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Abstract 

Background Accurate diagnosis and timely treatment are crucial in combating malaria.

Methods A total of 449 samples were screened for Plasmodium falciparum infection by expert microscopy, qPCR, 
and three RDTs, namely Rapigen Biocredit Malaria Ag Pf (detecting HRP2 and pLDH on separate bands), Abbott 
NxTek Eliminate Malaria Ag Pf (detecting HRP2), and SD Bioline Malaria Ag Pf (detecting HRP2). hrp2/3 deletion typing 
was done by digital PCR.

Results 45.7% (205/449) individuals tested positive by qPCR for P. falciparum with a mean parasite density of 12.5 
parasites/μL. Using qPCR as reference, the sensitivity of microscopy was 28.3% (58/205), the Biocredit RDT was 52.2% 
(107/205), the NxTek RDT was 49.3% (101/205), and the Bioline RDT was 39.5% (81/205). When only samples with den‑
sities > 20 parasites/μL were included (n = 89), sensitivity of 62.9% (56/89) by microscopy, 88.8% (79/89) by Biocredit, 
88.8% (79/89) by NxTek, and 78.7% (70/89) by Bioline were obtained. All three RDTs demonstrated specificities > 95%. 
The limits of detection (95% probability that a sample tested positive) was 4393 parasites/μL (microscopy), 56 para‑
sites/μL (Biocredit, considering either HRP2 or pLDH), 84 parasites/μL (NxTek), and 331 parasites/μL (Bioline). None 
of the three qPCR‑confirmed P. falciparum positive samples, identified solely through the pLDH target, or eight sam‑
ples negative for all RDTs but qPCR‑positive at densities > 20 parasites/µL carried hrp2/3 deletions.

Conclusion The Biocredit and NxTek RDTs demonstrated comparable diagnostic efficacies. All three RDTs performed 
better than microscopy.
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Background
Malaria remains a significant public health concern in 
sub-Saharan Africa, including Ghana, where an esti-
mated 5.3 million cases and 11,500 deaths were reported 
in 2022 [1]. Rapid and accurate diagnosis of malaria is 
crucial for effective treatment and control of the spread 
of the disease [2]. Rapid diagnostic tests (RDTs) are 
immunochromatographic assays widely used for malaria 
diagnosis, particularly in resource-limited settings. RDTs 
are easy to use, require minimal training, and provide 
results within 20–30 min [3]. High sensitivity of RDTs is 
crucial to detect low-density infections.
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RDTs for Plasmodium falciparum rely on detecting 
specific proteins such as histidine-rich proteins 2 (and 
histidine-rich proteins 3 as a result of HRP2 cross-reac-
tion), parasite lactate dehydrogenase (LDH), or aldolase 
[4]. HRP2-based RDTs are considered the most sensi-
tive [5–8]. However, deletions in the hrp2 and hrp3 
genes will lead to false-negative RDT results, even in 
patients with high parasite density infections [4, 9]. 
These deletions have been observed in various coun-
tries, particularly in East Aftica [10–12], but also at low 
frequencies in Ghana [13].

Numerous studies have investigated the diagnos-
tic performance of RDTs and found varying sensitivi-
ties [5–9, 14–18]. Variation in sensitivity can be as a 
result of differences in RDT design, characteristics of 
the study population (e.g. clinical vs. subclinical infec-
tions, or differences in age groups reflecting different 
levels of acquired immunity and thus different parasite 
densities), choice of the reference (e.g., microscopy or 
PCR), and differences among sample processing and 
PCR assays resulting in variation of the limit of detec-
tion and parasite quantification by qPCR [3, 17, 19–21]. 
As a result, data on sensitivity and Limit of Detection 
(LOD) of RDTs tested using different protocols are dif-
ficult to compare.

