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Abstract

mutations.

Background: The prevalence of drug resistance amongst the human malaria Plasmodium species has most
commonly been associated with genomic mutation within the parasites. This phenomenon necessitates
evolutionary predictive studies of possible resistance mutations, which may occur when a new drug is introduced.
Therefore, identification of possible new Plasmodium falciparum dihydrofolate reductase (PfDHFR) mutants that
confer resistance to antifolate drugs is essential in the process of antifolate anti-malarial drug development.

Methods: A system to identify mutations in Pfdhfr gene that confer antifolate drug resistance using an animal
Plasmodium parasite model was developed. By using error-prone PCR and Plasmodium transfection technologies,
libraries of Pfdhfr mutant were generated and then episomally transfected to Plasmodium berghei parasites, from
which pyrimethamine-resistant PfDHFR mutants were selected.

Results: The principal mutation found from this experiment was ST08N, coincident with the first pyrimethamine-
resistance mutation isolated from the field. A transgenic P. berghei, in which endogenous Pbdhfr allele was replaced
with the mutant Pfdhfr'®" was generated and confirmed to have normal growth rate comparing to parental non-
transgenic parasite and also confer resistance to pyrimethamine.

Conclusion: This study demonstrated the power of the transgenic P. berghei system to predict drug-resistant Pfdhfr

mutations in an in vivo parasite/host setting. The system could be utilized for identification of possible novel drug-
resistant mutants that could arise against new antifolate compounds and for prediction the evolution of resistance

Background

Plasmodium falciparum, the most virulent malaria
pathogen species, is responsible for nearly 863,000 deaths
in 2009 [1]. Malaria treatment is hampered by existence
of only a limited number of drugs and the emergence of
parasites resistant to most available antimalarial drugs,
including chloroquine, pyrimethamine and proguanil.
Therefore, there is an urgent need to search for afford-
able, effective and safe anti-malarials that can combat
drug resistant parasites.
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A bifunctional enzyme in the folate biosynthesis path-
way, dihydrofolate reductase-thymidylate synthase
(DHFR-TS) is a well-defined target of traditional antima-
larial drugs such as pyrimethamine and cycloguanil [2].
DHER catalyses the production of tetrahydrofolate from
dihydrofolate while TS is in charge of transferring a
methyl-group from N5, N10-methylene-tetrahydrofolate
to dUMP thereby generating dTMP and tetrahydrofolate.
Mutations in Pfdhfr gene, associated with the amino acid
substitution at residues 51, 59, 108, and 164, have been
found in the field with different levels of resistance to
antifolate drugs [3,4]. These mutations are positioned
around the enzyme active site. Thus, the accumulation of
point mutations in Pfdhfr reduces the affinity of antifolate
drugs such as pyrimethamine for the enzyme leading to
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drug resistance [5,6]. These correlations of drug resis-
tance with mutations in Pfdhfr gene have been experi-
mentally verified by comparison of mutant enzymes in
transfected parasites [7]. Despite the emergence of resis-
tant Pfdhfr mutants in malaria endemic areas, the eluci-
dation and development of target based screening models
[8,9] and the solution of the crystal structure of PADHFR-
TS [10] means that this enzyme is still an attractive target
for drug development. Therefore, in order to develop
new compounds against drug resistant parasites, predic-
tion of possible future resistance mutations becomes a
priority.

Studies of mutant P/DHFR-TS expression in non-
Plasmodium surrogate systems, such as Escherichia coli
and Saccharomyces cerevisiae have successfully identi-
fied novel mutant Pfdhfr alleles that confer antifolate
drug resistance [8,11]. These systems have also been
useful in testing new compounds against the enzyme
[8,9]. However, the biochemical activities of some
mutant enzymes isolated using these systems have been
shown to be significantly lower than the wild-type
enzyme [11]. The physiology of these surrogate cells are
markedly different from Plasmodium parasites, and it is
not clear whether these resistant enzymes would have
sufficient enzymatic activity to support parasite growth
throughout all stages of the life cycle. Unfortunately
owing to the narrow primate host range, suitable Plas-
modium in vivo models are not available.

