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Abstract 

Malaria parasites are haploid within humans, but infections often contain genetically distinct groups of clonal para-
sites. When the per-infection number of genetically distinct clones (i.e., the multiplicity of infection, MOI) exceeds one, 
and per-infection genetic data are generated in bulk, important information are obfuscated. For example, the MOI, 
the phases of the haploid genotypes of genetically distinct clones (i.e., how the alleles concatenate into sequences), 
and their frequencies. This complicates many downstream analyses, including relatedness estimation. MOIs, para-
site sequences, their frequencies, and degrees of relatedness are used ubiquitously in malaria studies: for example, 
to monitor anti-malarial drug resistance and to track changes in transmission. In this article, MrsFreqPhase methods 
designed to estimate statistically malaria parasite MOI, relatedness, frequency and phase are reviewed. An overview, 
a historical account of the literature, and a statistical description of contemporary software is provided for each 
method class. The article ends with a look towards future method development, needed to make best use of new 
data types generated by cutting-edge malaria studies reliant on MrsFreqPhase methods.

Keywords Plasmodium, Genetic analysis, Analysis software, Multiplicity of infection (MOI), Complexity of infection 
(COI), Relatedness, Identity-by-descent (IBD), Phase reconstruction, Haplotype inference, Mixture deconvolution

Background
Malaria parasite infections commonly contain geneti-
cally distinct groups of clonal parasites [1]. Henceforth, 
the word clone is used to refer to a group of clonal par-
asites, i.e., to a group of parasites that are genetically 
identical, give or take de novo mutations (see Table  1 
for a list of definitions used within this review). Due to 
the polyclonal nature of malaria parasite infections and 

the bulk nature of most genotyping methods, statistical 
genetic methods are essential for the accurate estimation 
of everything from the prevalence of genetic markers of 
anti-malarial drug resistance to details of malaria parasite 
transmission. For example, to estimate the probability of 
a person getting infected with a malaria parasite whose 
genotype encodes a sequence of alleles associated with 
drug resistance; e.g., the Plasmodium falciparum quin-
tuple pfdhfr-pfdhps mutant associated with resistance 
to sulfadoxine-pyrimethamine [2], a plan might proceed 
as follows: (1) sample parasites from infected people; (2) 
genotype the parasites at resistance-encoding loci; (3) 
concatenate per-locus data into multi-locus sequences 
(i.e., estimate phase); (4) estimate θ, the frequency of 
the resistance-encoding sequence among genetically 
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distinct clones distributed across infections; (5) estimate 
λ, the average per-infection clone count (i.e., the popu-
lation-average multiplicity of infection, MOI); (6) com-
pute 1- (1 −  θ)λ, the probability of being infected with 
one or more clones that carry the resistance-encoding 
sequence, under the assumption that genetically distinct 
clones are drawn independently; (7) assess the validity of 
the independence assumption by estimating relatedness 
between genetically distinct clones within and between 
infected people. Because of the polyclonal nature of 
malaria infections and the bulk nature of most genotyp-
ing methods (steps 1 and 2), phase, frequency and MOI 
estimation (steps 3 to 5) require joint statistical inference 
(e.g., Fig. 1). Relatedness estimation (step 7) requires sta-
tistical inference because relatedness is based on iden-
tity-by-descent (IBD), which is a hidden state.

In this review, the focus is on MrsFreqPhase meth-
ods—statistical methods designed to estimate malaria 
parasite MOI, relatedness, Frequency and Phase—
because they are often required together and have 
many common features. The estimation of IBD seg-
ments is mentioned briefly in relation to relatedness. 
Methods designed to estimate copy number variants 
(CNVs), compute linkage disequilibrium, identify 

selective sweeps, classify recurrent infections, and 
perform population assignment are beyond the scope 
of this review, even though some may generate Mrs-
FreqPhase estimates as by-products. In this review, the 
statistical infrastructure of MrsFreqPhase methods is 
described, commenting on the implications of various 
model assumptions. MrsFreqPhase methods are not 
evaluated computationally, all their input requirements 
are not listed (see links to contemporary software, 
Table  S1), and best approaches for different simulated 
scenarios are not recommended (see [3–6] for exam-
ples of benchmarking). Experimental methods (those 
that generate data, as well as model-free methods used 
to estimate MOI, relatedness, frequency and phase by 
e.g., counting matches) are also beyond the scope of 
this review; see [7] for a review of the different marker 
types used in malaria genomic epidemiology; see [4] for 
a state-of-the-art example of model-free per-infection 
P. falciparum MOI estimation; see [8] for an explana-
tion as to why counting-methods can generate biased 
estimates and spurious insights when population-level 
frequencies are estimated using categorical data; see 
[9] for a general review of recent advances in malaria 
population genomics.

Table 1 List of working definitions (some definitions vary across the literature)

Brood A collection of parasites that hatch in unison from one or more oocysts within a mosquito

Categorical versus quanti-
tative per-locus data

Categorical data signal the presence or absence of detection of each allele at each locus, or if the per-locus call is homo 
or heteroallelic. Quantitative per-locus data include read counts or other signal intensities from which within-sample allele 
frequencies (WSAFs) can be computed

Clone A group of parasites that are genetically identical, give or take de novo mutations. Each clone represents a unique realiza-
tion of the parasite genome

Clone proportion Fraction of parasites belonging to a given clone within an infection

Genotype and haplotype In this manuscript, genotype refers to an allelic sequence over loci on one or more chromosomes of the haploid parasite 
genome (whole-genome sequence and subsets thereof ). Haplotype refers to an allelic sequence over loci on a single 
chromosome. For a single chromosome, haplotype and genotype are interchangeable

Heteroallelic Loci where different alleles are detected among a collection of parasites (e.g., in a single blood sample) are referred 
to as heteroallelic, not heterozygous, because the signal represents a collection of genetically distinct haploid parasites, 
not a zygote

IBD and IBS Identity-by-descent (identity due to common ancestry) and identity-by-state (identity due to common ancestry or chance), 
respectively

Microhaplotype An allelic sequence over proximal loci whose alleles can be phased experimentally, i.e., sequenced in a single read

MOI (or COI) Multiplicity (or complexity) of infection: the number of genetically distinct clones within an infection

Phase How individual alleles concatenate to form a haploid sequence (haplotype or genotype)

Population Unless specified otherwise, population is used to refer to a collection of parasites distributed across many infected humans 
or mosquitoes. Intra-host population refers to a population of parasites within an infection

Prevalence and frequency Prevalence: fraction of infections that contain parasites characterised by a given allele or sequence. Frequency: relative 
population abundance; i.e., fraction of genetically distinct clones (or parasites) distributed within (or across) infections char-
acterized by a given allele (or sequence). When frequencies are estimated using categorical data, they are typically fractions 
of genetically distinct clones. When frequencies are estimated using read count data, they are typically fractions of parasites

Strain A group of parasites that is characterized functionally; e.g., a drug resistant or vaccine strain; elsewhere, strain is sometimes 
synonymous with clone

WSAF Within-sample allele frequencies; i.e., in a sample of parasites drawn from an infection, the fraction of parasites character-
ized by a given allele
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Parasite life cycle issues
Malaria-causing Plasmodium parasites are single-celled 
eukaryotes transmitted by female Anopheline mosqui-
toes. Besides an obligate stage of sexual reproduction in 
the mosquito, they are haploid and reproduce asexually, 
mutating at a typically eukaryotic rate.