Here, the performance of the NxTek Eliminate 
Malaria Ag Pf, SD Bioline Malaria Ag Pf, and Biocredit 
Malaria Ag Pf RDTs in diagnosing clinical patients in 
Ghana was compared. The NxTek and Biocredit test 
are considered highly sensitive RDTs. Several studies 
showed them to be more sensitive compared to RDTs 
available previously [3, 22–33]. The NxTek and Bioline 
have one test band for HRP2. The Biocredit Malaria Ag 
Pf. (LDH/HRP2) has two separate test bands for HRP2 
and P. falciparum specific LDH (pLDH). Having both 
targets as separate bands allow diagnosis in the case 
of hrp2/3 deletion and enables surveillance of deletion 
status, as samples positive for pLDH but negative for 
HRP2/3 can be selected for molecular confirmation of 
deletion status.

Methods
Ethical approval
Prior to sample collection, informed written consent 
was obtained from each individual. For minors, assent 
was obtained in addition to consent obtained from legal 
guardians. This study was approved by the Committee on 
Human Research, Publications, and Ethics of the School 
of Medical Sciences, KNUST (CHRPE/AP/030/20), the 
University of Notre Dame Institutional Review Board 
(19–04-5321), and The Ohio State University Institu-
tional Review Board (2020H0539).

Study site and sample collection
Samples were collected from health centres in Mank-
ranso (6.8181° N, 1.8635° W) and Agona (6.9347° N, 
1.4870° W) in the Ashanti region of Ghana. The Ashanti 
region has a reported malaria prevalence of 22% by 
microscopy [34]. The samples were obtained during the 
rainy seasons, between August and September 2022, 
known to be periods of high malaria transmission [35]. 
All individuals above 1  year of age triaged to obtain 
malaria diagnosis were eligible to be enrolled. Blood sam-
ples (approximately 2  mL) from participants were col-
lected in EDTA tubes, and malaria screening with the 
three RDTs was performed on-site. Study participants 
were treated as per the national guidelines by healthcare 
providers at the hospital.

Rapid diagnostic tests kits and testing
Three different RDT kits were compared, the RDT, NxTek 
Eliminate Malaria Ag Pf. ((lot no. 05LDG008B, Prod-
uct code: 05FK142), manufactured by Abbott, the Bio-
line Malaria Ag Pf. (lot no. 05CDH037C, Product code: 
05FK51), also manufactured by Abbott, and the Biocredit 
Malaria Ag Pf. (LDH/HRP2) (lot no. H052BSA002, Prod-
uct code: C13RHG25), manufactured by Rapigen. While 
no clear criteria exist on when an RDT should be labeled 
‘highly sensitive’ or ‘ultra-sensitive’, the NxTek and Bio-
credit RDT were introduced to the market more recently 
and are considered highly sensitive, whereas the SD Bio-
line had been available for longer and is considered a 
conventional RDT. Test were conducted according to 
manufaturer’s instructions. Tests were considered invalid 
and repeated if the control band was not positive.

Diagnosis by microscopy
Thick and thin blood films, in duplicate, were prepared 
for each participant using 2µL and 6µL of whole blood 
on clean, frosted glass slides following established proto-
cols [36]. Thin smears were fixed with absolute methanol 
and stained with a 10% Giemsa working solution (Biog-
nost GM-OT-1L). Imaging was performed at the × 100 
objective and detection of parasite was done by examin-
ing at least 100 high-power fields. Estimation of parasite 
quantity involved assessing between 200 to 500 white 
blood cells and then multiplied by 8000 white blood cells 
(WBCs), following established protocols [37]. Micro-
scopic diagnosis was conducted by one WHO-certified 
(Level 1) expert blinded to RDT and qPCR results.

DNA extraction, varATS qPCR, and hrp2/3 deletion typing
DNA was extracted from 100 μL blood and eluted in 100 
μL elution buffer using the Macherey–Nagel NucleoMag 
extraction kit. To estimate parasite density, qPCR of the 
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P. falciparum varATS multi-copy gene was carried out 
using a previously described protocol with 4 µL DNA as 
target resulting in a 95% limit of detection of 0.3 para-
sites/µL blood [38]. A standard curve, generated from 
quantified 3D7 parasites DNA using digital PCR (dPCR), 
was employed alongside the samples. hrp2/3 deletion 
typing for qPCR positive samples that were (i) negative 
for HRP2 on RDTs but positive for pLDH and (ii) nega-
tive for all RDTs but with parasitemia of > 20 parasites/
µL, was done by hrp2, hrp3 and tRNA multiplexed digital 
PCR as previously described [39].