Rodent malaria parasites such as Plasmodium berghei
are attractive models for human malaria, and the recent
advances in DNA transfection technology allow for
genetic modification of the parasite [12,13]. DNA trans-
fection can be used to express P. falciparum genes in
P. berghei, and thus transgenic P. berghei parasites can
be used as in vivo surrogate models. In this study, the
power of the transgenic P. berghei system to predict
drug-resistant Pfdhfr mutations in an in vivo parasite/
host setting was demonstrated. The objective was to
identify mutations in Pfdhfr that confer resistance to
anti-folate drugs using a transgenic P. berghei model.
Libraries of randomly mutated Pfdhfr were generated by
PCR mutagenesis and transfected to P. berghei. Upon
transfection, resistant parasites were obtained after pyri-
methamine selection and found to harbor Pfdhfr mutant
alleles. Thus, this system can be used as a Plasmodium
surrogate system for more accurate prediction and iden-
tification of antifolate-resistance mutations.

Methods

Experimental animals and parasite

For all experiments, female BALB/c mice (National
Laboratory Animal Center, Mahidol University, Thai-
land) 4-6 weeks old and weighing 20-25 g were used for
P. berghei parasite infections. The transgenic P. berghei
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parasite line MRA-867 expressing green fluorescent pro-
tein without drug-resistant selectable marker (PbGFP),
kindly provided by Drs. Andrew Waters and Chris Janse
of Malaria Research Group, Leiden University Medical
Center, the Netherlands, was used in this study [14]. All
animal work was evaluated and approved by the Ethical
Committee on Animal Experimentation, National Cen-
ter for Genetic Engineering and Biotechnology (BIO-
TEC), Thailand, and followed international guidelines
for the use of animals in experimental studies.

Construction of P. berghei transfection plasmid

Plasmid for P. berghei transfection in this study was modi-
fied from the original plasmid pL0017 [15], which was
kindly provided by Drs. Andrew Waters and Chris Janse
(Leiden University Medical Centre, the Netherlands). The
final transfection plasmid, designated pY005, contains wild
type Pfdhfr-ts gene flanked with 1.0-kb each of 5" and 3’
untranslated region (UTR) sequences of Pbdhfr-ts. BamHI
and AfIII restriction sites were introduced at 5" and 3’
ends, respectively, of Pfdhfr domain to serve as cloning
sites for the randomly-mutated Pfdhfr library.

Construction of Pfdhfr random mutant library

Pfdhfr mutant library was generated by error prone PCR
[11]. The 50 pL PCR reaction contained 1 ng of pY005
plasmid template harboring wild type Pfdhfr, 10 pM of
sense primer F1 (CGGTGGATCCATGATGGAACAAG;
BamHI site is underlined), 10 pM of antisense primer
R1 (CTTTGTCATCATTCTTAAGAGGC; AfIII site is
underlined), 0.1 mM dGTP, 0.1 mM dATP, 0.5 mM
dCTP, 0.5 mM dTTP, 1x Mutagenesis buffer [16] and
5 units of GoTaq®™ DNA polymerase (Promega). The
thermocycle condition was: 1 cycle of 95°C for 3 min,
30 cycles of 95°C for 1 min, 50°C for 1 min, 72°C for
1 min, and final extension of 72°C for 5 min. PCR pro-
ducts of random mutant Pfdhfr library of about 0.7 kb
were cloned into the BamHI/AfIII sites of pY005. The
plasmids containing Pfdhfr mutation libraries were
grown in Luria Bertani broth containing 100 pg/ml
ampicillin in a 37°C incubator shaker for 12-16 hours.
Plasmids were extracted and purified using a Qiaprep
Spin Miniprep kit (Qiagen). Extracted plasmids were
precipitated by isopropanol and re-suspended in 10 pl
TE buffer (10 mM Tris, 1 mM EDTA pH 8.0) for use in
transfection experiment.