Throughout the life cycle, parasite numbers fluctuate 
immensely: transmission-stage bottlenecks are followed 
by massive within-host expansion [10]. Despite vast para-
site counts (typically  108 to  1012 per human), the MOI is 
comparatively low (typically < 10 clones per human [11]). 
Polyclonal infections (i.e., infections with MOI > 1) are 
generated in humans by co-transmission of genetically 
distinct parasites and/or by two or more infectious mos-
quito bites (superinfection). That is to say, the mainstay 
of intra-human parasite diversity is a direct result of the 
transmission process, not created de novo (in contrast 
with viruses that evolve within hosts). Co-transmission 
is ubiquitous [11–13]; superinfection scales with the 
entomological inoculation rate. As such, estimates of 
polyclonal-infection prevalence and population-average 
MOIs can correlate roughly with transmission inten-
sity [13–16], making them potential indicators of dis-
ease control efforts. Per-infection MOI estimates can be 
used to sort monoclonal and polyclonal infections for 
downstream analyses, and thereby mitigate model mis-
specification (monoclonality is a prerequisite of many 

downstream analyses), and to investigate associations 
with host features, e.g., age [17].

Malaria parasites undergo an obligate stage of meiotic 
recombination in the mosquito [18]. However, some par-
asites self (i.e., genetically identical parasites recombine). 
Because parasites self, parasites from different infections 
can have the same whole-genome sequence, i.e., belong 
to the same clone (e.g., see [19]). Parasites can also be 
characterized by shorter sequences that many clones 
carry. Short sequences of interest often encode an adap-
tive trait or are functionally relevant. For example, drug 
resistance can be encoded by a sequence spanning a 
small number of polymorphisms on one or more chro-
mosomes (the word haplotype is used when loci are on a 
single chromosome and genotype otherwise; Table 1), as 
well as by point mutations and CNVs [see Table 1 of 2]. 
In polyclonal infections, phase (how alleles in a sequence 
concatenate) is obfuscated, unless captured experimen-
tally (e.g., by long-range or single-cell sequencing). At a 
single locus, within-sample allele frequencies (WSAFs) 
are obfuscated, unless captured by quantitative data (e.g., 
read counts). Estimates of intra-infection frequency and 
phase are useful for studying host-parasite interactions 
(e.g., [20]), and could be used to study intra-host para-
site interactions, e.g., immune-mediated apparent com-
petition [21]). At the population-level, the typical goal is 
to estimate the frequencies of alleles and/or sequences 

Fig. 1 Naive phase and frequency estimation from bulk genotyping data generates incorrect estimates for a polyclonal malaria infection
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that encode adaptive traits, as in drug-surveillance stud-
ies, e.g., [22]. The word strain is sometimes used to refer 
to a group of parasites that share an adaptive sequence 
(e.g., a drug-resistant strain), especially when the trait is 
encoded by a small number of loci; elsewhere, strain is 
sometimes synonmous with clone (e.g., in [13] strains are 
defined by many thousands of whole-genome loci, and 
strain proportions are used to estimate the MOI).

Relatedness is a measure of IBD between a pair of para-
sites averaged over the genome. It is at most one between 
clonal individuals, reducing to zero with recombination 
between genetically unrelated individuals [23]. Because 
recombination generates genetic variation over relevantly 
small spatiotemporal scales, relatedness estimates are 
useful epidemiologically. For example, they can be used 
to track transmission and thus evaluate disease control 
efforts (e.g., [24]); to identify parasite population con-
nectivity (e.g., [25]); to distinguish imported infections 
from local transmission (e.g., [26, 27]), an important use 
case for malaria-free certification [28]; and to identify 
evidence of intra-host relatedness suggestive of co-trans-
mission [11, 13, 29]. Inbreeding coefficients are measures 
of IBD between two or more individuals: e.g., averaged 
over two haploid gametes in diploid zygotes [30, 31], or 
averaged over haploid parasites within human infections 
[32]. An inverted inbreeding coefficient is an effective 
MOI measure [30]: a composite measure capturing the 
number of genetically distinct clones and how they inter-
relate. The effective clone count (effective MOI) is less 
than the actual clone count (regular MOI) when clones 
are interrelated (the contribution of related parasites 
being penalized). It increases continuously to the actual 
clone count when clones are unrelated. As such, effective 
MOIs possibly reflect superinfection better than MOIs in 
high transmission settings, where intra-host relatedness 
is likely due to co-transmission, but not in low transmis-
sion settings, where parasites from different mosquitoes 
are liable to be related.

The genetic epidemiology of malaria changes radically 
with transmission intensity and seasonality: from hol-
oendemic settings with perennial transmission, through 
settings with spatially heterogeneous and seasonal trans-
mission, to elimination settings with occasional out-
breaks [33–35]. In general, when transmission intensity 
is low, superinfection is infrequent, polyclonal infections 
are rare, and clonal propagation is frequent. Moreover, 
parasites across infections are likely related, leading to 
elevated rates of inbreeding when genetically distinct 
parasites do recombine. When transmission intensity 
is high, frequent superinfection elevates the prevalence 
of polyclonal infections, and thus the opportunities for 
recombination between genetically unrelated parasites 
(outbreeding), suppressing both clonal propagation and 

parasite relatedness between infections. Intra-host relat-
edness and inbreeding are both viable across the many 
epidemiologies of malaria: regardless of transmission 
intensity, mosquitoes are able to co-transmit recombi-
nant parasites from the same brood [12, 13], and sub-
sequent human-to-mosquito co-transmission of said 
parasites creates an opportunity for inbreeding, even 
in high transmission settings [11, 12, 30, 31]. In other 
words, malaria parasite mating is neither clonal nor pan-
mictic (see [36] and references therein), and varies with 
transmission intensity. When transmission intensity is 
very high, different analyses of the same data are consist-
ent with non-negligible inbreeding [30] and panmixia 
[37], providing substructuring over human infections 
is accounted for. Observations are consistent with both 
inbreeding and outbreeding in high to medium transmis-
sion intensity settings [31]; with predominant inbreeding 
in low transmission intensity settings [38, 39], and with 
selfing in clonal outbreaks [40]. Meanwhile, inter-host 
population structure manifests on different scales; e.g., 
parasite subpopulations sampled from different house-
holds in a high intensity region or spatially distinct pock-
ets of residual transmission in a near elimination setting. 
Different settings will thus benefit from relatedness esti-
mation on different scales (e.g., within versus between 
households in a high transmission setting).

Methods
Table  2 lists named MrsFreqPhase methods that have 
been published and are readily available. They have over-
lapping capabilities, and are constructed around a set of 
common building blocks (Table  3), within either a fre-
quentist or Bayesian framework; see below and [41]. Fea-
tures and assumptions of the likelihoods of the models 
underpinning the methods in Table 2 are described later. 
Unless otherwise specified, perfect detection of alleles 
(i.e., 100% sensitivity) is assumed.

Population versus infection‑level estimation
The term population-level estimation is used to refer to 
the estimation of quantities averaged across parasites dis-
tributed among many infected humans or mosquitoes, 
and infection-level estimation to refer to the estimation 
of quantities at the level of an individual host.

Population-level estimation methods support rela-
tively uninformative per-locus data that pre-date the 
genomic era (e.g., categorical data specifying allelic pres-
ence/absence or homo/heteroallelic calls) because they 
borrow information across infections. As a result, they 
cluster methodologically and chronologically. Infection-
level estimates (e.g., per-infection MOI estimates, and 
estimates of intra-infection haplotype frequency and 
phase) can be derived from population-level estimates a 
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Table 2 Capabilities of MrsFreqPhase software ordered by appearance

MrsFreqPha–
se method

MOI estimation Frequency estimation Phase estimation Relatedness estimation

Pop. 
level 

average 

Per-
infection PLAF PLSF

Intra-
infection 

clone 

Pop. 
level

Per-
infection

Pop. 
level 

average

Intra-
infection 
average

Intra-
infection 
pairwise

Inter-
infection
pairwise

MLMOI

IDM

MOIRE

MultiLociBia–
llelicModel

pfmix

moimix

THEREALM–
cCOIL

coiaf

SNP-Slice

FreqEstimat–
ionModel

Deploid 

DeploidIBD

isoRelate

hmmIBD 

panelJudge

Dcifer

MOI (multiplicity of infection), Pop. (population), PLAF (population-level allele frequency), PLSF (population-level sequence frequency)
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posteriori [41], but they are liable to be imprecise if the 
per-infection data used are not very informative.