Data analysis
No formal sample size calculation was conducted. Sensi-
tivity was calculated as the number of infections detected 
by an RDT divided by the number of infections detected 
by qPCR, and against thresholds of 2000, 200, and 20 
parasites/µL (by qPCR). This was done to increase com-
parability with other studies, as different methods for 
sample collection, DNA extraction, and qPCR result in 
different limits of detection, and, thus, different num-
bers of positive samples [21]. For the Biocredit RDT, the 
HRP2 and pLDH targets were considered separately and 
in combination (i.e., an RDT was counted positive when 
either HRP2 or pLDH targets were positive). Specificity 
was calculated as the proportion of negative RDTs among 
individuals that tested negative by qPCR. The positive 
predictive value (PPV) was calculated as the probability 
that the infection is present when the RDT is positive and 
parasite density is > 20 parasites/µL [40]. Samples with 
densities of > 0 to 20 parasites/µL were exluded from the 
calculation of NPV and PPV. This threshold was set in 
line with our lowest threshold used to analyze RDT sen-
sitivity. While it is impossible to determine whether any 
P. falciparum infection is the cause of fever, it is expected 

that many of the low-density infections < 20 parasites/
µL are incidental. Given that RDTs are not expected to 
detect very low-density infections, and that many of 
them are not the cause of disease, their exclusion from 
diagnostic accuracy measures is justified. The negative 
predictive value (NPV) was calculated as the probabil-
ity that qPCR is negative when the RDT is negative [40]. 
The limit of detection (LOD) was defined as the lowest 
parasite density where a qPCR-positive infection would 
be detected with 95% probability and logistic regression 
analysis was conducted to determine the LOD of each 
RDT target.

The area under the receiver operating characteristic 
curve (AUC) was calculated with a nonparametric anal-
ysis using 1000 bootstrap replications. As parasite den-
sity distributions were skewed, geometric mean densities 
are given whenever densities are reported. CI95 stands 
for the 95% confidence interval. The p values to com-
pare groups for qPCR test positivity and RDT sensitivity 
were calculated by Chi-square and McNemar’s test, while 
Kruskal–Wallis’ test was used for parasite density.

Results
Study population demographics
A total of 449 clinical samples were collected and ana-
lysed. Table  1 provides the demographic information of 
the study participants. Among the participants, only 7.8% 
were below 5  years of age, while the majority (67.5%) 
were above 15 years of age. The majority of participants 
were female (71.7%).

205/449 (45.7%) clinical samples tested positive for  P. 
falciparum  by qPCR, with a mean parasite density of 
12.5 parasites/μL. There were no statistically significant 
differences in positivity by qPCR based on participant’s 
age or sex (Table 1). There was no significant difference in 

Table 1 Demographics of the study population, parasite density, test positivity (by qPCR) and RDT sensitivity by age group and sex

1  For the RDT data, the results from all three RDTs were combined, with either RDT and either target (HRP2 or pLDH) positive counting as a positive test

Parameter Category N qPCR Test positivity [95CI] (n/N) p Geometric Mean 
parasite density 
[95CI]

p RDT  sensitivity1

[95CI] (n/N)
p

Age (years) 0 to 5 35 (7.8%) 48.6% [39.2, 58.0] (17/35) 0.87 78.9 [4.0, 1556.8] 0.02 70.6% [51.6, 89.5]
(12/17)

 < 0.01

6 to 15 111 (24.7%) 46.9% [37.4, 56.3]
(52/111)

41.3 [11.9, 143.3] 73.1% [59.2, 86.9]
(38/52)

 > 15 303 (67.5%) 44.9% [37.7, 52.1]
(136/303)

6.3 [3.1, 12.8] 44.9% [35.5, 54.2]
(61/136)

Sex Male 127 (28.3%) 49.6% [39.8, 59.4]
(63/127)