Determination of pyrimethamine sensitivity to parental
and transgenic parasites

The sensitivity of pyrimethamine to inhibit the parental
PbGFP parasite or transgenic parasites expressing
PDHFR mutant was determined by the 4-day suppres-
sive test [17]. Five groups of five BALB/c mice per group
were infected intravenously (i.v.) with 1 x 107 parasitized
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erythrocytes and treated with different concentration of
pyrimethamine by intraperitoneal (i.p.) injection four
hours post infection. The control group was treated with
5% (v/v) DMSO in PBS pH 4.0. The experimental groups
were treated with different doses of pyrimethamine
through the same route for another 3 days. Twenty-four
hours after the last treatment (day 4), percentages of
parasitaemia were determined by microscopic counting
of Giemsa-stained smears from mouse tail blood.

Statistical analysis

All statistical analyses were carried out using SigmaPlot
software version 11 (Systat Software Inc., USA). For calcu-
lation of the growth inhibitory curve, parasitaemia of the
control group was set as 0% inhibition. The non-linear
regression for sigmoidal dose-response (variable slope)
was used to calculate the 50%, 90% or 95% effective dose
(EDsg, EDgg or EDgs) values.

Transfection, selection and identification of Pfdhfr
random mutant libraries

In vitro culture of PbGFP and P. berghei transfection
were performed as described [13]. Briefly, parasitized
blood was collected from a donor animal and cultured
overnight in culture media (RPMI 1640 medium contain-
ing 20% heat inactivated fetal calf serum, 50 IU/mL neo-
mycin and 25 mM Hepes). Schizont stage parasites were
purified from the overnight culture by Nycodenz gradient
centrifugation. The merozoites were transfected with the
circular plasmid DNA harboring Pfdhfr mutant libraries
using the standard Amaxa Nucleofector protocol [13]
and re-infected into animals by i.v. injection. Twenty-
four hours after transfection, 0.25 mg/kg of pyrimetha-
mine was used to treat the infected mice by i.p. injection
daily. Smears were taken to check parasitaemia and when
positive, left to multiply, until parasite numbers were
adequate (about 3% parasitaemia) for genomic analysis.
Tail blood was drawn from infected animals on alternate
days until parasitaemia reached 8-10% and genomic
DNA was extracted from whole blood using a genomic
DNA Mini Kit (Geneaid). The genomic DNA obtained
was transformed into E. coli DH5a to recover the circular
plasmid DNA containing Pfdhfr mutants. The trans-
formed bacterial colonies were picked and extracted for
plasmid DNA using a Qiaprep Spin Miniprep kit (Qia-
gen). The sequences of Pfdhfr mutants were obtained by
DNA sequencing (Biodesign Sequencing Service,
Thailand).

Transfection, selection and cloning of transgenic

P. berghei parasite

Plasmid containing resistant mutant PfdhfrS'*N was
completely digested with HindIII and Kasl restriction
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enzymes to generate linear plasmid. The 5" and 3'UTRs
of Pbdhfr-ts served as homologous recombination sites
for replacement of the endogenous Pbdhfr-ts on chromo-
some 7 with Pfdhfr*'N, In vitro culture of PbGFP and P.
berghei transfection were performed as described [13].
Twenty-four hours after transfection, 0.25 mg/kg of pyri-
methamine was used to treat the infected mice by i.p.
injection daily until the drug resistant parasites appeared.
The integrated transgenic mutant parasite clones were
obtained by the limiting dilution method [18].