Infection-level estimation methods require relatively 
informative per-infection data (e.g., categorical data on 
many loci and/or quantitative per-locus data). Some gen-
erate population estimates by modelling data on all infec-
tions jointly, e.g., [42, 43], thereby borrowing information 
across infections, but also requiring many infections, 
which can be problematic when transmission intensity is 
low [4]. Population estimates generated by averaging per-
infection estimates obtained separately do not leverage 
information borrowed across infections.

Molecular surveillance studies often centre around 
population-level prevalence and frequency estima-
tion using categorical data on loci that encode adaptive 
traits. Meanwhile, genomic epidemiology studies often 
feature relatively informative per-infection data from 
which infection-level MOIs and population-level allele 
frequencies are estimated [42]. The different perspec-
tives of molecular surveillance and genomic epidemio-
logical studies are starting to converge around amplicon 
sequencing panels that combine diverse markers, includ-
ing some that are neutral, with markers of drug resist-
ance, e.g., [44, 45].

Data types and implication
The first MrsFreqPhase methods were used to ana-
lyse data from analyses of enzymes with electropho-
retically distinct variants [46, 47]. Subsequent methods 
have been developed around various data types includ-
ing categorical data from gel-based characterization of 
SNPs; categorical data on microsatellites; read counts 
from whole-genome sequencing (WGS); and prevalence 
data from amplicon sequencing. Statistical methodology 
should adapt to different data types: e.g., by harnessing 
all available information (e.g., read counts from ampli-
con sequencing), and by customizing the observation 
models that capture the disconnect between latent alleles 
and possibly erroneous observations. For example, with 
sequencing methods the probability of not detecting an 

allele (i.e., a false negative) of a clone present at low pro-
portion within a polyclonal infection is in part a function 
of amplification and sequencing methods; this probabil-
ity will likely be lower for deep amplicon sequencing than 
WGS. The probability of detecting an allele which is not 
present (i.e., a false positive), is in part a function of the 
extent and fidelity of amplification and sequencing error 
rates. Such false negative and false positive error rates 
can be estimated to some extent by performing detailed 
experiments on laboratory controls, but are often not 
measured rigorously and even when they are can vary 
based on details of the specific assay, laboratory, and 
operator. For more examples of genotype calling artefacts 
and errors associated with different marker types used in 
malaria genomic epidemiology see [7]. Albeit not ideal, 
misspecification and squandered information do not 
render a statistical method obsolete. As such, statistical 
methodology lags behind experimental methodology. 
Experimental methods that aim to resolve within-host 
diversity directly (e.g., single-cell and long-read sequenc-
ing) may someday render obsolete many MrsFreqPhase 
methods [48]. However, these sophisticated experimental 
methods are not yet optimized or accessible at scale.

As alluded to above, any adequately formatted data 
can be fed into a statistical method at the risk of some 
misspecification. What goes in, comes out: if related-
ness is estimated using markers under selection, for 
example, estimates will reflect how parasites are related 
at those markers. Surveillance studies for drug resist-
ance or other important parasite phenotypes often focus 
on loci under selection, e.g., SNPs within the P. falcipa-
rum gene kelch13 associated with artemisinin resistance 
[49]. As such, population-level frequency estimation 
methods that are designed primarily for surveillance 
are generally intended for data on loci under selection. 
Studies requiring per-infection information on within-
host diversity (e.g., MOI), and/or estimation of para-
site relatedness between infections (e.g., to distinguish 
recrudescence from reinfection in therapeutic efficacy 
studies, or to identify evidence of local transmission 

Table 3 Variables and distributions that typically feature in MrsFreqPhase methods

MOI (multiplicity of infection), PLAF (population-level allele frequency), PLSF (population-level sequence frequency), WSAF (within-sample allele frequency)

MOI A Poisson or negative binomial random variable whose mean parameter is the population-average MOI. Distributions 
are almost always non-zero conditioned because malaria negative cases are almost always excluded from data sets 
analysed by MrsFreqPhase methods

Biallelic/Multiallelic locus A Bernoulli/categorical random variable whose parameter is either a WSAF or PLAF

Sequence in PLSF estimation A realization of a categorical random variable whose parameter is a PLAF (notable exception: SNP-Slice)

Allele frequencies Beta random variables at biallelic loci; Dirichlet random variables at multiallelic loci

Clone proportions and PLSFs Dirichlet random variables (notable exception: SNP-Slice)

Read count A beta-binomial random variable if read counts are considered over-dispersed; otherwise, a binomial random variable
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in studies of malaria-free certification), often are best 
served using data from highly diverse loci [42, 50, 51]. 
The most diverse loci in the P. falciparum genome tend 
to be regions where DNA replication error is most likely 
to occur (e.g., microsatellites, genes with other tandem 
repeats) and/or loci under balancing selection from the 
human immune system (e.g., msp2, ama1) [52]. Puta-
tively neutral markers have the theoretical advantage of 
providing less bias than those under balancing selection 
with respect to relatedness estimation, but highly diverse 
neutral markers such as microsatellites are cumbersome 
to evaluate, tend to have high error rates in polyclonal 
infections (both false negatives and positives), and have 
elevated mutation rates, obfuscating estimates of IBD.

Markers under balancing selection may provide biased 
estimates of relatedness in theory, but some diverse tar-
gets such as microhaplotypes are amenable to accurate, 
high throughput genotyping and have relatively low 
mutation rates, providing advantages that can offset 
theoretical concerns [53]. Markers providing the benefit 
of extremely high diversity such as msp2 unfortunately 
suffer from all the issues listed above: high genotyping 
error rates, high mutation rates, and are under balanc-
ing selection [54–56]. Thus, there are tradeoffs inherent 
in the choice of high diversity markers for epidemiologic 
studies; again, see [7] for a recent review of the differ-
ent marker types used in malaria genomic epidemiology, 
including, antigen genes, microsatellites, SNP barcodes, 
var genes and microhaplotypes.

Epidemiological settings and implications
MrsFreqPhase methods apply in all settings with poly-
clonal infections typed using standard experimental 
methods that generate bulk genetic data (e.g., not sin-
gle-cell sequence data). In addition, relatedness estima-
tion is useful in settings without polyclonal infections, 
e.g., to identify the origin of a clonal outbreak. Statisti-
cal population-level frequency estimation is particularly 
important when frequencies across settings with differ-
ent average MOIs are compared; e.g., to know if a drug-
resistant strain is selected for over time or in space, one 
cannot simply compare the counts of infections that test 
positive for the strain—the prevalence of the strain will 
increase dramatically with the average MOI even if its 
frequency remains fixed.

Settings with different average MOIs are liable to also 
have different relative rates of cotransmission and super-
infection, and thus different relative contributions of 
related and unrelated parasites within polyclonal infec-
tions. When MOIs are modelled as Poisson distributed 
random variables, it is assumed implicitly that intra-
host clones are transmitted independently; i.e., without 
co-transmission. Methods that model MOIs as negative 

binomial random variables assume implicitly that trans-
mission events are positively correlated. As such, they are 
arguably better specified, especially when the relative rate 
of co-transmission exceeds that of superinfection. Some 
methods model intra-host relatedness explicitly (Table 2), 
whereas others do not. All polyclonal infections are liable 
to contain some interrelated parasites due to cotransmis-
sion, which can occur in any transmission setting where 
polyclonal infections exist. However, in high transmis-
sion intensity settings, where parasites across infections 
are generally unrelated, frequent superinfection likely 
elevates the relative contribution of unrelated parasites 
within polyclonal infections. The impact of ignoring 
intra-host relatedness is case specific: point estimates of 
population-level frequencies generated using methods 
that ignore intra-host relatedness should be unbiased, 
providing alleles/sequences distribute equally across 
infections with different levels of intra-host relatedness 
(estimates might be spuriously precise, however, because 
the number of independent clones from which to esti-
mate frequencies is not as high as it seems). Meanwhile, 
MOIs estimated using methods that ignore intra-host 
relatedness are liable to be biased downwards (data on 
alike clones being harder to tell apart). Otherwise stated, 
MOI estimation ignoring within-infection relatedness is 
liable to generate estimates that resemble effective MOIs.