0.58 12.4 [3.8, 40.1] 0.87 47.6% [35.8, 59.5] (30/63) 0.21

Female 322 (71.7%) 44.1% [36.2, 52.0]
(142/322)

12.6 [6.0, 26.3] 57.0% [46.6, 67.5] (81/142)

Total 449 (100%) 45.7% [38.7, 52.6]
(205/449)

12.5 [6.7, 23.3] 54.2% [44.3, 63.9] (111/205)
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densities between male and female participants (p = 0.87, 
Table 1). Parasite density was significantly lower in par-
ticipants older than 15 years (p = 0.02, Table 1).

Parasite prevalence by microscopy and RDT
All 449 samples were screened for  P. falciparum  infec-
tion by microscopy and RDT. For the RDT, the results 
from all three RDTs were combined, with any RDT and 
any target (HRP2 or pLDH) positive counting as a posi-
tive test. Prevalence by RDT was 27.2% (122 out of 449), 
by microscopy 13.6% (61 out of 449). While 51.4% (231 
out of 449) were negative for all diagnostic test (including 
qPCR), 12.5% (56 out of 449) were positive with all diag-
nostic tests (including qPCR).

Diagnostic accuracy of RDT and Microscopy using qPCR 
as reference
Using qPCR as the reference, the sensitivity of RDT 
was 54.2% (111 of 205) whereas for microscopy it was 
28.29% (58 of 205) (p < 0.01). False positive results were 
more frequent for RDTs (n = 11) than Microscopy (n = 3). 
One sample was false positive for both RDT and micros-
copy. Specificity for RDT was 95.5% and microscopy was 
98.8%. PPV was higher for microscopy than RDT (94.9% 
vs. 87.8%) and NPV was lower in microscopy than RDT 
(87.9% vs. 95.9%).

Table  2 shows the sensitivity and specificity of the 
evaluated RDTs. The Biocredit and NxTek RDTs (con-
sidering either the HRP2 or pLDH band) showed 

similar sensitivity, detecting 52.2% and 49.3% of qPCR-
confirmed infections (McNemar’s test, p = 0.18). The Bio-
line RDT had lower sensitivity, compared to the Biocredit 
(McNemar’s test, p < 0.01) and NxTek McNemar’s test, 
(p < 0.01) RDTs, detecting 39.5% of qPCR-positive infec-
tions. As the threshold for parasite density decreased 
(from > 2000 parasites/μL to > 200 parasites/μL to > 20 
parasites/μL), the sensitivity of the RDTs also decreased 
(Table 2). All RDTs demonstrated specificity levels above 
95% (Table  2). The limit of detection (LoD) was deter-
mined as 4393 parasites/μL for microscopy, 56 parasites/
μL for the Biocredit RDT (considering either the HRP2 
or pLDH target), 84 parasites/μL for the NxTek RDT, 
and 331 parasites/μL for the Bioline RDT (Table 2). The 
Negative Predictive Value (NPV) was 95.9% for the Bio-
credit and NxTek RDTs, and 92.7% for the Bioline RDT. 
All RDTs achieved a test accuracy (area under the curve 
(AUC)) of > 0.85 (Table 2).

Comparison of HRP2 vs. pLDH, and hrp2/3 Deletion Typing
The Biocredit RDT demonstrated higher sensitivity for 
the HRP2 target (88.8% at densities > 20 parasites/µL), 
compared to the pLDH target (74.2%) (McNemar’s test, 
p < 0.01). When infections of all densities were consid-
ered, three qPCR-confirmed infections were detected 
by pLDH only (Fig.  1) thus, sensitivity for HRP2 only 
was minimally lower compared to when both HRP2 
and pLDH targets were considered (Table  2). None of 
these three samples carried hrp2 or hrp3 deletions. The 

Table 2 Measure of diagnostic performance of Bioline, NxTek and Biocredit RDTs

N: Sample size used for diagnostic measurement

Diagnostic 
Measure

N Microscopy
[95CI] (n/N)

Bioline HRP2
[95CI] (n/N)

