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Abstract 

Background The government of Lao PDR has increased efforts to control malaria transmission in order to reach its 
national elimination goal by 2030. Weather can influence malaria transmission dynamics and should be considered 
when assessing the impact of elimination interventions but this relationship has not been well characterized in Lao 
PDR. This study examined the space–time association between climate variables and Plasmodium falciparum and Plas-
modium vivax malaria incidence from 2010 to 2022.

Methods Spatiotemporal Bayesian modelling was used to investigate the monthly relationship, and model selec-
tion criteria were used to evaluate the performance of the models and weather variable specifications. As the malaria 
control and elimination situation was spatially and temporally dynamic during the study period, the association 
was examined annually at the provincial level.

Results Malaria incidence decreased from 2010 to 2022 and was concentrated in the southern regions for both P. 
falciparum and P. vivax. Rainfall and maximum humidity were identified as most strongly associated with malaria 
during the study period. Rainfall was associated with P. falciparum incidence in the north and central regions dur-
ing 2010–2011, and with P. vivax incidence in the north and central regions during 2012–2015. Maximum humidity 
was persistently associated with P. falciparum and P. vivax incidence in the south.

Conclusions Malaria remains prevalent in Lao PDR, particularly in the south, and the relationship with weather 
varies between regions but was strongest for rainfall and maximum humidity for both species. During peak periods 
with suitable weather conditions, vector control activities and raising public health awareness on the proper usage 
of intervention measures, such as indoor residual spraying and personal protection, should be prioritized.
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Background
The Greater Mekong Sub-region (GMS) has experienced 
a significant decline in malaria burden over the past dec-
ade. However, facing the growing threat of anti-malarial 
drug resistance, governments in the region have commit-
ted to eliminating malaria by 2030. In Lao PDR, the gov-
ernment aims to eliminate malaria in the north by 2025 
and in the entire country by 2030, with an interim evalu-
ation of strategies planned for 2023. Malaria transmis-
sion is sensitive to weather and environment, varying in 
degree depending on the local entomology and epidemi-
ology (see examples [1–4]). The Lao government is inter-
ested in exploring the local relationship between weather 
and malaria at different spatial and temporal scales to 
better understand the impact of their elimination activi-
ties. This exploration may inform the optimization of 
resource allocation and the development of more effec-
tive strategies to accelerate progress towards elimination.

Several methods have been proposed in the spati-
otemporal framework to select potential models or 
linear predictors of interest. Given the complexity of 
malaria transmission, hierarchical model selection is 
perhaps more suitable than simple variable selection 
[5]. Selecting the appropriate model or linear predic-
tors is a crucial aspect of epidemiological investigation, 
which can be challenging when data involve spatial and 
temporal dimensions. To address this challenge, various 
approaches such as model averaging and transformation 
selection have been suggested and applied to accomplish 
these objectives (see examples in [5–7]). For the purpose 
of investigating the spatiotemporal climatic association, 
examining different hierarchical spatiotemporal model 
specifications of retrospective malaria incidence data 
can be beneficial to the national malaria programme to 
properly plan future disease control and elimination 
interventions.

In Lao PDR, national malaria elimination strategies 
have been planned and implemented since 2011, result-
ing in a substantial decrease in national annual parasite 
incidence. However, in recent years, malaria has become 
more geographically confined to focal areas in the coun-
try. Specifically, incidence has been low and sporadic in 
the north, whereas a higher burden is observed in the 
south, accounting for the majority of malaria cases in 
the country (refer to Fig.  1). The national strategic plan 
for malaria control and elimination during 2016–2020 
focused on reducing disease transmission in the five 
provinces in the south, while the 13 northern provinces 
were targeted for elimination [8]. To implement effec-
tive malaria control and elimination activities, a good 
understanding of transmission dynamics in both space 
and time is required [9]. Therefore, spatiotemporal analy-
sis is necessary to re-assess the impact of control and 

elimination measures subnationally in interim evalua-
tions of progress towards malaria elimination goals [10].

The aim of this study was to investigate and describe 
space–time malaria patterns by species at the provincial 
level in Lao PDR and to quantify the association with cli-
matic variables. Spatiotemporal Bayesian analyses were 
conducted using two-step model selection techniques. 
These methods allow us to analyse the effect of climatic 
factors simultaneously on the distribution of malaria 
incidence, while also considering space and time depend-
encies. Previous malaria studies have demonstrated the 
benefits of Bayesian methodologies in modeling malaria 
transmission and quantifying its spatiotemporal associa-
tion with environmental factors at different scales (see 
examples [2, 3, 11]). This study focused on modeling 
malaria incidence at the provincial scale in Lao PDR, uti-
lizing monthly climatic data from climate stations from 
2010 to 2022. The findings can be useful in evaluating 
whether weather information can feasibly be used rou-
tinely to guide malaria surveillance and control activities.

Methods
Study design and data sources
This study utilized spatiotemporal retrospective analysis 
of surveillance data collected between 2010 and 2022 in 
Lao PDR. Malaria is a notifiable infectious disease in Lao 
PDR, and passive malaria surveillance is carried out by 
various levels of health facilities. Malaria cases recorded 
at health facilities have been reported into the District 
Health Information System 2 (DHIS2), which allows 
tracking of infected cases. Monthly provincial malaria 
case counts of clinically diagnosed malaria were obtained 
from DHIS2, Center for Malaria Parasitology and Ento-
mology of Lao PDR (CMPE), from January 2010 to 
December 2022. Weather data for each province during 
the study period were sourced from the Department of 
Meteorology and Hydrology and the Department of Nat-
ural Resources and Environment, Lao PDR. Meteorologi-
cal data were obtained from a weather station located in 
the provincial capital cities. The minimum and maximum 
temperatures (in Celsius), minimum and maximum rela-
tive humidity (in percent), and rainfall (in millimetres) 
at the provincial level were calculated by averaging daily 
data and aggregating them into monthly data.