Benchmarking studies use data simulated under one 
model to test the performance of other models, and thus 
can ascertain the suitability of different methods under 
different simulated transmission settings. For exam-
ple, [4] found MOI estimates generated by varcoding 
(a model-free approach based on counting distinct var 
genes) are superior to MOI estimates generated by THE-
REALMcCOIL when high transmission intensity is simu-
lated under the agent-based model varmodel3 [57, 58]. 
The ramifications for public health depend on the use 
case: consider an MOI estimate interpreted as a proxy 
measure of the force of infection (FOI). If it is estimated 
ignoring intra-host relatedness, it will underestimate the 
true MOI across settings, and underestimate the FOI 
in settings where inter-host parasites are related. If it is 
estimated while accounting for intra-host relatedness, 
it will accurately estimate the true MOI across settings, 
but overestimate the FOI in settings where inter-host 
related parasites are largely unrelated and intra-host par-
asites are largely co-transmitted. (Ideally, FOI would be 
estimated directly, using a model that accounts for chang-
ing levels of inter and intra-host parasite relatedness.)

Frequentist versus Bayesian MrsFreqPhase methods
MrsFreqPhase methods are either Bayesian or frequen-
tist. Methods of one type or the other tend to rely on 
similar algorithms for inference, tend to treat missing 
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data (e.g., NAs) similarly, tend to output the same type of 
point estimate, and tend to generate similar measures of 
uncertainty. More specifically, frequentist MrsFreqPhase 
methods generally generate maximum likelihood esti-
mates (MLEs) using an optimization algorithm, e.g., 
the expectation–maximization algorithm [59], which 
can be problematic if the likelihood has local maxima. 
Confidence intervals can be generated using the pro-
file-likelihood approach or asymptotic assumptions of 
normality (e.g., see [60, 61]), or by bootstrapping loci if 
they are assumed independent (e.g., see [62]). Typically, 
Markov-chain Monte Carlo (MCMC) samplers are used 
to infer parameters of Bayesian MrsFreqPhase models. 
MCMC samplers generate numerical approximations of 
posterior distributions from which posterior means or 
medians and credible intervals can be derived. Although 
less sensitive to local maxima, MCMC samplers can 
still get stuck, particularly if care is not taken to check 
for convergence. In addition, they can be computation-
ally expensive. Regarding missing data (e.g., NAs), when 
infection-level estimates are generated one-by-one, loci 
without data can often be discarded. If so, per-infection 
estimates will be based on different loci counts. Other-
wise, under frequentist frameworks, missing data are 
either imputed in a pre-inference step, imputed within 
the expectation–maximization algorithm, or infec-
tions with missing data are discarded, resulting in data 
loss. For Bayesian methods, recursive sampling within a 
MCMC scheme can be used to average over latent ran-
dom variables, which can include missing data values. 
All MrsFreqPhase methods typically assume the missing 
mechanism is ‘ignorable’, i.e., the probability that a datum 
is missing does not depend on its unobserved value.

Population‑average MOI estimation
Overview Population-average MOI estimation aims to 
directly estimate the per-infection clone count aver-
aged across infections by jointly modelling data on many 
infections (in contrast to averaging per-infection MOI 
estimates).

Historical context The first MrsFreqPhase method was 
designed to estimate the population-average MOI [46]. 
Two decades later, population-average MOI estimates 
were obtained indirectly from data on P. falciparum 
zygotes sampled from single-oocyst mosquitoes: firstly, 
under a negative binomial model of Hardy–Weinberg 
equilibrium with substructuring over human infections 
[37]; secondly, by inverting population-level inbreeding 
coefficients estimated from the zygote data, thereby gen-
erating effective MOI estimates [30]. Population-average 
MOI estimates were then estimated directly, by fitting a 
frequentist population-average MOI estimation model to 
P. falciparum data extracted from human infections [47]. 

The MOI model was designed for data on two biallelic or 
triallelic loci. In 2014, a single-locus version, extended to 
allow more than three alleles, was published, alongside 
statistical tests to evaluate estimates generated separately 
using data on different loci [60, 63]. Sometime later, bias 
in the single-locus model was described [61] and cor-
rected [64]. The statistical framework of the single-locus 
model was extended to multiple loci in a comprehensive 
article on population-average MOI estimation [41]. Most 
recently, the single-locus model was extended to account 
for imperfect detection [65].

Contemporary software
The population-average MOI can be estimated directly 
using MLMOI, which is an R package built around the 
aforementioned single-locus, bias-corrected model [66]; 
and  the related imperfect-detection model (see R script 
and documentation provided in the supplementary mate-
rial of [65]). It can also be estimated using MOIRE and 
MultiLociBiallelicModel. MLMOI is useful if data are 
limited to a single locus. The imperfect-detection model 
(IDM) requires data on empty records: infected individu-
als with only missing data. Since disease-free individuals 
could conflate inference, IDM’s use requires independent 
evidence of infection positivity, or data on enough loci 
for evidence of infection for at least one locus. In case 
of multiple loci, multiple population average MOI esti-
mates can be generated for each locus separately—see 
Fig. 11 of [65]. Under both MLMOI and the IDM, infec-
tions are modelled as binary vectors indicating allelic 
absence/presence and infection-level MOIs are modelled 
as random variables from a zero-truncated Poisson dis-
tribution, implying clones are transmitted independently 
(i.e., without co-transmission). The IDM distinguishes 
between observed vectors with possible false negatives, 
and perfectly detected latent vectors, integrating over 
latent vectors, assuming a fixed probability of detection. 
Neither MLMOI nor the IDM consider false positives 
(detection of absent alleles).

Per‑infection MOI estimation
Overview Per-infection MOI estimation aims to esti-
mate the number of genetically distinct clones per infec-
tion. It is typically based on either a statistical model fit 
to data on many loci per infection (see below); or on the 
per-infection maximum or near-maximum allele count 
observed among highly polymorphic loci (a model-free 
approach).

Historical context Because statistical per-infection 
MOI estimation methods require relatively informative 
per-infection data, they are relatively modern. The story 
begins with the FWS statistic [67, 68]—a composite meas-
ure of the per-infection number of genetically distinct 
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clones, their proportions and relatedness values, which 
can be viewed as an inbreeding coefficient [32]. Early 
methods designed to estimate MOI specifically include 
estMOI and COIL [69, 70]. They were superseded by 
THEREALMcCOIL [43]. In the interim, two R packages, 
pfmix and moimix, both of which can be used to estimate 
both FWS and MOI, were developed. Most recently, Coiaf 
[71], MOIRE [42] and SNP-Slice [3] have been added 
to the suite of statistical per-infection MOI estimation 
methods.

Contemporary software Per-infection MOIs can be 
estimated using all the aforementioned methods. Pfmix 
and moimix generate MOI estimates for each infection 
separately using a mixture model fit to WGS read count 
data on biallelic SNPs, which are assumed independ-
ent [32, 72, 73]. The pfmix model is relatively elaborate. 
It includes intra-host clone proportions and a panmixia 
coefficient—some fraction of intra-host diversity that 
is explained by panmixia and not by the MOI—and is 
embedded within a Bayesian framework [72]. An MCMC 
sampler that splits and merges clone proportions when 
jumping reversibly between MOI values is described 
alongside the model [72], but like moimix, pfmix gener-
ates MOI estimates by model comparison [74]. MOI esti-
mates can also be generated using methods designed to 
phase infection-level data. Like pfmix, moimix, and the 
methods designed to phase infection-level data, estMOI 
and COIL generate per-infection MOIs for each infection 
separately.

