index (API), calculated as the number of cases per 1000 population, by province
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Village risk stratification
No villages which would have been classed as B1 or B2 in 
2020 or 2021 (i.e. which had not reported an indigenous 
case within the last 3  years)  reported indigenous trans-
mission in 2020 or 2021. The only villages which reported 
an indigenous malaria case were A1 or A2 foci, which 
had reported a case within the previous 3 years. Twelve 
villages reported indigenous cases in 2020, and five in 
2021 (Fig. 9). There were 46 villages classed as A1 or A2 
foci in 2020 which did not report an indigenous malaria 
case in the following year. Almost all A1 and A2 villages 
were located in the highly forested border subdistricts.

The median percentage subdistrict forest cover was 
higher (50.7%) in A1/A2 foci that reported subsequent 
cases than in foci that did not (39.3%), although the 
interquartile ranges overlap (Fig. 10). Both had median 
values much higher than villages with no recent indig-
enous cases (1.62%), although there were many outli-
ers. A similar pattern was observed for forest cover 
within a 5  km radius, whereby the median percentage 
was higher for foci with cases (20.8%) than without 
subsequent cases (13.9%) with overlap, and both were 
greater than the median for villages with no recent 
cases (1.32%).

Fig. 4 Indigenous API vs subdistrict forest cover 2011–2021. The trendline is fitted to raw values by Loess. API: Annual Parasite Index

Table 1 Correlation of forest cover within different areas around each village with malaria API and Rc

% forest cover within 
the subdistrict

% forest cover 
within 1 km radius

% forest cover 
within 2 km radius

% forest cover 
within 5 km radius

Distance to 
nearest > 25% 
forested pixel

All case API 0.456, p < 0.01 0.266, p < 0.01 0.294, p < 0.01 0.388, p < 0.01 − 0.140, p < 0.01

Indigenous API (Subdistrict) 0.523, p < 0.01

Indigenous API (Village) 0.458, p < 0.01 0.147, p < 0.01 0.166, p < 0.01 0.235, p < 0.01 − 0.08, p < 0.01

Rc (Ratio of village 
indigenous:imported cases)

0.228, p < 0.01 0.159, p < 0.01 0.186, p < 0.01 0.271, p < 0.01 − 0.05, p = 0.01
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Based on the results of this analysis, a receptivity clas-
sification score was developed (Fig.  11) and compared 
to the current foci classification system (Fig. 1), which 
was applied to the case dataset. As A1/A2 status is cur-
rently determined by a recent history of indigenous 
cases, it would be expected to categorize the high-risk 
villages in a similar way. The numbers and locations of 
villages with different risk scores are shown in Fig. 12: 
there were six high risk (score = 4); 40 medium risk 
(score = 1–2); and 13 lower risk (score = 0.5) villages. 
Almost all were in the forested border subdistricts. 
When compared to Fig.  9, which shows the villages 
categorized per the current risk classification system 

as above, the spatial distribution of villages was simi-
lar. The high-risk villages were the same as the five A1 
villages in 2021, plus an extra village which was A1 
in 2020. However, there were fewer (40) medium risk 
villages than A2 villages (48). There were 13 low risk 
villages, and the rest (1,612) were considered non-
receptive. This is the same as the total number of B1/
B2 villages in 2020, and fewer than the 1,618 B1/B2 vil-
lages in 2021. It was not possible to compare to B1 vil-
lage numbers alone as this category is based on vector 
presence, not historical case data. The classification of a 
village per the DVBD was recorded in the surveillance 
data with confirmed malaria cases, but comparison was 

Fig. 5 Log–log curves of all-case (right) and village indigenous (left) API vs percentage forest cover. Within a 1 km, 2 km, and 5 km radius 
of the village. API: Annual Parasite Index
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Fig. 6 Consistency of indigenous case reporting; indigenous API; and forest cover within a 5 km radius. API: Annual Parasite index

Fig. 7 Reproductive number under control (Rc) and subdistrict percentage forest cover
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Fig. 8 Rc and forest cover within A 2 km and B 5 km of the village. Rc: Reproductive number under control

Fig. 9 Villages with their risk classifications in A 2020 and B 2021 per current DVBD criteria in Ubon Ratchathani and Si Sa Ket provinces
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not made to these due to inconsistencies between data-
sets in the classifications of villages within the same 
year.