Spatiotemporal hierarchical modelling formulation
Modelling the potential associations between spatial 
and temporal variability in malaria incidence and cli-
matic variables can be approached in various ways. In 
Frequentist modelling, negative binomial regression is 
often used for overdispersed count data, though other 
models are also available. In the context of Bayesian 
regression models for count data, spatial dependence 
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Fig. 1 a Maps of provincial malaria incidence per 100,000 population of Plasmodium falciparum in Lao PDR during 2010–2022. b Maps of provincial 
malaria incidence per 100,000 population of Plasmodium vivax in Lao PDR during 2010–2022
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can be addressed by specifying a hierarchical model, 
which includes a set of random effects in the linear pre-
dictor. The study incorporated and compared different 
space–time random effect structures. The literature in 
spatial epidemiology and surveillance has extensively 
examined the performance and handling of overdis-
persion using various count models, including Poisson, 
negative binomial, and generalized Poisson models. 
These studies suggest that while models like the nega-
tive binomial can handle overdispersion, Poisson 
models with space–time random effects can perform 
similarly well and better in some cases (see examples 
[12–14]).

Space–time hierarchical modelling is an approach 
that incorporates similarities between incidence data 
observed at different locations, allowing for borrowing 
strength across spatial units. Additionally, the temporal 
aspect of the modelling approach permits inference con-
cerning temporal trends of changes in malaria cases. This 
modelling framework can effectively capture the spatial 
and temporal variation in the malaria data, enabling the 
quantification of the association with environmental var-
iables. By addressing spatial and temporal dependencies, 
this approach can provide a comprehensive understand-
ing of the climate-malaria relationship, which is impor-
tant for informing public health interventions and policy 
decisions.

To model the malaria cases, let yit be the number of 
new malaria cases for each species in province i and at 
month t where I and T were the total number of spa-
tial (18 provinces) and temporal (156  months of col-
lected data) units in the study. Since the health outcome 
of interest is in the form of case count data, a com-
mon likelihood for hierarchical modeling is the Pois-
son model (see examples [15–18]) as yit ∼ Poisson(µit) 
where µit is the mean malaria incidence in each prov-
ince and month. To model the mean incidence, the 
natural logarithm was used as the canonical link func-
tion as log(µit) = log(offset)+ log(ηit) , where ηit is the 
linear predictor. The offset here was applied to handle 
different susceptibilities of malaria transmission across 
space–time units. There are a number of ways to calcu-
late the offset; the number of populations at risk was used 
in our study, i.e., intensity is the ratio of mean number 
of cases and population. Then, the predictor ηit can be 
decomposed as a linear combination of fixed climatic and 
space–time random effects as ηit = X

T
itβ + ξi + �t + θit 

where X it is a design matrix of province-level predic-
tors;β is a vector of regression coefficients for each envi-
ronmental variable; ξi and �t are the conditional spatial 
and temporal random effects of area i and time period t, 
respectively; and θit denotes a corresponding space–time 
interaction. To estimate the parameters, a fully Bayesian 

framework was adopted in which a prior distribution 
needs to be specified for all parameters in the model.

The random effects were spatially structured by bor-
rowing information across neighbouring regions and 
time periods to incorporate spatiotemporal smooth-
ing. The convolution model was modelled to the spa-
tial random effect as ξτ ,i = ui + vi where ui and vi were 
employed to capture spatially correlated and unstruc-
tured extra variation in malaria distribution. Including 
both structured and unstructured random effects in a 
spatial analysis was crucial due to the lack of strong prior 
knowledge and the potential for unobserved confounders 
to manifest in various forms. The uncorrelated random 
effect was modelled by the zero-mean Gaussian distri-
bution whereas the spatial random effect was described 
by the intrinsic conditional autoregressive model (ICAR) 
proposed by Besag et  al. [19]. That is, conditionally, 
ui|u−i ∼ N

(

u�i , σ
2
u

/

nδi
)

 where u−i is the vector con-
taining the neighbouring effect of all except the ith area. 
�i , nδi and uτ ,δi are a set of adjacent neighbors, cardinal-
ity and the mean of the neighborhood of the ith province 
respectively, and σ 2

u is the spatial component variance.
To model temporal variation, a linearity constraint could 

be imposed on the differential temporal trend, nonetheless 
a dynamic nonparametric formulation might be a better 
option for the linear predictor as there was no prior spe-
cific information for the trend. Various forms of temporal 
priors are available; this study considered the set of non-
parametric models proposed by Knorr-Held [20], which 
are widely used in space–time disease mapping. These 
models allow us to account for temporal trends and differ-
ent scenarios of potential differences in trends. There are 
three common forms of temporal random effect. The first 
one is to model �t using a Gaussian exchangeable prior as 
�t ∼ Gaussian(0, σ 2

�
) . The other two are the random walk 

(RW) priors of order 1 (RW1) and 2 (RW2), which can be 
expressed as �RW1

t |�RW1
t−1 ∼ Gaussian(�RW1

t−1 , σ 2
�
) for RW1 

and �
RW2
t |�RW2

t−1 , �RW2
t−2 ∼ Gaussian(2�RW2

t−1 + �
RW2
t−2 , σ 2

�
) 

for RW2. σ 2
�

 is the variance of the temporal random effect. 
The description of θit depends on the spatial and temporal 
random effects assumed to interact in the model. There 
are different types of interactions proposed in Bayesian 
disease mapping literature [20]. However, this study uti-
lized three commonly used forms of interaction [21].