THEREALMcCOIL [43] estimates per-infection 
MOIs and population-level allele frequencies (PLAFs) 
for many infections jointly using data on many biallelic 
SNPs, which are assumed independent, within a Bayes-
ian framework (each SNP requires data on at least 20 
infections; each infection requires data on at least 20 
SNPs). It features two methods: the categorical method 
for homoallelic/heteroallelic calls, and the proportional 
method for WSAFs derived from semi-quantitative val-
ues (THEREALMcCOIL neither requires nor explicitly 
supports read count data). Both methods account for 
genotyping errors. Under the categorical method, the 
observation model is a function of two miscall rates (a 
homo-to-het rate and het-to-homo rate—false-positive 
and false-negative, respectively) and the latent call; the 
likelihood of the latent call is computed assuming alleles 
are binomially distributed with probability equal to the 
PLAF and an MOI number of alleles, thereby imply-
ing independence between clones. Under the propor-
tional method, the observed frequency is modelled as 
a Guassian random variable with mean equal to the 
latent WSAF and variance equal to a measurement error 
parameter, which is inversely proportional to signal 
intensity. The latent WSAF is distributed according to a 

mixture with point masses at 0 and 1, and a beta distribu-
tion in between. The parameters of the beta distribution 
are estimated pre-analysis by fitting beta distributions to 
WSAFs simulated for different MOI values and PLAFs. 
PLAFs, WSAFs, and MOIs are uniformly distributed a 
priori, using an MOI upper bound of 25. Error rates can 
also be estimated, using a uniform prior between 0 and 
0.2; otherwise, they are treated as fixed.

Coiaf [71] estimates per-infection MOIs for each 
infection separately using data on many biallelic SNPs, 
which are assumed independent, within a frequentist 
framework. It features two methods called variant and 
frequency. Both methods are based on minimizing dif-
ferences between observations and expectations, where 
differences are sums of squares that are read-depth 
weighted, such that SNPs with higher coverage contrib-
ute more to optimization. Differences are minimized 
over either a discrete or continuous domain of MOI 
values. Observations are either categorical homoal-
lelic/heteroallelic calls (variant method) or WSAFs (fre-
quency method). Expectations are functions of the MOI 
of interest and PLAFs, assuming alleles are binomially 
distributed, and thus that clones are independent (i.e., 
unrelated). Although coaif supports categorical data, 
read counts are required to weight observations by cover-
age, and data on WSAFs are needed to estimate PLAFs 
pre-analysis (PLAFs and MOIs are not estimated jointly). 
Both the variant and frequency method scale efficiently 
to thousands of SNPs and compare well with THERE-
ALMcCOIL, especially when point estimates without 
confidence intervals suffice. Sequencing errors are not 
modelled but the software can pre-process false positives 
assuming loci with minor WSAFs below an error thresh-
old are homoallelic. The error threshold (default 0.01) 
can be user-specified or computed internally by compar-
ing observed and expected WSAFs.

MOIRE [42] is the most comprehensive per-infection 
MOI estimation method. Like THEREALMcCOIL, it 
estimates per-infection MOIs and PLAFs for many infec-
tions jointly using data on many loci, which are assumed 
independent, within a Bayesian framework. Per-infec-
tion observations are variable-length binary vectors of 
locus-wise allelic absence/presence, i.e., unlike THERE-
ALMcCOIL and coiaf, MOIRE is not limited to biallelic 
markers. MOIRE, however, is limited to categorical data. 
The MOIRE model does not assume clones are unrelated: 
it features an average inter-clone relatedness parameter, 
estimates of which can be used to estimate an effective 
MOI that scales linearly between one and a given MOI 
with decreasing relatedness. The observation model is a 
function of two per-infection rates: a false allelic presence 
and absence rate, identical for all alleles. For a given locus 
and per-infection MOI (Poisson-distributed according 
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to a population-average MOI), the latent-allele model is 
a mixture over some number of genetically distinct but 
related clones (binomially distributed according to the 
relatedness parameter) and some residual number of 
unrelated clones. The alleles of the unrelated clones are 
modelled as categorical draws from a multinomial distri-
bution parameterized by the PLAFs (which, a priori, are 
uniformly distributed per-locus). The alleles of related 
clones are copies with probability one. Owing to a gamma 
hyperprior on the population-average MOI, MOIRE gen-
erates a population-average MOI estimate directly. A 
priori, relatedness parameters are beta distributed; error 
rates are capped by user-specified bounds, rescaled and 
then beta distributed; and PLAFs are Dirichlet-distrib-
uted with concentration parameter one.

SNP-Slice [3] is a Bayesian nonparametric method 
designed to reconstruct the sequences of parasites circu-
lating in a population and estimate sequence-to-infection 
assignments, by jointly modelling biallelic SNP data on 
many infections. The per-infection sum over sequence 
assignments provides a per-infection MOI estimate. 
The MOI estimate is technically a lower bound, because 
sequences are counted only once per infection, whereas 
intra-host genetically distinct clones could share iden-
tical sequences, especially if the per-infection data are 
limited to few loci, to loci under selection, or to loci on a 
single chromosome. In this capacity—per-infection MOI 
estimation—SNP-Slice is presented and compared with 
THEREALMcCOIL in [3]. Like THEREALMcMOIL (and 
coiaf and MOIRE), loci are assumed independent a pri-
ori. However, unlike other methods, sequences are recon-
structed within a Bayesian nonparametric framework 
(more details  later). For each infection, the per-locus 
data can either be categorical (detection of the minor 
allele only, major allele only, or both), or minor and major 
read counts—benchmarking suggests read count data 
are preferable in all but low intensity settings [3]. Unike 
MOIRE, SNP-Slice does not generate estimates of relat-
edness. Sequence-to-infection assignments are Bernoulli 
trials parameterized by sequence assignment probabili-
ties, implying inter-sequence independence. Genotyping 
errors are modelled using the same observation model 
as THEREALMcCOIL when data are categorical. Gen-
otyping errors in read count data are accommodated 
insofar as read counts are modelled as random variables 
from either a binomial, Poisson, or negative binomial 
distribution.

Population‑level allele frequency estimation
Overview PLAF estimation aims to estimate the fre-
quencies of alleles distributed among clones or parasites 
across infections, where alleles themselves are not subject 
to phase ambiguity (e.g., single nucleotides, microsatellite 

repeats, and microhaplotype sequences that are experi-
mentally phased by amplicon sequencing). Some PLAF 
estimation studies focus on alleles that confer adaptive 
traits (e.g., markers of antimalarial resistance); others 
focus on alleles at neutral loci (or loci under balancing 
selection) whose frequencies can be used to estimate 
other quantities of interest, e.g., FWS [4, 67, 68]. PLAF 
estimation necessarily requires data on many infections. 
PLAF estimates can be generated by simply averaging 
WSAFs based on e.g., read counts (or other quantitative 
per-locus read outs), under the assumption that WSAFs 
are representative of PLAF (model-free approach). When 
data are categorical, PLAF estimation necessitates inte-
gration over latent intra-host clone assignments and thus 
statistical inference. That said, statistically unprincipled 
ad hoc counting is often used to estimate PLAFs from 
categorical data—a model-free approach that generates 
biased estimates and/or squandered data [8].