PCR analysis of transgenic P. berghei parasite
The correct integration of Pfdhfi*'**N sequence into the
genome via the 5" and 3’'UTRs of the Pbdhfr-ts locus was
determined by PCR. A 4.0-kb DNA fragment spanning
the endogenous 5’'UTR Pbdhfr-ts sequence and the intro-
duced Pfdhfr was indicative of an integration event and
was amplified using primers F2 (TTGAGCTACA-
TAACTTCCATACAT) and R1 (described above). A 3.0-
kb DNA fragment spanning the introduced Pfdhfr and
the endogenous 3’'UTR Pbdhfr-ts sequence, indicative of
a 3’ integration event was amplified using primers F1
(described above) and R2 (CGATCTACACCTCTTCAT).

Expression profile of transgenic mutant parasite

The transgenic parasites expressed PADHFR*’?M.TS under
the control of 5" and 3’'UTRs of Pbdhfr-ts. To determine
whether this promoter efficiently drives PfdhfrS'%*N-ts
mRNA expression, reverse-transcription PCR (RT-PCR)
was performed. Total RNA was isolated from blood stage
transgenic P. berghei parasites using Trizol reagent (Invi-
trogen). cDNA was generated and used as template for
amplification with gene specific primers for the Pfdhfr
transgene using primers F1 and R1 (described above).
Controls included specific primers for Pbdhfr gene:
PbDTF (GGGGGGGGCATATGGAAGACTTATCT-
GAAACATTCG) and PbDTR (GGACTAGTGTACTT
CCTCATTTGG) and P. berghei alpha tubulin gene:
PbatubulinF (GCATGCTGGGAGCTATTTTG) and Pba-
tubulinR (GCTGGTTCAAATGCTGAGTTTG). RT-PCR
was performed using the same PCR condition as described
above.

Results

Determination of pyrimethamine sensitivity in wild type
PbGFP parasites

Experimental mice infected with wild type PbGFP para-
sites were treated with different concentrations of pyri-
methamine. As shown in Figure 1, in vivo ED5y and
EDys of pyrimethamine against PbGFP was 0.02 mg/kg
and 0.25 mg/kg, respectively. The EDgs concentration of
pyrimethamine was then used for selection of transgenic
resistant parasites in subsequent experiments.
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Figure 1 Sensitivity of pyrimethamine against PbGFP parasite.
The data represents mean values + SD of percentage of growth
inhibition for 5 animals per group. The average EDs, from three
independent studies is 0.02 mg/kg.

Construction of Pfdhfr random mutant library using wild
type Pfdhfr template

Approximately 14,000 bacterial colonies were obtained
for the Pfdhfr random mutant library. Twelve colonies
were randomly picked and sequenced. From the
sequence alignment, up to 4 base substitutions per gene
were found. The mutation frequency was then calculated
as 0.26%, which is equivalent to approximately 2 base
substitutions per 700 bp of Pfdhfr gene. Thus, the PCR-
induced mutagenesis for this library is within the
expected mutation frequency of 2 to 5 base substitutions
per gene [19]. The rest of the bacterial colonies were har-
vested for library DNA preparation.

Selection of transfected resistant mutant parasites from
wild type Pfdhfr random libraries

Plasmid DNA was purified from the Pfdhfr random
mutant library and transfected to PbGFP parasites. Pyri-
methamine-resistant parasites began to appear in most
transfection experiments within 11 days post-transfection.
Genomic DNA containing episomal transgenic DNA was
extracted from drug-resistant parasites and transformed
into E. coli. Among the isolated plasmids, two independent
sequences were identified. One sequence contained a sin-
gle base substitution mutation at amino acid position 108
(serine, S; AGC changed to asparagine, N; AAC) while the
other had the same mutation at amino acid position 108
together with another base substitution at codon 196,
which was silent (phenylalanine; TTT to TTC).

Generation of transgenic P. berghei expressing
Pfdhfr*'%N-ts mutant

In order to confirm that the S108N mutation found
among library-transfected DNA from drug-resistant
parasites conferred resistance, allelic replacement of the
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endogenous Pbdhfr-ts with mutant Pfdhfrs'%N-ts was
performed. The strategy for the allelic replacement
event is shown in Figure 2. Correct integration was
investigated by PCR analysis on genomic DNA using
different primers pairs. PCR products obtained corre-
sponded with the expected 4.0 kb and 3.0 kb bands for
5" and 3’UTR integration respectively, as shown in
Figure 3A.