For type I interaction ( θ1,it ), the random effect was 
assumed to be interaction between the non-spatial, vi , 
and exchangeable Gaussian temporal, �t , terms. Accord-
ing to Knorr-Held notation [20], the structure matrix 
Rθ for the prior of θit can be expressed as the Kronecker 
product of the interacting random effects. For the first 
type of interaction, the structure matrix can be written 
as Rθ1 = Rv ⊗ R� = I ⊗ I = I since both vi and �t do 



Page 5 of 15Rotejanaprasert et al. Malaria Journal          (2024) 23:231  

not have a specific spatiotemporal structure. Note that 
I here is the identity matrix. For the type II interaction 
( θ2,it ), the interaction term combines the non-spatial with 
structured temporal random effects. Then the structure 
matrix can be described as Rθ2 = Rv ⊗ R�(RW ) where 
Rv = I and R�(RW ) is based the neighbourhood structure 
specified by the order of random walk model. So θ2,it can 
be formulated from the assumption of an autoregressive 
structure on the time component, which is independ-
ent from the ones of the other locations. The matrix Rθ2 
then has a rank of I(T − 1) for a first-order and I(T − 2) 
for a second-order random walk model. For the last type 
of interaction,θ3,it combines the unstructured temporal 
effect �t and the spatially structured effect ui . The struc-
ture matrix hence can be written as Rθ3 = Ru ⊗ R� where 
Ru = I and R� is described through the intrinsic condi-
tional autoregressive model. This results in the interac-
tion with a spatial structure independent from the other 
time points and the structure matrix Rθ3 has a rank of 
T(I − 1). The precision parameters, which represent the 
reciprocal of variance, were implemented using a Log-
Gamma distribution. Specifically, hyperparameters of 1 
and 0.0005 were used for the CAR model, while hyperpa-
rameters of 1 and 0.00005 were used for the uncorrelated 
and random walk random effects. More details of model 
specifications of malaria incidence can be found in the 
supplementary document S1.

Bayesian model selection procedure
In general, the primary goal of model selection is to 
choose the simplest model that provides the best fit to 
the observed data. In the context of hierarchical mod-
eling discussed previously, several decisions need to be 
made regarding the inclusion of various fixed and ran-
dom effects in the model. There are also many possible 
choices of space–time random effects. All of these con-
siderations have an impact on both the mean estimated 
incidence and the association with potential risk factors. 
The process of choosing a model for a given set of spati-
otemporal health data requires a series of model-fitting 
steps and investigations, and selection of appropriate 
mean and random effect structures for the observed data. 
However, model building typically should involve a bal-
ance of statistical and epidemiological considerations to 
effectively translate the findings to inform practical plans 
such as those for disease control and elimination.

An issue with spatiotemporal hierarchical model-
ling is that the model comprises two components: a 
fixed effect (the explanatory variables) and the random 
effects. Therefore, it is necessary to select not only the 
best explanatory variables but also an optimal random 
effects structure. In most cases, the focus is on the fixed 
effects. However, if the random effects are poorly chosen, 

this can affect the values and quality of the fixed effects 
because the random effects affect the standard errors of 
the slopes for the fixed effects. On the other hand, varia-
tion in the response variable that is not modeled in terms 
of fixed effects ends up in the random effects. Proposed 
strategies are available to work through the model selec-
tion process [22]; in this work, a top-down approach 
was employed to determine the optimal spatiotemporal 
mixed structure for malaria modelling. The following 
outlines the broad procedure of our two-step spatiotem-
poral model selection process.

The modeling process began with a comprehensive 
model that included all available explanatory variables, 
termed the optimal mean model. In cases where chal-
lenges such as a large number of explanatory variables 
or numerical issues arise, it is advisable to focus on vari-
ables most relevant to the research objective. For this 
study, all relevant climatic variables were included in the 
initial model. In the first step, the covariate model was 
used to determine the most suitable structure for the 
random component. Given that the fixed component 
already encompassed all pertinent explanatory variables, 
the random component was not expected to overlap with 
these variables. Multiple evaluation metrics were applied 
to compare different random effect specifications. In the 
second step, the optimal random structure identified in 
the first step was used to refit the data, employing various 
sets of explanatory variables. The best set of covariates 
was then selected based on various evaluation criteria, 
given the previously determined optimal random struc-
ture. Detailed comparisons and evaluation metrics are 
provided in the supplementary files S1-2.

To assess the relationship between malaria incidence 
and weather at the provincial level, the coefficient esti-
mate for each climatic factor in the model was examined. 
This parameter reflects the strength of the association 
and can be interpreted epidemiologically as an incidence 
ratio. However, because the coefficient estimate rep-
resents a single point estimate, uncertainty quantifica-
tion was also considered using exceedance probability. 
Within the Bayesian framework, exceedance probabil-
ity is defined as the probability of the coefficient being 
greater than zero, serving as a Bayesian equivalent to the 
Frequentist p-value. A coefficient was deemed ‘signifi-
cant’ when its exceedance probability exceeded the pre-
specified significance level of 0.05.

Results
During the study period, a total of 161,947 cases of P. fal-
ciparum, 95,470 cases of P. vivax, and 5212 cases with 
mixed infection of Plasmodium species were reported. 
The proportion of P. falciparum to P. vivax cases 
decreased from 94.43% (16,553 cases) in 2010 to 26.43% 
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(480 cases) in 2022. The annual parasite incidence (API) 
of P. falciparum declined from 351.98 cases per 10,000 
in 2010 to 6.46 per 10,000 populations in 2022. However, 
the API of P. vivax increased over the same time period, 
from 1.86 to 24.44 per 10,000 between 2010 and 2022 
(see Table  1). The incidence of P. falciparum peaked in 
2012 and has been decreasing since, while the incidence 
of P. vivax and other species gradually increased during 
2010–2012 and peaked in 2014, followed by a decline 
until 2022 (see Fig. 2).