Historical context The first MrsFreqPhase method 
was capable of generating PLAF estimates [46]. The first 
method designed specifically to target PLAFs centred 
around a Bayesian model of a single biallelic SNP [75]. It 
was followed by a suite of methods designed to estimate 
population-level sequence frequencies (PLSFs), but capa-
ble of generating PLAF estimates (next section). In 2017, 
a study was published comparing various novel frequen-
tist methods to estimate single biallelic SNP frequen-
cies using summary statistics from surveillance studies; 
i.e., counts of infections that are purely resistant, purely 
wild-type, or heteroallelic at the locus of interest [22]. 
The methods accommodate undetected clones, which 
undermine rare-variant frequency estimation [1, 8], 
under a variety of different detection mechanisms: detec-
tion due to limit of detection over clone counts; detec-
tion due to some fixed probability of detection; detection 
due to some fixed probability of detection that decreases 
linearly with MOI; and detection due to some fixed prob-
ability of detection for a dominant clone, which exceeds 
some smaller detection probability for all other clones. 
A model under which data are aggregated over multiple 
populations with different allele frequencies was also 
described. Very clear example R code was provided, but 
no software.

Contemporary software PLAF  estimates for multi-
allelic loci modelled separately can be generated using 
MLMOI and the related IDM. They can be generated for 
many loci modelled jointly assuming inter-locus inde-
pendence using THEREALMcCOIL (biallelic loci) and 
MOIRE (multiallelic loci). They can also be estimated 
from prevalence data using methods designed to estimate 
PLSFs, either by fitting the models to data on individual 
loci separately or by summing over relevant sequence fre-
quency estimates (Box 1).
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Box 1: Estimating population‑level allele frequencies from 
population‑level sequence frequencies

Imagine you want to estimate PLAFs at three biallelic loci using a method 
designed to estimate PLSFs.

First, using the method designed to estimate PLSFs, estimate the fre-
quencies of sequences 000, 100, 010, 001, 110, 101, 011, and 111, where 0 
denotes a reference allele (e.g., the wild-type allele) and 1 denotes 
the alternative allele at each of the three biallelic loci.

Second, estimate the frequency of the reference allele at a given locus 
by summing over the frequencies of all sequences with the refer-
ence allele at the given locus. For example, to estimate the frequency 
of the reference allele at the first locus, sum over frequencies for 000, 010, 
001 and 011.

Population‑level sequence frequency estimation
Overview PLSF estimation aims to estimate the frequen-
cies of sequences that are not phased experimentally 
(i.e., multi-locus haplotypes and genotypes) distributed 
among clones or parasites across infections, by modelling 
data on many infections jointly (in contrast to post-pro-
cessing the output of infection-level phase and frequency 
estimation methods; next section). When phase is experi-
mentally attainable (e.g., for polymorphisms within 250 
base pairs using paired-end 150 base pair sequencing), 
PLAF estimation methods apply. Otherwise, phase ambi-
guity calls for more elaborate methods that integrate out 
latent phases. As for PLAFs, ad hoc counting methods 
are sometimes applied to categorical data, generating 
inherently biased estimates, and/or squandered data [8]. 
Most statistical PLSF estimation methods are limited to 
moderate loci counts (e.g., 8–10 SNPs at most) because 
they model sequences as categories, and the number of 
categories grows exponentially with the number of loci 
[41, 76].

Historical context The first method capable of gen-
erating frequency estimates for sequences (over two 
biallelic or triallelic loci) was that of [47]. It was fol-
lowed by a frequentist method supporting data on up 
to ten multiallelic loci [77], later incorporated into an R 
package called malaria.em; a frequentist method called 
MalHaploFreq, accounting for imperfect detection of 
minority clones [78]; a Bayesian method accounting for 
genotyping errors with a fixed  miscall rate [79]; a fre-
quentist method designed principally for prevalence 
estimation [80]; and a Bayesian method first described 
in [81] and later incorporated into an R package called 
FreqEstimationModel. All of these methods and more are 
described in detail in chapters two and three of [82]. A 
study comparing malaria.em, MalHaploFreq and FreqEs-
timationModel to two related methods was published in 
2016 [5]. It put particular emphasis on limits of detec-
tion. An almost identical study followed, adding another 
related approach, but no associated software [6]. In 2022, 

a frequentist method called MultiLociBiallelicModel 
was published [62]. SNP-Slice [3] can also be viewed as 
a PLSF estimation method: PLSFs can be estimated from 
the output assignment matrix.

Contemporary software PLSF estimates can be 
obtained with relative ease using FreqEstimationModel, 
MultiLociBiallelicModel and SNP-Slice (Malhaplofreq 
runs only on Microsoft Windows, while malaria.em is no 
longer maintained—Table S2).

FreqEstimationModel [81, 82] jointly generates pos-
terior density estimates of the PLSFs, per-infection 
sequence counts and per-infection MOIs using an 
MCMC algorithm to fit a Bayesian model to categorical 
data on biallelic SNPs. Sequences are modelled as  2n cat-
egories, where n is some number of biallelic SNPs, lim-
ited to at-most seven in practice. Per-infection MOIs are 
modelled as random variables from either a zero-trun-
cated Poisson, Negative binomial, or Gamma distribution 
(parameterized using a prior estimate of the popula-
tion-average MOI), or from a uniform distribution. Per-
infection sequence counts are distributed according to a 
multinomial distribution, parameterized by sequence fre-
quencies, which are assumed to be Dirichlet-distributed 
a priori. The multinomial construction allows the same 
sequence to be carried by multiple clones within an infec-
tion, which likely occurs frequently when MOI is high. 
FreqEstimationModel assumes independence between 
clones and does not account for genotyping errors. Miss-
ing data are integrated out by recursive sampling. A thor-
ough description of FreqEstimationModel can be found 
in the third Chapter of [82].

MultiLociBiallelicModel [62] jointly generates MLEs 
of PLSFs and the population-average MOI using an EM 
algorithm to fit a frequentist model to categorical data 
on biallelic SNPs. Confidence intervals around MLEs are 
generated using the parametric bootstrap. Per-infection 
MOIs are modelled using a zero-truncated Poisson dis-
tribution whose parameter is the population-average 
MOI. Like FreqEstimationModel, sequences are mod-
elled as  2n categories, where n is the number of biallelic 
SNPs, limiting MultiLociBiallelicModel to some moder-
ate number of SNPs in practice. Sequence counts are dis-
tributed according to a multinomial distribution, whose 
probability vector is the vector of allelic-sequence fre-
quencies, allowing the same sequence to be carried by 
multiple clones within an infection. MultiLociBiallelic-
Model assumes clones are independent, does not account 
for genotyping errors, and cannot handle missing data.

SNP-Slice [3] outputs a maximum a posteriori esti-
mate of all the sequence-to-infection assignments, from 
which PLSFs estimates can be obtained by averaging over 
infections. It marks a paradigm shift in the estimation 
of PLSFs because the Bayesian nonparametric approach 
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circumvents the curse of dimensionality that limits all 
other PLSF estimation methods to moderate loci counts. 
SNP-Slice accommodates an unlimited number of 
sequences by modelling the assignment of sequences to 
infections as an Indian buffet process: a finite number of 
sequences (dishes) from an infinitely large selection (the 
buffet) are assigned to a finite number of infections (cus-
tomers) [83]; and by modelling alleles within sequences 
as independent Bernoulli draws (with prior probability 
equal to 0.5 when the data are categorical, or to the major 
allele read count fraction when read counts are avail-
able). The sequence-to-infection assignment probabilities 
are modelled using a stick-breaking construction: bits of 
an unbroken stick of unit length (total probability) are 
progressively broken off, generating a set of assignment 
probabilities [84]. As an aside, posterior assignment prob-
abilities are PLSF estimates, but the software does not 
output them at present. Marginally, the SNP-Slice model 
assumes a priori that per-infection sequence counts are 
Poisson distributed with mean equal to the population-
average MOI; per-sequence assignment probabilities are 
Beta distributed with mean approximately equal to the 
reciprocal number of sequences circulating in the popu-
lation; and haplotype-to-infection assignments are inde-
pendent Bernoulli draws. If SNP-Slice is fit to data on loci 
under selection (e.g., markers of drug resistance), as is 
typically the case in studies of PLSFs, sequences are liable 
to be shared by multiple clones within infections, i.e., the 
true MOI will likely exceed the unique-sequence count, 
which is interpreted as an MOI estimate in [3].