Expression profile analysis of transgenic Pfdhfr®'%%"
mutant parasite

Transgenic P. berghei parasite with integrated
Pfdhfrs'%N_ts, named PhPfS108N, expresses the gene
under the control of Pbdhfr-ts 5° and 3’'UTRs. The
expression of the enzyme was verified at the mRNA tran-
scription level using RT-PCR. As shown in Figure 3B, 0.7
kb of Pfdhfr was amplified in cDNA from transgenic
PbPfS108N parasite, but not in cDNA from PbGFP par-
ental parasite. Conversely, Pbdhfr was amplified only in
c¢DNA from parental PbGFP parasite, but not in cDNA
from transgenic PbPfS108N parasites. The expected 0.85
kb band for the control P. berghei alpha tubulin was
obtained for all parasites. No products were detected for
-RT control templates, indicating that genomic DNA was
absent.

Determination of growth rate and pyrimethamine
sensitivity in transgenic PbPfS108N parasite

The growth rate of transgenic PbPfS108N parasite was
compared with PbGFP parental parasite. The growth
rates of the two parasites were not significantly different
(Figure 4A). The efficacy of pyrimethamine to inhibit
transgenic PbPfS108N parasites was determined by 4-day
suppressive test. The calculated ED5, and EDyq values of
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Figure 2 Replacement strategy of mutant Pfdhfr-ts into Pbdhfr-
ts by double cross-over homologous recombination. (A)
endogenous Pbdhfr-ts gene locus in PbGFP wild-type parasite, (B)
linearized plasmid pY005 containing mutant Pfdhfr 1N (C)
Pfdhfr%N-ts gene locus in transgenic PbPS108N parasite. Positions
of primers used for PCR amplification are indicated by arrows. The
expected size of PCR products are described.
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Figure 3 PCR and RT-PCR analysis of the transgenic mutant
parasite. (A) PCR analysis of 5" and 3’ integrations on genomic DNA
isolated from transgenic mutant parasites, POPST08N, are shown in
lanes 1 and 4, respectively. Genomic DNA isolated from PbGFP wild-
type parasite and distilled water (Neg) served as negative controls
as shown in lanes 2, 5 and 3, 6, respectively. (B) RT-PCR analysis of
PbPfST108N parasites. RNA from the POPST108N parasite was reverse
transcribed to cDNA and used as a template to amplify Pfdhff,
Pbdhfr and P. berghei alpha tubulin (Pbae-tubulin) genes. The
reactions were performed with reverse transcription (lane 1),
without reverse transcription (lane 2), P. berghei cDNA derived from
PbGFP and distilled water (Neg) were used as negative controls
with and without reverse transcription (lanes 3-6).

pyrimethamine against transgenic PbPfS108N para-
sites were 1.33 mg/kg and 2.65 mg/kg, respectively
(Figure 4B).

Discussion

There is need to identify possible drug-resistance muta-
tions against new compounds under development as anti-
malarial drugs. Prior knowledge of possible resistance path-
ways facilitates testing of strategies for forestalling the evo-
lution and spread of resistance in the parasite population,
e.g. drug combinations. In this study, a P. berghei in vivo
model was developed as a surrogate cell expression system
to identify Pfdhfr mutations that confer antifolate drug
resistance. This system employs DNA transfection in
which the selectable marker is antifolate-resistant mutant
Pfdhfr, rather than the conventional human dhfr and Toxo-
plasma gondii dhfr markers used in P. berghei transfection
[20]. The concentration of pyrimethamine at 0.25 mg/kg
(EDgs of wild type P. berghei parasite) i.p. injection daily
was successful in selecting resistant parasites obtained after
transfection with Pfdhfr mutant libraries. Interestingly, the
resistant parasite lines transfected with a Pfdhfr variant
library were found to contain the SI08N mutation, which
is known to be the key antifolate resistance mutation
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Figure 4 Growth rate and pyrimethamine sensitivity of
PbPfS108N parasite. (A) Growth curves of POPSTO8N and PbGFP in
mice. POPfS108N data are represented as open circles and, PbGFP
data represented as filled circles. The experiments were performed
in three independent studies and the data represents mean + SD
values. (B) Sensitivity of pyrimethamine against PbPS108N parasite.
The data represents mean + SD of percentage of growth inhibition.
The average EDsq from three independent studies is 1.1 mg/kg.