A general spatial pattern of high risk for P. falciparum 
was observed throughout the country in 2010 (see Fig. 1). 
Since then, the incidence has declined in the north, while 
most of the P. falciparum cases have been clustered in the 
south. For P. vivax, there were scattered cases in 2010 fol-
lowed by an increase during 2012–2014, with the major-
ity of cases in the south and a subsequent decline towards 
2018. For mixed Plasmodium species, there were small 
numbers of cases with in 2010, and an increase in the 
south during 2012–2014. Cases with other species have 
continued to be reported in the south since then, with a 
slowly decreasing trend. It should be noted that due to 
limited resources for malaria diagnosis in the past, there 
might be overlapping numbers reported for both single-
species and mixed infections. However, it is important to 
highlight that these cases with overlapping numbers were 
minimal and should not have a significant impact on the 
analysis.

Various spatiotemporal model formulations were con-
structed to assess the association of malaria incidence 
with climatic factors (see the supplementary file for more 
details) with evaluation measures and focused only on 
P. falciparum and P. vivax because those were the major 

public health interest of the Lao government. Tables  2, 
3 show the various forms of model specification investi-
gated in this study. Initially, random effect selection was 
performed, incorporating an optimal mean function with 
all climatic factors. Fifteen space–time random effect 
specifications were chosen to fit the provincial malaria 
incidence for both P. falciparum and P. vivax. Models 9 
and 10 similarly had the best performance for both spe-
cies; however, model 10 with spatial random effect had 
slightly better goodness of fit values. Consequently, the 
fixed effect selection was conducted using the random 
effects specified in model 10, which included BYM, non-
parametric temporal trend, and type 1 interaction terms.

For fixed effect selection, six combinations of climatic 
factors were examined, as detailed in models 1–6, with a 
non-spatial random slope applied to each climatic coef-
ficient. However, we also modeled the spatial random 

Table 1 Malaria cases of Plasmodium species in Lao PDR during 2010–2022

Year Population P. falciparum P.vivax Mixed species

Cases Percentage API Cases Percentage API Cases Percentage API

2010 6,385,000 22,474 98.04 351.98 426 1.86 6.67 24 0.10 0.38

2011 6,514,000 16,552 94.51 254.10 962 5.49 14.77 0 0.00 0.00

2012 6,644,000 37,664 81.65 566.89 7,594 16.46 114.30 873 1.89 13.14

2013 6,809,000 25,436 64.27 373.56 13,064 33.01 191.86 1,079 2.73 15.85

2014 6,492,000 24,889 49.55 383.38 23,752 47.28 365.87 1,593 3.17 24.54

2015 6,787,000 14,261 39.74 210.12 20,805 57.97 306.54 822 2.29 12.11

2016 6,901,000 5,725 36.94 82.96 9,413 60.74 136.40 359 2.32 5.20

2017 7,013,000 4,548 48.76 64.85 4,592 49.23 65.48 188 2.02 2.68

2018 7,123,000 4,828 53.38 67.78 4,105 45.38 57.63 112 1.24 1.57

2019 7,231,000 2,168 32.38 29.98 4,448 66.44 61.51 79 1.18 1.09

2020 7,319,000 1,577 44.41 21.55 1,936 54.52 26.45 38 1.07 0.52

2021 7,425,000 1,345 34.26 18.11 2,557 65.13 34.44 24 0.61 0.32

2022 7,430,000 480 20.72 6.46 1,816 78.38 24.44 21 0.91 0.28

Fig. 2 Plot of annual malaria incidence in Lao PDR during 2010–
2022. The black line represents P. falciparum, the blue line P. vivax 
and the orange line shows mixed species infections
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slope for the same covariates in models 7–12 to exam-
ine the spatial effects of climatic associations at the 
provincial level. The full mean model with all climatic 
variables had the best performance for both spatial and 
non-spatial random coefficients for both P. falciparum 
and P. vivax; the non-spatial random slope models were 
slightly better in terms of goodness of fit measures. Thus, 
with the 2-step model selection procedure, the overall 
optimal model for both species was model 1 (as in fixed 
effect selection) with all climatic factors combined with 
BYM, non-parametric temporal trend and type1 interac-
tion random effect terms (as model 10 in random effect 
selection).

The model incorporated several climatic factors, but 
the focus here was on the most significant variables: 
rainfall and maximum humidity (Figs.  3, 4, 5 and 6), 
while other results can be found in the supplementary 
documents S3-S5, which include exceedance probabil-
ity maps and tables of coefficient estimates. All climatic 
variables were included in the model, and the incidence 
rate ratio (IRR) for each factor was adjusted for the 

others. Figures 3 and 4 show the exceedance probability 
of the provincial association between malaria incidence 
and rainfall, while Figs.  5 and 6 display the exceedance 
probability of the provincial association with maximum 
humidity during the study period in Lao PDR. The esti-
mated IRRs are provided in Tables S4-S5 in the supple-
mentary file.