Discussion
Malaria transmission has a significant environmental 
component, resulting in spatial heterogeneity in trans-
mission risk and complex epidemiology [16]. Here it 

was attempted to quantify part of that heterogeneity in a 
useful and reproducible way. In Si Sa Ket and Ubon Rat-
chathani provinces in northeastern Thailand, the number 
of annual cases has declined by 96.6% between 2011 and 
2021. There were only 36 cases across the two provinces 
in 2021. During the study period, in 2017, the Thai DVBD 
launched its malaria elimination strategy to be used at 
the local administrative level. This strategy recommended 

Fig. 10 Subdistrict forest cover in villages with/without cases in 2017–2021. Foci, cases = A1/A2 foci in 2017–2019 with subsequent cases 
in 2020/2021; Foci, no cases = A1/A2 foci in 2017–2019 without subsequent cases in 2020/2021; No cases 2017–2021 = villages with no cases 
across 2017–2021

Fig. 11 Proposed village risk classification system, utilizing recent malaria case data and forest cover variables
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using recent history of indigenous transmission and, in 
those villages with no recent transmission, vector sur-
veys, to determine receptivity to malaria. Vector surveys 
are, however, resource-intensive, and results can depend 
on entomological expertise [4, 10]. The completeness 
of the surveillance data collected in Thailand has been 
improving since 2017 [22]. Here a combination of this 
high-quality surveillance data and forest cover was used 
as a proxy for receptivity and propose a risk framework 
which has the potential to facilitate the rationalization of 
resources targeting malaria in this part of Thailand. This 
also has scope to be adapted for use in other countries 
with similar transmission patterns.

In the dataset, indigenous village API was moderately 
positively associated with metrics of forest cover. For-
ested areas are conducive to malaria transmission due to 
the reproduction of vector species in ideal conditions of 

vegetation cover; temperature; rainfall; humidity; and a 
lack of infrastructure [16]. The API for cases indigenous 
to a village was moderately positively correlated with 
subdistrict percentage forest cover and had lower cor-
relation with the percentage forest cover within a 5  km 
radius of the village. There were many villages with no 
reported cases in the past 5 years with high forest cover, 
which may be receptive but likely have reported no indig-
enous cases due to low overall case numbers and lack 
of parasite importation. The R number under control 
 (Rc) can be approximated as the ratio of indigenous to 
imported cases and has been used as a proxy for recep-
tivity in previous studies [6–8, 26]. It is generally under-
stood that endemicity will not be established in areas 
with an  Rc of less than 1. In the data, only villages located 
in subdistricts with greater than 25% average forest cover 

Fig. 12 Map of the villages with their risk classifications per the proposed scoring system in Ubon Ratchathani and Si Sa Ket provinces
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ever had an annual  Rc greater than 1. The  Rc has been less 
than 1 in all villages since 2019, suggesting that progress 
is being made at a local level towards the goal of elimina-
tion in this area.

The greater association of indigenous malaria cases 
with coarser measures of forest cover such as subdis-
trict cover, and cover within a 5 km radius, is likely to be 
multifactorial. There is significant heterogeneity in local 
geography; environmental factors; and behaviour. Known 
risk factors for malaria foci in Thailand include the pres-
ence of tropical forest and plantations; proximity to inter-
national borders; and percentage of short-term residents 
[2]. The forest forms a natural border between Thailand 
and Cambodia/Lao PDR, and border subdistricts have 
the greatest forest cover in the study area. These areas 
are vulnerable to malaria importation from both forest-
going activities and human mobility around border areas, 
which can introduce the parasite to receptive areas. It 
is also possible that 1–2 km, typically taken as the flight 
radius of mosquitos from their breeding sites [30, 31], is 
too fine a scale to capture the layout of a village. The cal-
culated buffer zones around villages were based on the 
co-ordinates of a single identifiable site in the village (e.g. 
a village sign or office) which is not necessarily at the geo-
graphic centre, such that the smaller buffers may not fully 
encompass the village boundaries; nor are villages often 
laid out in perfect circles. The strength of rank correla-
tion with API was lower when smaller buffer zones were 
used, and this may be a product of heterogeneity in vil-
lage layout and location of larval sites.