found in nature [21]. The fact that the pyrimethamine
resistant line carried this mutation provides proof of con-
cept of this system to be able to identify drug resistant
mutations from a mutant library.

PDHER-TS crystal structure reveals the asparagine side
chain of the mutant enzyme is in steric clash with the p-
chlorophenyl moiety of pyrimethamine, which reduces the
binding affinity of pyrimethamine for the mutant enzyme
[10]. Although the selected drug-resistant library mutants
contained the expressed S108N mutation, it should be
noted that the drug-resistant library mutants are main-
tained episomally, and the increased dhfr gene copy num-
ber in episomes may contribute to drug resistance in
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transgenic P. berghei, as has been shown for the hdhfr
transfection marker [20]. Thus, to test the hypothesis that
pyrimethamine resistance in transgenic P. berghei is deter-
mined solely by the SI08N mutant allele, Pbdhfr-ts was
replaced with the Pfdhfi S'*N-ts mutant by double homo-
logous recombination. The integrated transgenic parasites
expressed PADHER*/%*N _TS with a single copy of mutant
Pfdnfr®'%*N under the control of endogenous Pbdhfr-ts 5’
and 3'UTRs. The resulting PhPfS108N transgenic parasites
showed susceptibility to pyrimethamine with EDs, values
66-fold higher than PbGFP wild type, which strongly sug-
gest that resistance is conferred by the S108N mutation.
In addition, PHPfS108N transgenic parasites grew the
same as PbGFP parasites. This result demonstrated that
the DHER-TS function is conserved between the two Plas-
modium species, in agreement with other cross-species
comparisons in the same genus [22]. Furthermore, the
pyrimethamine resistance mutation had no negative effect
on the function of the enzyme, in agreement with earlier
studies [21,23]. This demonstrates the capacity of the
transgenic P. berghei parasite model to study the fitness of
Pfdhfr mutant alleles in the whole transmission cycle.

For pyrimethamine resistance, in addition to SI08N
mutation, other mutations such as N51I, C59R and 1164L
are known to augment the resistance level in parasites
[21,23]. Although our mutant library is of sufficient
diversity to contain these other mutations, they were not
found among drug-selected parasites. In order to obtain
transgenic parasites with a higher level of resistance,
higher drug pressure will needed. However, selection of
highly resistant pyrimethamine alleles with two or more
mutations is not feasible, since mice could not tolerate
the very high pyrimethamine doses needed.

In conclusion, a new experimental system for predicting
the evolutionary pathway of antifolate drug resistance was
developed. The major advantage of this system is that
drug-resistant mutant alleles can be selected from diverse
Pfdhfr libraries in a Plasmodium surrogate cell in a proper
host background. Proof of concept for the system was
demonstrated using the well-known antifolate pyrimetha-
mine; however, new antifolates are being developed which
are also effective against pyrimethamine-resistant parasites
[24]. Therefore, the system could be utilized for identifica-
tion of possible novel drug-resistant mutants that could
arise against new antifolate compounds. This information
could be used for rational design of effective anti-malarial
drugs that forestall the emergence of drug resistance.
Furthermore, our approach could also be applied to other
Plasmodium enzyme drug targets for prediction the evolu-
tion of resistance mutations.
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