As mentioned, the climatic variables most strongly 
associated with incidence during the study period were 
rainfall and maximum humidity. Rainfall (monthly aver-
age in millimetres) was significant in the north and 
central regions during 2010–2011, with average falcipa-
rum IRRs ranging from 1.0046 (95%CI 1.001–1.008) to 
1.0057 (95%CI 1.002–1.011), while maximum humidity 
(monthly average in percentage) was persistently signifi-
cant in the south, with IRRs ranging from 1.024 (95%CI 
1.007–1.041) to 1.12 (95%CI 1.076–1.177). For vivax inci-
dence, the climatic association was also significant. Rain-
fall was particularly associated with the outbreak during 
2012–2015 in the north and central regions, with IRRs 
ranging from 1.0023 (95%CI 1.001–1.0048) to 1.0065 

Table 2 Model evaluation measures of random and fixed effect selection for P. falciparum malaria model

a  min.h, max.h  minimum and maximum humidity, min.t, max.t  minimum and maximum temperature, rain  rainfall, sun  sunshine
b Models 1–6 = non-spatial random slope, models 7–12 = spatial random slope
c DIC  Deviance information criterion, WAIC = Widely applicable Bayesian information criterion, CPO Conditional predictive ordinate, MLIK Marginal likelihood, RMSE 
Root mean squared error

Procedure Model Specification DICc WAICc CPOc MLIKc Bias RMSEc Correlation

Random effect 1 β0 + vi 181,406.9 67,194.17 Inf − 90,903.3 − 0.0106 131.6307 0.7903

Selection 2 β0 + vi + ui 181,407.3 67,194.3 Inf − 90,893.3 − 0.0106 131.6307 0.7903

3 β0 + vi + �t 46,205.3 48,208.99 25,037.48 − 23,529.4 − 0.0325 67.6067 0.8760

4 β0 + vi + ui + �t 46,205.59 48,208.54 25,559.38 − 23,518.7 − 0.0325 67.6065 0.8760

5 β0 + vi + �
RW1
t

46,200.73 48,075.19 26,022.67 − 23,362.8 − 0.0106 131.6307 0.7903

6 β0 + vi + ui + �
RW1
t

48,157.07 49,256.44 23,691.07 − 24,348.5 − 0.0301 70.0308 0.8747

7 β0 + vi + �
RW2
t

46,194.91 47,907.44 25,046.94 − 23,386.9 − 0.0298 67.7094 0.8762

8 β0 + vi + ui + �
RW2
t

46,195.34 47,907.74 25,094.78 − 23,375.8 − 0.0298 67.7095 0.8762

9 β0 + vi + �t + θ1,it 10,985.4 10,911.64 33,316.18 − 7236.58 − 0.2672 0.7904 0.9327

10 β0 + vi + ui + �t + θ1,it 10,973.87 10,891.31 31,447.2 − 7209.36 − 0.2685 0.7639 0.9332

11 β0 + vi + �
RW1
t + θ2,it 14,672.91 15,203.41 8763.795 − 32,472.8 − 1.4479 2.8940 0.9171

12 β0 + vi + ui + �
RW1
t + θ2,it 14,674.3 15,202.31 8831.923 − 32,459.7 − 1.4511 2.8146 0.9177

13 β0 + vi + �
RW2
t + θ2,it 14,826.3 15,844.95 9040.776 − 40,869.9 − 1.4314 5.1483 0.9154

14 β0 + vi + ui + �
RW2
t + θ1,it 14,939.8 15,944.28 9128.928 − 41,275.1 − 1.4602 5.1205 0.9136

15 β0 + ui + vi + �t + θ3,it 15,436.49 16,617.31 23,559.29 − 29,405.3 − 1.5130 2.1125 0.9247

Fixed  effecta,b 1 Rain+maxt+maxh+mint + minh 10,973.13 1512.876 10,889.99 1023.932 31,598.42 − 7201.91 − 0.2787

Selection 2 Rain+mint+minh 10,979.5 1518.017 10,900.66 1024.109 31,651.24 − 7204.51 − 0.2678

3 Maxt+maxh+mint+minh 11,002.67 1532.58 10,926.89 1040.913 33,108.23 − 7226.83 − 0.2721

4 Mint+minh 10,989.17 1512.258 10,908.24 1025.569 31,871.88 − 7202.71 − 0.2684

5 Rain+maxt+maxh+mint+minh 10,982.97 1517.275 10,908.4 1032.417 35,325.98 − 7202.67 − 0.2694

6 Rain+mint+minh 10,976.79 1507.717 10,898.3 1024.181 35,201.25 − 7201.7 − 0.2678

7 Maxt+maxh+mint+minh 10,974.58 1498.758 10,893.31 1017.459 32,288.15 − 7161.78 − 0.2660

8 Mint + minh 10,987.21 1510.388 10,905.75 1024.075 31,963.69 − 7185.63 − 0.2682
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(95%CI 1.0022–1.012), while maximum humidity was 
persistently associated with vivax incidence, particu-
larly in the south, with IRRs ranging from 1.0191 (95%CI 
1.0017–1.0362) to 1.158 (95% CI 1.076–1.239).

The study findings revealed that rainfall and maxi-
mum humidity were the most influential climatic vari-
ables associated with malaria incidence during the study 
period. For falciparum malaria, an increase of 1  mm 
of rainfall was found to be associated with an average 
increase of 0.5% in malaria cases among the provincial 
population in the north and central regions. Similarly, a 
1% increase in relative humidity was linked to a rise of 
about 10% in falciparum malaria cases in the southern 
region. Regarding vivax malaria, increased rainfall during 
the period of 2012–2015 in the north and central regions 
was associated with a higher risk of vivax malaria, rang-
ing from approximately 0.2% to 0.65% per 1 mm of rain-
fall. Furthermore, higher levels of maximum humidity 
consistently showed a significant association with a 
higher risk of vivax malaria in the south, with an increase 
ranging from approximately 2% to 16% on average. These 

associations were assumed to approximately exhibit lin-
earity within the range of climate data during the study 
period, as detailed in supplementary document S6. In 
addition, the figures show heterogeneity of spatiotem-
poral association with climatic factors across the coun-
try, with stronger associations found in the south, where 
malaria incidence has been higher for both falciparum 
and vivax. Figure 7 shows line plots of each climatic vari-
able with monthly malaria incidence and their Spear-
man’s association estimates, suggesting a relationship 
between provincial malaria incidence and seasonality of 
climatic factors.