Risk classification
As Thailand approaches prevention of re-establishment 
planning, the focus of malaria strategy shifts to ongoing 
surveillance and response targeted to areas with high 
malariogenic potential. The highest risk villages under 
the current risk classification system (those that reported 
cases consistently each year) had higher average forest 
cover metrics.

When considering B1 and B2 foci, it is challenging to 
identify those that are still receptive to malaria using case 
data as, by definition, they have not had any recent cases. 
There were no B1/B2 villages (i.e. those which had not 
reported any cases in 2017–2019) which subsequently 
reported an indigenous malaria case in 2020 or 2021. 
While the best indicator of receptivity to malaria is recent 
case numbers, this lack of recurrence is representative 
of the current low-burden situation of the local near-
elimination setting. The WHO framework for malaria 
elimination advises that “In practice, in some settings, 
non-receptive areas are identified as those that have had 
no vector control and no locally transmitted malaria 
cases but have had high-quality surveillance for several 

years…” [3]. Due to the high-quality surveillance system 
in place in Thailand, this would apply to many foci, but 
doesn’t account for areas that may still be receptive but 
have not had reported cases due to lack of importation. 
Here it is useful to consider historical case data and its 
associations with environmental variables, such as forest 
cover, in order to assess which areas would have cases if 
the parasite were to be introduced. Combining this with 
measures of importation known to be associated with 
probability of reporting indigenous cases, such as pro-
portion of short-term residents [2], would allow further 
stratification of areas by risk. There was also greater for-
est cover surrounding the A1/A2 foci which reported 
subsequent cases than those foci which did not. On the 
background of local ongoing reduction of malaria cases, 
this persistence of foci only in the most forested areas 
may be due to their higher receptivity and vulnerability. 
The forest cover is greatest on the border, where there is 
likely a higher risk of malaria importation from reservoirs 
both in the forest and across the border.

The proposed risk classification tool (Fig.  11) gave a 
comparable distribution of high and medium-risk vil-
lages to the current classification used by the Thai DVBD. 
This is to be expected, as both incorporate the number 
of recent years in which indigenous malaria cases have 
been reported, although the proposed tool also lever-
ages forest cover metrics. This tool identified 13 low risk 
villages which approximate to the B1 classification (no 
recent cases, but vectors are present). It was not possible 
to compare this to the number of B1 villages under the 
DVBD system for reasons mentioned previously. There 
were 1612 villages which had a score of zero, which is 
comparable to the total number of B1/B2 villages in 2020 
and 2021 (1612 and 1618, respectively). The advantage of 
using this tool over the current approach is that it does 
not rely on entomological data to determine receptivity. 
While the absence of malaria vectors in an area can be 
used to infer that it is not receptive [3], this is based on 
the assumption that an adequate sample was collected; 
that sampling covered a sufficient geographical area; and 
that the vector species can be accurately identified. The 
Hansen forest dataset, however, has been extensively 
used and validated in tropical forest settings [20, 32, 33], 
although it is less accurate for local estimates [27]. Both 
the current and proposed approaches incorporate the 
high-quality surveillance data currently collected by the 
Thai DVBD, although it has greater weight in determin-
ing the receptivity of low-risk villages in the proposed 
tool.

However, it was not possible to validate the new risk 
score for the re-introduction of malaria to a village with 
no recent cases, as there were no villages classed as B1/
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B2 which went on to report an indigenous case in 2020 
or 2021. This is likely due to the low case numbers and 
success of ongoing local elimination efforts. Instead, data 
from 2022 onwards should be used to validate the pro-
posed risk score and adapt it as appropriate.