Infection‑level phase and frequency estimation
Overview Infection-level phase and frequency estima-
tion methods generally aim to reconstruct the sequences 
of whole-chromosome haplotypes within infections and 
possibly clonal proportions; per-infection MOI esti-
mates can be viewed as byproducts. The problem of 
reconstructing sequences that characterize individu-
als in genetically diverse mixtures is widespread (haplo-
type assembly in human genetics, characterizing tumour 
diversity in oncology, quasispecies spectrum reconstruc-
tion in viral genomics, species resolution in metagen-
omics). There are no general solutions owing to each 
scenario having its own set of challenges, however each 
scenario generally requires very informative per-infection 
data. Some experimental methods (e.g., single-cell and 
long-read sequencing) may someday render infection-
level phase and frequency estimation obsolete. However, 
these experimental methods are not yet optimized nor 
accessible at scale.

Historical context The first infection-level “haplotype-
estimating algorithm” for malaria parasites was designed 
to help monitor vaccine escape [85]. It was shown to 

reliably estimate the most likely combination of 6-SNP 
haplotypes within polyclonal P. falciparum infections 
with MOIs of two or three, but relied heavily on an exper-
imental protocol. Over a decade later, a Bayesian method 
designed to identify sets of haplotypes, their joint phy-
logeny, and within-infection frequencies using short-read 
WGS data, was published, along with its application to 
data on Plasmodium falciparum apicoplasts extracted 
from clinical infections [86]. Unfortunately, the method 
does not support data from the sexually recombining 
nuclear genome of malaria parasites, because it relies 
on a phylogenetic model that assumes variation among 
haplotypes results from mutation not recombination. A 
subsequent method called DEploid was followed shortly 
after by an enhanced method, DEploidIBD [13, 74].

Contemporary software The Bayesian mixture model 
of pfmix estimates proportions of intra-host clones but 
does not reconstruct their sequences because loci are 
assumed independent. SNP-Slice estimates infection-
level sequences by assigning population-level sequences 
to infections, but not intra-host clone proportions 
because assignments are categorical (it is geared primar-
ily towards inference on the population-level). DEploid 
and DEploidIBD estimate both intra-host sequences 
and proportions. In addition, DEploidIBD estimates IBD 
profiles between clones. In the descriptions of all of the 
methods above, the word strain is used instead of clone. 
Clone here is synonymous with strain in the descriptions 
of pfmix, DEploid, and DEploidIBD (these methods are 
designed for WGS data). In the description of SNP-Slice, 
the interpretation of the word strain depends on the data: 
if SNP-Slice is fit to limited loci under selection, strain 
in the description of SNP-Slice agrees with strain here 
(Table 1); if SNP-Slice is fit to data on many neutral loci, 
strain in the description of SNP-Slice is synonymous with 
clone here.

DEploid and DEploidIBD are Bayesian methods 
designed to deconvolute polyclonal infections one-by-
one [13, 74]. Both methods require biallelic read count 
data from high-coverage WGS (median sequencing 
depth > 20, preferably without prior selective whole-
genome amplification), PLAFs, and a panel of reference 
haplotypes. As in pfmix, observed read counts are mod-
elled as beta-binomially distributed random variables, 
whose expectations are WSAFs multiplied by read-
depths. WSAFs are based on latent clone proportions 
and haplotypes and then error adjusted, using a fixed 
miscall error rate for reads. Logit-transformed propor-
tions are modelled as normally distributed random vari-
ables. Some maximum number of clones is assumed a 
priori (five for DEploid, four for DEploidIBD). The pos-
terior MOI and effective MOI estimates are then com-
puted using the posterior clone proportions that are 
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greater than 0.01. As per [87], haplotypes are modelled 
as imperfectly copied mosaics of haplotypes in a refer-
ence panel using a hidden Markov model (HMM). The 
HMM transitions between the haplotypes in the refer-
ence panel with a rate governed by inter-marker distance 
and a scaled rate of recombination, which is assumed 
uniform across the genome. Under the DEploid model, 
haplotypes and proportions are estimated jointly in one 
step. DEploidIBD employs a two-step approach: firstly, 
IBD profiles, haplotypes, and proportions are estimated 
jointly using the aforementioned observation model 
and a HMM of IBD partitions; secondly, haplotypes are 
updated using the HMM of haplotype mosaics. Under 
the IBD-partition HMM, an initial partition is drawn 
uniformly at random from those compatible with a given 
number of IBD clusters. The IBD cluster count is drawn 
from a binomial distribution parameterized by the proba-
bility that two clones are not IBD at a given locus. Subse-
quent IBD partitions are redrawn with probability equal 
to there having been a recombination event; otherwise, 
the preceding IBD partition is copied. Conditional on 
the partition, haplotype alleles are drawn proportional to 
the PLAFs. DEploid is preferable when some clones have 
equal proportions; DEploidIBD is preferable when pro-
portions are unbalanced and genetically distinct clones 
are related. Neither cope well with entirely balanced or 
extremely imbalanced clone proportions.

Relatedness estimation
Overview Typically, malaria parasite relatedness esti-
mation aims to estimate a genome-average measure of 
IBD between malaria parasite genotypes (whole-genome 
sequence or subsets thereof ). Unless identity-by-state 
(IBS) is used to approximate IBD (a model-free approach, 
e.g., [88]), statistical inference is required because IBD 
states are hidden. When parasites reside within poly-
clonal infections that are genotyped using bulk data, 
statistical inference is further required because MOI, fre-
quency and phase are obfuscated.

Historical context Pairwise relatedness estimation for 
malaria parasites is relatively new: DEploidIBD [13] gen-
erates estimates for intra-infection genotypes; whereas 
IsoRelate [89], hmmIBD [90], paneljudge [44] and Dcifer 
[91] generate estimates for inter-infection genotypes. It 
is not as new for humans and other diploids: the struc-
ture of the single-population model of hmmIBD, which 
is very similar to that of isoRelate and identical to that of 
paneljudge, is almost identical to an earlier model of an 
inbreeding coefficient for a single diploid eukaryote [92]. 
Under that model, errors affect both chromosomes of 
the diploid in unison (whereas haploid malaria parasites 
accumulate errors independently). The diploid model 

builds on a foundational study where IBD was modelled 
continuously along the genome [93].

Contemporary software Pfmix and moimix generate 
FWS estimates, which can be viewed as infection-level 
inbreeding coefficients, and thus measures of IBD aver-
aged over all intra-infection haploid genotypes [32]. 
MOIRE also generates per-infection estimates of related-
ness averaged over all intra-infection clones. DEploidIBD 
generates individual estimates of pairwise relatedness for 
each intra-infection genotype pair; all other relatedness 
estimation methods generate estimates for inter-infec-
tion genotypes and are frequentist.

Both isoRelate [89] and hmmIBD [90] were designed 
to analyse WGS data and are based on HMMs, where 
hidden states are either IBD or not (hmmIBD), or IBD 
counts of zero, one or two (isoRelate). The HMMs tran-
sition between IBD states with a rate governed by a 
recombination map and a switch-rate parameter. Under 
hmmIBD, a uniform recombination map is computed 
internally: inter-marker distances in base pairs are multi-
plied by a recombination rate whose default value (speci-
fied internally but easy to override) corresponds to P. 
falciparum (7.4e-7 Morgans per base pair [94]). To run 
isoRelate, the user provides a recombination map com-
puted externally (i.e., the user has more freedom). Con-
ditional on the hidden state, latent alleles are drawn with 
probabilities proportional to PLAFs. Both isoRelate and 
hmmIBD tolerate loci with missing data by summing 
over probabilities of all possible observations at said loci, 
and both account for genotyping miscall errors for each 
haploid genotype individually using an error model that 
also accommodates de novo mutations. Neither method 
outputs measures of uncertainty.