Discussion
Climatic data are frequently used to model spatiotempo-
ral variation in malaria

Transmission. For Lao’s national malaria control pro-
gramme, a 10-year surveillance dataset (2011–2020) 
was employed to explore the meteorological associa-
tions with malaria incidence in the country. The present 
study has demonstrated changes of P. falciparum and 

Table 3 Model evaluation measures of random and fixed effect selection for P. vivax malaria model

a  min.h, max.h  minimum and maximum humidity, min.t, max.t  minimum and maximum temperature, rain  rainfall, sun  sunshine
b Models 1–6 = non-spatial random slope; models 7–12 = spatial random slope
c DIC  Deviance information criterion, WAIC  Widely applicable Bayesian information criterion, CPO Conditional predictive ordinate, MLIK Marginal likelihood, RMSE Root 
mean squared error

Procedure Model Specification DICc WAICc CPOc MLIKc Bias RMSEc Correlation

Random effect 1 β0 + vi 119,186.8 56,634.81 Inf − 59,896.2 − 0.0106 89.0503 0.7358

selection 2 β0 + vi + ui 119,186.7 56,633.71 Inf − 59,885.5 − 0.0106 89.0503 0.7358

3 β0 + vi + �t 36,065.61 38,347.51 20,456.28 − 18,596 − 0.0320 32.7608 0.8427

4 β0 + vi + ui + �t 36,063.63 38,340.74 20,585.4 − 18,600.6 − 0.0320 32.7608 0.8427

5 β0 + vi + �
RW1
t

36,052.27 38,116.93 20,536.08 − 18,410.4 − 0.0106 89.0503 0.7358

6 β0 + vi + ui + �
RW1
t

36,602.6 38,382.69 20,760.53 − 18,629.4 − 0.0283 33.0353 0.8394

7 β0 + vi + �
RW2
t

36,055.87 37,887.29 20,406.82 − 18,441.8 − 0.0270 32.8099 0.8426

8 β0 + vi + ui + �
RW2
t

36,056.13 37,886.59 20,406.68 − 18,431.6 − 0.0270 32.8100 0.8425

9 β0 + vi + �t + θ1,it 11,385.99 11,523.47 40,090.94 − 7405.86 − 0.3141 0.6947 0.9395

10 β0 + vi + ui + �t + θ1,it 11,381.44 11,516.81 40,250.92 − 7387.55 − 0.3133 0.6976 0.9398

11 β0 + vi + �
RW1
t + θ2,it 14,454 14,950.91 8636.865 − 32,427.8 − 1.4559 2.6245 0.9210

12 β0 + vi + ui + �
RW1
t + θ2,it 14,454.29 14,950.89 8632.332 − 32,417.5 − 1.4557 2.6267 0.9210

13 β0 + vi + �
RW2
t + θ2,it 14,576.72 15,452.84 8550.66 − 40,701.1 − 1.4190 4.5609 0.9154

14 β0 + vi + ui + �
RW2
t + θ1,it 14,694.53 15,573.88 8629.205 − 41,118.9 − 1.4477 4.6046 0.9130

15 β0 + ui + vi + �t + θ3,it 15,539.09 17,154.28 33,496.9 − 29,717.8 − 1.5544 2.1105 0.9104

Fixed  effecta,b 1 Rain+max t+max h+min t+min h 11,374.72 11,428.57 40,116.61 − 7388.92 − 0.3152 0.6770 0.9498

selection 2 Rain+min t + min h 11,390.65 11,534.78 40,136.86 − 7384.52 − 0.3144 0.6927 0.9496

3 Maxt+max h + min t+min h 11,397.56 11,540.48 39,980.59 − 7385.89 − 0.3157 0.6896 0.9401

4 Min t+min h 11,408.63 11,563.48 40,392.35 − 7386.67 − 0.3168 0.6863 0.9403

5 Rain+max t+max h+min t+min h 11,379.35 11,505.08 39,767.44 − 7354.68 − 0.3110 0.7115 0.9386

6 Rain + min t+min h 11,388.55 11,531.03 39,718.77 − 7385.94 − 0.3136 0.6981 0.9393

7 Max t+max h+min t+min h 11,391.3 11,533.61 40,067.34 − 7335.44 − 0.3155 0.6889 0.9401

8 Min t+min h 11,407.41 11,561.87 40,000.31 − 7373.49 − 0.3168 0.6857 0.9402
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P. vivax malaria incidence in Lao PDR. It was observed 
that malaria transmission has generally declined in the 
northern and central regions, though high-risk areas per-
sist in the south. As countries in the GMS move towards 
malaria elimination, P. falciparum incidence declines 
more rapidly than the incidence of P. vivax, as in Lao 
PDR, in part because of the greater effectiveness of vec-
tor control interventions [23]. In contrast, treating all 
stages of the parasite (radical cure) is a critical strategy 
for the successful control and ultimate elimination of P. 
vivax. Malaria transmission continues to decline in Lao 
PDR, and incidence is becoming increasingly heteroge-
neous, with most cases now concentrated in a relatively 
few provinces, particularly in the south [24]. Such pat-
terns are consistent with those of other countries in the 
region. Therefore, spatially targeting interventions and 
associated resources are likely to achieve better results 
than a uniform approach to the distribution and delivery 
of malaria reduction interventions [25, 26].