NxTek HRP2 
[95CI] (n/N)

Biocredit HRP2
[95CI] (n/N)

Biocredit LDH 
[95CI] (n/N)

Biocredit HRP2/
LDH [95CI] (n/N)

Sensitivity (all 
densities)

205 28.3% [22.2, 34.9] 
(58/205)

39.5% [32.8,46.6] 
(81/205)

49.3% [42.2, 56.3] 
(101/205)

50.7% [43.7, 57.8] 
(104/205)

37.1% [30.5, 44.1] 
(76/205)

52.2% [45.1, 59.2]
(107/205)

Only samples 
with > 2000 para‑
sites/µL

37 70.3% [53.0, 84.1] 
(26/37)

94.6 [81.8, 99.3]
(35/37)

100 [94.3, 100]
(37/37)

94.6 [81.8, 99.3]
(35/37)

94.6 [81.8, 99.3]
(35/37)

94.6 [81.8, 99.3]
(35/37)

Only samples 
with > 200 para‑
sites/µL

63 76.2 [63.8, 86.0] 
(48/63)

88.9 [78.4, 95.4]
(56/63)

95.2 [86.7, 99.0]
(60/63)

92.1 [82.4, 97.4]
(58/63)

90.5 [80.4, 96.4]
(57/63)

92.1 [82.4, 97.4]
(58/63)

Only samples 
with > 20 parasites/
µL

89 62.9% [52.0, 72.9] 
(56/89)

78.7 [68.7, 86.6]
(70/89)

88.8 [80.3, 94.5] 
(79/89)

88.8 [80.3, 94.5]
(79/89)

74.2 [63.8, 82.9]
(66/89)

88.8 [80.3, 94.5]
(79/89)

Specificity 244 98.8% [96.5, 99.8]
(241/244)

98.8% [96.5, 99.8]
(241/244)

97.1% [94.2, 98.8]
(237/244)

97.1% [94.2, 98.8]
(237/244)

98.8% [96.5, 99.8]
(241/244)

96.3% [93.1, 98.3]
(235/244)

Positive Predictive 
Value

333 94.9% [85.7, 98.3] 95.9% [88.3, 98.6] 91.9% [84.4, 95.9] 91.9% [84.4, 95.9] 95.7% [87.8, 98.6] 89.8% [82.2, 94.4]

Negative Predictive 
Value

333 87.9% [84.8, 90.3] 92.7% [89.5, 94.9] 95.9% [92.9, 97.7] 95.9% [92.9, 97.7] 91.3% [88.1, 93.7] 95.9% [92.9, 97.7]

Accuracy (AUC) 449 0.892[0.85, 0.92] 0.887 [0.84, 0.93] 0.929 [0.89, 0.96] 0.929 [0.89, 0.96] 0.870 [0.82, 0.92] 0.931 [0.90, 0.96]

95% LOD (para‑
sites/µL)

205 4393 [2129, 9064] 331 [148, 739] 84 [40, 177] 85 [43, 171] 349 [142, 858] 56 [28, 118]
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parasite densities of these samples ranged from 2–5 para-
sites/μL. Also, none of eight samples that were positive 
by qPCR with parasite densities > 20 parasites/μL but 
negative for all RDTs carried hrp2/3 deletions.

Discussion
This study showed similar sensitivities for the Biocredit 
and NxTek RDTs. These tests are considered highly sensi-
tive, i.e., more sensitive than conventional tests such as 
the SB Bioline [3, 22–33]. Both the Biocredit and NxTek 
detected around 50% of all qPCR-positive infections 
(p = 0.18), compared to around 40% by the SD Bioline 
(p = 0.03). Excluding very low-density infections at < 20 
parasites/µL, the sensitivities of NxTek and Biocredit 
RDTs were identical at 89%, compared to 79% for the SD 
Bioline. While this difference did not reach statistical sig-
nificance (p = 0.09), it points to higher sensitivity of the 
NxTek and Biocredit.