IsoRelate [89] uses unphased biallelic SNP data and 
PLAFs to generate relatedness estimates (estimated using 
method-of-moments, as in [95]) defined in terms of the 
probabilities of one or two IBD alleles, and IBD segments 
(generated using the Viterbi algorithm), for genotypes 
between infections with MOIs of one or two. Under the 
assumption that all within-infection IBS loci are IBD, 
isoRelate can also be used for infections with MOIs 
greater than two (isoRelate does not make any assump-
tions on intra-infection relatedness for infections with 
MOIs of two).

hmmIBD [90] is restricted to monoclonal samples but 
can be used to estimate relatedness (using an EM-based 
algorithm) and IBD segments (using the Viterbi algo-
rithm) between infections from populations with differ-
ent input allele frequencies. hmmIBD supports data from 
both biallelic and multiallelic markers, which are treated 
as categorical random variables. As such, distances 
between latent alleles and observations for microhaplo-
type and microsatellite markers are not accounted for. 
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The probability of any error does increase with the num-
ber of alternative alleles, however.

Paneljudge [44] is based exactly on the single-popu-
lation HMM of hmmIBD. It was designed to evaluate 
relatedness estimation using sparse data. As such, IBD 
segment estimation, which requires dense data, is not 
implemented. Instead, paneljudge generates confidence 
intervals (using the parametric bootstrap) around MLEs 
of relatedness (obtained via optimizing the likelihood, 
represented numerically using the forward algorithm)—
confidence intervals are recommended for sparse data 
applications. In the case of missing data, for each pair 
separately, loci with missing data should be dropped and 
distances between markers without missing data should 
be computed.

Dcifer [91] generates MLEs of relatedness for geno-
types across polyclonal infections using data on multial-
lelic markers (modelled as categorical random variables). 
Instead of using a HMM, independence between loci is 
assumed, precluding IBD segment estimation. In addi-
tion, Dcifer assumes all intra-infection genotypes are 
unrelated and each genotype in one infection can be 
related to at most one other in the other infection. Like 
isoRelate, Dcifer assumes infections come from popula-
tions whose allele frequencies are the same. It supports 
loci with missing data but requires MOI estimates. Dci-
fer does not account for genotyping errors or mutations, 
but errors were introduced into the simulated data used 
to evaluate it. Using the likelihood ratio approach, Dcifer 
provides measures of uncertainty with reliable coverage, 
and test statistics that can be used to separate unre-
lated and related infection pairs before generating more 
granular relatedness estimates (one relatedness estimate 
for each pair of inter-infection genetically distinct but 
related clones). It also returns two summary statistics: an 
estimate of the number of inter-infection genetically dis-
tinct but related clones and the sum of relatedness over 
all inter-infection genetically distinct but related clones 
(total relatedness). Compared with pairwise relatedness, 
total relatedness is easier to estimate and remarkably 
robust (even in the presence of simulated intra-infection 
relatedness). Depending on the target of inference, New-
ton’s method over either a one or higher dimensional grid 
is used to compute the likelihood and find MLEs.

Outstanding challenges
The ultimate MrsFreqPhase method would estimate 
jointly all MrsFreqPhase targets of inference and more 
(e.g., population assignment, spatial spread). However, 
fully joint inference is infeasible at present: it would 
possibly entail a model of ancestral recombination [96]. 
More modest models are under development. Three 
notable gaps are as follows.

Given the increasing popularity of amplicon sequenc-
ing, there is a need for a PLSF estimation method that 
can exploit read counts on multiallelic loci as in [97], 
while circumventing the curse of dimensionality as in 
[3]. Ideally, the method would also support missing data, 
model genotyping errors, and account for imperfect 
detection [22, 65].

Also inspired by the increasing popularity of amplicon 
sequencing, there is a need for more sophisticated obser-
vation models that capture different error-structures 
for different marker types. For example, the observation 
{1,0,0} of three binary states is more similar to the latent 
microhaplotype {0,0,0} than the observation {1,1,0}. How-
ever, both are considered equally wrong when micro-
haplotype markers are modelled as categorical random 
variables—a common treatment because current allele-
calling pipelines are analytically siloed from downstream 
analysis tools. Observation models could be integrated 
into MrsFreqPhase methods in a modular way, allowing 
the user to select the appropriate observation model for 
their data type, and ensuring a single method supports 
multiple data types. Stand-apart observation models can 
be used to test the sensitivity of estimates generated by 
MrsFreqPhase methods that lack adequate observation 
models: generate many observation-modified versions of 
an empirical data set under an appropriate stand-apart 
observation model; generate estimates for all data sets; 
if the estimates based on observation-modified datasets 
lead to a different conclusion, the conclusion is error-
sensitive; otherwise, it is robust.

There are no methods capable of jointly estimating 
relatedness between genotypes both within and between 
infections (polyclonal infections can be deconvoled using 
DeploidIBD and then relatedness between statistically 
phased genotypes estimated using an inter-infection 
method). This is relevant because parasite infections are 
liable to contain related parasites across transmission 
settings (e.g., [11]). It could simplify the two-step proce-
dure proposed above and, based on sensitivity analyses 
of the Dcifer method, it could improve the accuracy of 
relatedness estimation in low transmission intensity set-
tings (in high transmission intensity settings, the relative 
contribution of related parasites is diminished by super-
infection, limiting the return on investment). The latent 
state space of the model needs to account for all combi-
nations of IBD states between genotypes both within and 
between infections. Inference is likely to be very chal-
lenging (the HMM of the first step of DEploidIBD, whose 
hidden state space includes combinations of IBD states 
between intra-infection genotypes alone, already strug-
gles with four genotypes at most). That said, assuming 
loci-independence a priori (as in SNP-Slice) or entirely 
(as in MOIRE) could help.
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Conclusion
This review features many statistical genetic methods, 
some pre-dating the genomic era, designed specifically 
to estimate malaria parasite MOI, relatedness, frequency, 
and phase (MrsFreqPhase). The number of specialized 
methods and the maturity of the field is a testament to 
the extent to which studies of malaria depend on Mrs-
FreqPhase methods.

That dependence is partly because methods from other 
fields cannot be repurposed easily due to the specifici-
ties of the malaria parasite life cycle. For example, meth-
ods used in viral genomic epidemiology are inappropriate 
because malaria parasites sexually recombine; meanwhile, 
methods used to analyse humans and other diploids are 
inappropriate because haploid malaria parasites reside in 
infections with unknown and potentially high MOIs. That 
is to say, a malaria infection is a bit like a polyploid eukar-
yote whose ploidy is variable and unknown.

Despite the maturity of the field, the malaria statistical 
genetic tool box is far from complete. Ultimately, Mrs-
FreqPhase methods might converge under a joint infer-
ential framework, with some features rendered obsolete 
by long-range or single-cell sequencing. This is a long 
way off, however: fully joint inference is extremely chal-
lenging while long-range and single-cell sequencing are 
not yet optimized, let alone accessible at scale. In the 
immediate term, MrsFreqPhase methods need to catch 
up with the growing popularity of amplicon sequencing, 
leveraging read count data from diverse multiallelic loci. 
Meanwhile, efforts are underway to harmonize the valu-
able but fragmented landscape of existing analysis tools 
through improved documentation, additional benchmark-
ing (building on existing work by e.g., [3–6], and imple-
mentation of data and interoperability standards, with the 
ultimate goal of building a collaborative, transparent, and 
open platform of computationally interoperable software. 
That said, disjoint software, however interoperable, will 
never apply equally across the many diverse malaria epide-
miologies of malaria; for that, a fully joint model is needed: 
a model of genetic selfing, inbreeding, and outcrossing, 
parasite brood and non-brood mating, host-to-host co-
infection and superinfection, and all in the context of pop-
ulation dynamics and evolution (no small task; see [96]). 
And so, for the foreseeable future, users must stay abreast 
of the statistical basis of MrsFreqPhase methods in order 
to interpret results soundly and on a case-by-case basis.
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