This study applied various Bayesian spatiotemporal 
models to retrospectively analyse observed malaria sur-
veillance data and estimate the climatic associations 
that can be useful for appropriate disease control and 

elimination planning. However, constructing space–time 
models presents a challenge, as they contain both fixed 
effects (climatic variables) and random effects. To address 
this challenge, a two-step Bayesian model selection 
framework was proposed to identify the optimal model 
for the investigation. Nonetheless, building an appropri-
ate spatiotemporal model for a given set of epidemio-
logical data is an iterative process that involves a series of 
model-fitting steps and investigations, and the selection 
of appropriate fixed and random effect structures for the 
observed data. Model building typically requires a bal-
ance of statistical and subject matter considerations, and 
there is no single strategy that applies to every applica-
tion. While the model-building procedure, proposed in 
this project serves as an example and not a hard-and-fast 
rule for space–time model selection, it offers a flexible 
modelling approach that can accommodate and poten-
tially select between a wide range of space–time linear 
predictors. This may be useful in studying spatiotemporal 
health outcomes in different settings.

In addition to applying space–time random effects to 
account for spatiotemporal correlation, which have been 
utilized in malaria mapping, particularly with Gaussian 

Fig. 3 Maps of exceedance probability of the provincial association between P. falciparum incidence and rainfall in Lao PDR during the study period
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and autoregressive models for spatial and temporal 
effects [11], this study also integrated additional priors to 
enable a more thorough comparison. Sensitivity analyses 
were conducted to evaluate the robustness of the findings 
by varying model assumptions, including priors, distribu-
tions, and the structural components of random effects. 
The consistency of results across the best models, as 
assessed by various evaluation metrics, indicates robust-
ness, whereas any discrepancies highlight the potential 
impact of specific assumptions on the results. A notable 
enhancement in model performance was achieved by 
incorporating a space–time interaction term, which is 
recognized for improving model precision [27]. By inte-
grating these interaction terms, these models capture 
nuanced variations in malaria incidence across regions 
and over time. This precision enables health authori-
ties to pinpoint specific associations and periods of 
heightened transmission, facilitating targeted and timely 
interventions.

Several criteria were employed to investigate the asso-
ciation with climate. DIC can assess overall model fit in 
Bayesian frameworks but can be sensitive to model com-
plexity, potentially leading to overfitting while WAIC, an 

improved fully Bayesian alternative, uses the entire pos-
terior distribution, making it robust but computationally 
intensive. CPO evaluates model fit through cross-valida-
tion by providing posterior probabilities for observations, 
though it is computationally demanding with large data-
sets. MLIK measures the probability of observed data 
under a model but does not directly account for model 
complexity. Bias measures systematic error, while RMSE 
combines bias and variance, providing a comprehensive 
measure of estimation accuracy, though it is sensitive to 
outliers. Spearman’s correlation coefficient assesses rank 
correlation between observed and estimated values, suit-
able for non-normally distributed data but not capturing 
the magnitude of differences. Information criteria such 
as DIC and WAIC have been used as primary criteria to 
compare modeling options in spatiotemporal Bayesian 
disease mapping and have been validated to select the 
true model specification in simulation studies [28, 29].

When investigating the association between climatic 
variables and malaria incidence, it is important to con-
sider the biology of the transmission process. This is 
because changes in explanatory factors may not immedi-
ately translate to changes in malaria transmission, partly 

Fig. 4 Maps of exceedance probability of the provincial association between P. vivax incidence and rainfall in Lao PDR during the study period
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due to vector biology, which can result in a time lag in the 
relationship. Therefore, it is important to account for this 
lag effect in the analyses. Although the malaria incidence 
data were collected on a monthly basis, the possibility of 
lag effects was considered, with the expectation that any 
such effects would be minimal in the dataset. Nonethe-
less, distributed lag nonlinear models have been shown 
to be an effective tool for accounting for lags when data 
are available in a finer temporal scale (see examples [2, 3, 
30–32]).

The results of this study demonstrate that rainfall and 
humidity are significant drivers of spatiotemporal pat-
terns of malaria incidence in Lao PDR, which is con-
sistent with similar findings in other studies conducted 
in the GMS region [33, 34]. The indirect effect of rela-
tive humidity on both the development of parasites and 
the activity and survival of anopheline mosquitoes has 
been previously reported [35], with low humidity limit-
ing the distribution and abundance of mosquito vectors 
in China [36]. An association between relative humid-
ity and P. falciparum was not found in this subtropical 
area, which is consistent with a previous study carried 

out in a tropical rain forest area along the China–Laos 
border, in southern Yunnan [37].

In addition, other environmental and ecological 
factors significantly influence malaria transmission. 
Among these, rainfall and temperature are particularly 
important. Heavy rainfall can wash away mosquito 
breeding sites, while temperature affects both mosquito 
larval development and parasite maturation within vec-
tors [38, 39]. Precipitation, which is directly related to 
rainfall, significantly impacts the bionomics of mos-
quito vectors [40]. Environmental modifications, such 
as dam construction and irrigation projects, can also 
alter the distribution of mosquito breeding sites [41]. 
Therefore, understanding climatic influences is crucial 
for effective malaria control. The results provide criti-
cal insights for developing targeted local malaria sur-
veillance-response systems and implementing timely 
intervention initiatives. By incorporating climate inves-
tigations into public health strategies, authorities can 
better respond to malaria outbreaks, thereby enhancing 
control efforts and advancing toward malaria elimina-
tion goals.