The LoD of the Biocredit and NxTek RDTs, deter-
mined through logistic regression analysis as the mini-
mum parasite density quantified by qPCR that the RDT 
could detect with a 95% probability, was approximately 
four-fold lower than the LOD for the SD Bioline. RDT 
sensitivity reached 73% in children aged 6–15 years and 
71% in children under five, while older participants (> 15 
years) had lower parasite densities, resulting in lower 
RDT sensitivity.

A limited number of previous studies compared the 
NxTek or Biocredit RDT to conventional RDTs among 
clinical patients. The NxTek was compared to the SD 
Bioline among over 3500 febrile patients in Tanza-
nia, with a minimal difference in sensitivity observed 
(75% vs. 73% compared to qPCR) [28]. In this study, 
only 10% of patients tested positive by qPCR, and over 
80% of participants were children. Possibly, the lower 
transmission intensity and enrolment of mostly chil-
dren resulted in higher parasite density because of 

limited acquired immunity in the study population. At 
high densities, both RDTs are expected to yield simi-
lar results. Several studies compared the NxTek to the 
SD Bioline among asymptomatic individuals [23, 30, 
32, 41–44] and pregnant women [25, 29, 45, 46]. In all 
studies, the NxTek was more sensitive. Using the NxTek 
as reference, the SD Bioline RDT reached a sensitiv-
ity of 73–97%, except for one study where the NxTek 
detected twice as many infections [42]. In the current 
study, the sensitivity of SD Bioline compared to NxTek 
was 80% (81 vs. 101 qPCR-positive infections detected), 
thus within the range observed in studies among 
asymptomatic populations.

Only one study, led by the same investigators as the 
current study, compared the Biocredit RDT tested to 
a conventional RDT, namely the CareStart HRP2 RDT 
[3]. Among febrile patients in Burundi with P. falci-
parum infection confirmed by qPCR, the Biocredit 
detected 80% of infections compared to 73% by Car-
eStart. The reasons for the lower sensitivtiy of 52% of 
the Biocredit RDT in the current study are unknown. 
The very high tranmsision intensity in Burundi, possi-
bly resulting in a higher pyrogenic threshold and higher 
parasite densities among patients presenting with fever, 
might play a role [47]. Indeed, the LoD of the Biocredit 
RDT, which would be expected to be affected less by 
differences in pyrogenic thresholds, was similar in 
Ghana (56 parasites/µL) and Burundi (34 parasites/µL) 
[3].

In accordance with WHO guidelines for genotyping 
hrp2/3 deletions, samples that tested positive for pLDH 
but negative for HRP2 were typed. None of the three 
P. falciparum malaria-positive samples fulfilling these 
criteria carried hrp2/3 deletions. Also, eight samples 
positive by qPCR with parasite densities > 20 parasites/
μL but negative for all three RDTs did not carry hrp2/3 
deletions. The current data thus corroborated recent 
findings of very low frequency of hrp2/3 deletions in 
Ghana [48–50], including a set of over 200 infections 
collected at the same health centers and typed, where 
no deletions were detected [39].

The sensitivity of the pLDH target in the Biocredit 
RDT was found to be comparable to that of Bioline 
HRP2 RDT. Similar sensitivity for the pLDH target of 
the Biocredit RDT has been reported in Uganda and 
Djibouti [51–53]. This suggests that the Biocredit RDT, 
with its pLDH target, can be a suitable alternative to 
the Bioline RDT in regions where hrp2 deletion is prev-
alent. In conclusion, the Biocredit and NxTek are more 
sensitive than the SD Bioline which is commonly used 
in in Ghana [54]. Shall hrp2/3 deletions ever spread in 
the country, the Biocredit will be a reliable alternative 
for malaria diagnosis.

Fig. 1 (A) The detection of qPCR‑confirmed P. falciparum infections 
using three RDTs: Nxtek (HRP2), Biocredit (HRP2/pLDH), and Bioline 
(HRP2). (B) Comparison between the Nxtek and Biocredit RDT kits 
to accurately detect true positive P. falciparum infections with HRP2 
and pLDH targets. A total of 111 out of 205 qPCR‑confirmed 
infections were detected by these RDTs as true positive tests
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