There is potential for a validated risk score to be 
adapted for use in other countries in Southeast Asia, 
particularly those with similar environments, human 
processes, and forest-based transmission. For it to be 
reliable, a robust surveillance system would have to be in 
place. Forest cover data is readily available but would be 
improved by on the ground validation of satellite data.

Strengths and limitations
This study combined high-quality surveillance data over 
a 10-year period with publicly available forest data to 
develop a reproducible scoring system which has the 
potential for adaptation to different local requirements. 
The MORU team also used manually geo-located co-
ordinates for villages without co-ordinates in the DVBD 
datasets.

There are some important limitations. There was a high 
level of incompleteness from 2012–2016 prior to the 
introduction of 1-3-7, with many cases not classified by 
likely origin. This means that comparisons with later data 
should be made with caution, as there is a higher level of 
completeness from 2017–2021. The malaria dataset did 
not differentiate introduced cases, where someone has 
been infected locally by a mosquito which was infected 
by an imported case, from those with no link to imported 
cases, where the original case was also infected locally. 
In very low-burden settings this has been achieved using 
spatiotemporal modelling [6, 8], but this is a more com-
plex task where case numbers are higher, such as during 
the outbreak years in this setting. At one point during 
the 2014 outbreak in Ubon Ratchathani there were more 
than 1000 monthly cases.

In Thailand, there are seven Anopheles species known 
to transmit malaria, which have different environmental 
optima and geographic distributions [31]. If the preva-
lence of vector species better adapted to urban environ-
ments, such as Anopheles stephensi, were to significantly 
increase, estimates of receptivity based on geographical 
data would have to change significantly [34]. Similarly, 
the effects of climate change are likely to alter the bound-
aries of where vectors can breed [35, 36]. Including other 
factors such as temperature, humidity and well-collected 
entomological data may improve dynamic estimates of 
receptivity as the environment changes.

It was not possible to validate the proposed risk score 
for the re-introduction of malaria in villages with no 
recent cases, as there have been no indigenous malaria 
cases reported in B1 or B2 classified villages since the 

introduction of the 1-3-7 system in 2017. The data 
available prior to 2017 is of lower quality and complete-
ness. Instead, an example of how the data available 
could be used to form a stratification system is pro-
vided, which can be validated and refined using future 
surveillance data.

Lastly, the forest cover variables were calculated 
assuming only loss in the years since 2001. This is 
because forest gain is harder to detect due to its gradual 
nature [33]. Therefore, an area may be deforested and 
rapidly reforested for agroforestry but would be marked 
as deforested. Thailand has seen increases in malaria 
cases in workers on coffee and rubber plantations [2, 
16]. Future efforts including validation of satellite forest 
data with on-the-ground photography of forest cover in 
at-risk areas may provide better insights into the true 
forest cover. Other future efforts could also include 
qualitative studies to explore human factors affect-
ing receptivity and the impact of foci management 
interventions.

Conclusions
Thailand’s efforts to eliminate malaria by 2024 have been 
accompanied by a shift in malaria strategy from elimi-
nation to prevention of re-establishment  in malaria 
free  provinces. The current risk stratification system 
used by the Thai DVBD involves the most active inter-
ventions in villages with recent reported cases, and the 
collection and identification of vectors in mosquito traps 
in villages which have not reported indigenous cases in 
the last 3 years [1]. It was found that the rates of report-
ing of malaria cases indigenous to a village were more 
strongly associated with coarse measures of forest cover, 
such as cover within a 5 km radius and the forest cover 
within a subdistrict. There was a weak relationship with 
cover within a 1 or 2  km radius, or the distance to the 
nearest forested area, which may be a product of human 
and environmental factors. Leveraging existing high-
quality malaria case data and forest cover data to iden-
tify the degree to which a certain area is conducive to 
malaria transmission will likely be more cost and time 
effective. A village risk stratification system is proposed 
which requires validation using future malaria case data. 
This analysis also has the potential to inform strategy for 
locations with similar transmission patterns and human 
processes to Thailand, such as in other Southeast Asian 
countries.
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