Fig. 5 Maps of exceedance probability of the provincial association between P. falciparum incidence and maximum humidity in Lao PDR 
during the study period
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Recent studies have emphasized the need for interdis-
ciplinary approaches to develop an early warning system 
that incorporates climate information to evaluate the 
implications of weather variability on malaria transmis-
sion [42, 43]. A better understanding of the link between 
malaria incidence and interannual climate variability, 
particularly in regions with high transmission rates, 
could facilitate the development of robust malaria sur-
veillance systems and strengthen planning and actionable 
disease control strategies by public health authorities 
in the region. The findings of this study indicate signifi-
cant statistical associations between climatic factors and 
malaria incidence, underscoring the practical potential of 
weather information in climate-driven malaria surveil-
lance and control efforts, particularly in high-risk areas. 
While spatiotemporal random effects partially address 
unmeasured variables, integrating data on interventions 
can enhance the ability to distinguish climate effects 
from intervention impacts. This enhanced understand-
ing of intervention impacts could also optimize resource 
allocation for more effective malaria prevention and 
control initiatives. Furthermore, integrating climate data 

into malaria prevention strategies can enhance adaptive 
management approaches. By anticipating seasonal vari-
ations in transmission risk based on climate forecasts, 
public health officials can pre-position medical supplies 
and deploy healthcare and vector control personnel to 
respond to potential outbreaks. This proactive approach 
can mitigate the burden of malaria on healthcare systems 
and reduce morbidity and mortality associated with the 
disease.

The limitations of the study should also be acknowl-
edged. Investigating the space–time pattern of malaria 
transmission at a provincial level may mask local under-
lying patterns of disease through averaging [44]. There-
fore, using a finer geographic scale such as a district or 
subdistrict may provide a more detailed view of impor-
tant local variations in malaria transmission and could 
guide malaria control efforts and resource allocation, 
particularly in areas where transmission is decreasing 
towards elimination. Another limitation of this study is 
the assumption of a linear relationship between malaria 
incidence and weather variables, whereas this associa-
tion might be nonlinear. Nevertheless, the inclusion of 

Fig. 6 Maps of exceedance probability of the provincial association between P. vivax incidence and maximum humidity in Lao PDR 
during the study period
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flexible space–time random effects helps in capturing 
potential spatiotemporal nonlinear variations. Further-
more, the precise pattern of this relationship has not 
been extensively examined. Thus, while approximating a 
linear association with the integration of space–time ran-
dom terms seems reasonable, future research could fur-
ther explore more modelling techniques to address these 
potential nonlinearities. Understanding these non-linear 
relationships can enhance comprehension of the complex 
interactions between climate and malaria transmission. 
This knowledge is crucial for developing adaptive man-
agement strategies that effectively respond to changing 
environmental conditions and evolving epidemiological 
trends. Incorporating non-linearities into models can 
improve the predictive accuracy by capturing these intri-
cate relationships more precisely.

This improvement has significant practical implica-
tions for public health policy and malaria prevention 

strategies. Enhanced predictive models can inform the 
development of early warning systems that integrate cli-
mate variables, allowing for timely and targeted inter-
ventions. Public health authorities can use these models 
to anticipate periods of increased transmission risk and 
allocate resources more efficiently, such as pre-position-
ing medical supplies and deploying healthcare personnel 
to high-risk areas. Furthermore, these insights can guide 
the design of community-based prevention programmes, 
ensuring that they are tailored to local climatic condi-
tions. This approach can improve the effectiveness of 
interventions such as insecticide-treated bed nets and 
indoor residual spraying.

It is also important to address additional explanatory 
variables to provide a comprehensive understanding of 
malaria in the country. This may include factors such as 
mosquito vector behaviour, community behaviour, access 
to and delivery of health services, and other eco-bio-social 

Fig. 7 Plots of monthly malaria incidence (black) with the Spearman’s association for each climatic variable (red) in Lao PDR during 2017–2019
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factors that affect malaria incidence. Despite these limi-
tations, the proposed flexible spatiotemporal modelling 
framework with a two-step model selection approach can 
be easily applied when more resources and data become 
available. The investigation provides valuable insights into 
the spatiotemporal patterns of malaria incidence, which 
can aid decision-making in malaria control and elimina-
tion activities in Lao PDR.

Conclusions
The goal of malaria elimination in Lao PDR by 2030 
countrywide and by 2025 in the north is ambitious, 
but achievable with a well-informed and coordinated 
approach. As weather and environment play a critical 
role in malaria transmission, understanding the spatial 
and temporal dynamics of the climate-malaria relation-
ship is essential for effective planning and implementa-
tion of control activities. The study considered several 
climatic factors, providing epidemiologically meaningful 
quantification that can inform policy-making by public 
health workers. The findings can be utilized to support 
the malaria surveillance system and optimize resource 
allocation towards achieving the goal of malaria elimina-
tion in Lao PDR.

To further advance towards malaria elimination, it may 
be important to implement robust malaria surveillance 
systems that integrate real-time climate data. This inte-
gration can enhance the ability to identify transmission 
hotspots and seasonal variations promptly, facilitating 
targeted response efforts to prevent outbreaks. Moreo-
ver, future research could explore various climatic vari-
ables, employ diverse model structures, and extend the 
application of these models to other infectious diseases. 
These activities can not only deepen the understanding 
of climate-disease interactions but also serve as a valu-
able reference for advancing knowledge and informing 
evidence-based policies in infectious disease control and 
prevention. By continuing with elimination activities and 
research efforts, progress towards malaria elimination 
in Lao PDR can significantly contribute to global health 
initiatives and improve the well-being of communities 
affected by malaria.
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