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Abstract

Background: The majority of the mosquito and parasite life-history traits that combine to determine malaria
transmission intensity are temperature sensitive. In most cases, the process-based models used to estimate malaria
risk and inform control and prevention strategies utilize measures of mean outdoor temperature. Evidence
suggests, however, that certain malaria vectors can spend large parts of their adult life resting indoors.

Presentation of hypothesis: If significant proportions of mosquitoes are resting indoors and indoor conditions
differ markedly from ambient conditions, simple use of outdoor temperatures will not provide reliable estimates of
malaria transmission intensity. To date, few studies have quantified the differential effects of indoor vs outdoor
temperatures explicitly, reflecting a lack of proper understanding of mosquito resting behaviour and associated
microclimate.

Testing the hypothesis: Published records from 8 village sites in East Africa revealed temperatures to be warmer
indoors than outdoors and to generally show less daily variation. Exploring the effects of these temperatures on
malaria parasite development rate suggested indoor-resting mosquitoes could transmit malaria between 0.3 and
22.5 days earlier than outdoor-resting mosquitoes. These differences translate to increases in transmission risk
ranging from 5 to approaching 3,000%, relative to predictions based on outdoor temperatures. The pattern appears
robust for low- and highland areas, with differences increasing with altitude.

Implications of the hypothesis: Differences in indoor vs outdoor environments lead to large differences in the
limits and the intensity of malaria transmission. This finding highlights a need to better understand mosquito
resting behaviour and the associated microclimate, and to broaden assessments of transmission ecology and risk
to consider the potentially important role of endophily.

Background
The transmission intensity of malaria is strongly influ-
enced by environmental temperature [1-5]. This effect
derives from the fact that malaria mosquitoes are small,
coldblooded insects, with body temperatures that will
tend to closely track that of the direct surrounding
environment. As temperature changes, so will mosquito
(and parasite) physiology and associated ecology.
Most biological process-based models that approximate

malaria risk use mean (often monthly) outdoor air tem-
perature to estimate the various mosquito and parasite
life history parameters that combine to determine trans-
mission intensity [1,6-11]. This approach has been chal-
lenged recently with studies demonstrating, for example,

the additional influence of daily temperature variation
[5,12] and the importance of microclimatic differences
between adult and larval mosquito habitats [13]. The aim
of the current study is to highlight a further factor shap-
ing the effects of temperature on malaria risk, namely the
influence of indoor vs outdoor temperatures.
The mosquito gonotrophic cycle (blood-feeding, egg

maturation and oviposition, which are repeated several
times throughout adult life) can be as short as two days,
but could take over a week, depending on temperature
[14-16]. If a mosquito lays eggs and searches for a new
blood meal during a single night (as appears appropriate
for Anopheles gambiae, which has been observed to
deposit the majority of eggs in the first hours after sunset
[17,18] and to bite throughout the night [19-21]), then a
large portion of the gonotrophic cycle is spent resting. But
where do mosquitoes rest?
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Mosquito resting behaviour can be divided into two
categories. An endophilic mosquito is defined as a mos-
quito that rests indoors, inside a human dwelling, during
the period between the end of blood-feeding and the
onset of searching for an oviposition site [22]. An exo-
philic mosquito spends this period somewhere outside
the human dwelling (Figure 1). Of the key malaria vec-
tors in sub-Saharan Africa, Anopheles gambiae s.s. is
thought to be largely endophilic and spend considerable
time indoors [23-27], although exophily has been
reported [28,29]. Anopheles funestus is also usually clas-
sified as a more endophilic species [25,26,30-33] but
again, exophilic behaviour is observed [34]. Anopheles
arabiensis, in contrast, is classified as a more exophilic
species [23,25,29,33-36], although the reverse behaviour
(endophily) is also reported [24,27,37,38].
Overall, while there appear some generalizations, rest-

ing behaviour appears to be relatively plastic with con-
siderable potential for variation between and within
species. Indeed, a couple of studies have reported no
significant tendency to repeated endophily or exophily
for even the same individual mosquito [26,39].

Presentation of the hypothesis
If mosquitoes are at least partially endophilic, then esti-
mating transmission intensity requires measures of
indoor as well as outdoor temperatures. Unfortunately,
there are only a few studies that actually measure the
mean indoor and outdoor temperature simultaneously,
and even fewer studies that keep track of the daily tem-
perature variability. From the limited studies that exist,
it appears that indoor temperatures in traditional houses

are a few degrees Celsius higher than the outdoor tem-
perature (Table 1, [14,40-44]). Additionally, the indoor
daily temperature range (or DTR, the difference between
daily minimum and maximum temperature) in tradi-
tional houses tends to be smaller than the outdoor DTR
(Table 1, [45,46]). That said, and the relatively modest
DTRs shown in Table 1 notwithstanding, large DTRs of
10-15°C are commonly observed indoors [40,41,47,48].
The difference between indoor and outdoor tempera-

tures is expected to alter temperature-related estimates
of transmission intensity. Some studies have attempted
to account for this effect by applying a simple tempera-
ture correction [49-51], and one study included actual
indoor temperature [41]. However, few (if any) studies
have quantified the differential effects of indoor vs out-
door temperatures explicitly.

Testing of the hypothesis
The parasite development time, or extrinsic incubation
period (EIP) is one of the most influential parameters
determining transmission intensity, as defined by the
basic reproductive number, R0 [52]. EIP is known to be
highly temperature sensitive [5,52,53]. Based on the data
presented in Table 1 the effects of mean temperature and
DTR inside and outside human dwellings on EIP was
assessed using two different malaria development models:
the widely used day-degree Detinova model [53], and the
non-linear thermodynamic model proposed by Paaijmans
and colleagues [12]. Using the reported minimum and
maximum temperatures (Table 1, [50,54]), air tempera-
ture [55] and EIP [for methods see 12] were modelled at
30min intervals.
Table 2a shows that small differences in temperature

between indoor and outdoor environments can have a
large impact on the estimated length of the EIP. With
warmer indoor temperatures, parasite development is
faster than predicted from ambient conditions, with dif-
ferences tending to becoming larger at higher altitudes as
indoor and outdoor temperatures become more diver-
gent. At the extreme, indoor environmental temperatures
can enable parasites to complete incubation at altitudes
where outdoor temperatures fall below the threshold for
development. Thus, the environmental limits for malaria
transmission depend not just on ambient conditions, but
also on indoor conditions and the extent of endophily.
These patterns are qualitatively similar for both tempera-
ture-development models. The patterns also hold up
when the influence of diurnal temperature fluctuations
is included, although temperature variation makes the
differences in growth between indoor and outdoor envir-
onments slightly less marked.
The EIP is just one of a range of parameters used to

determine R0 [52]. Assessing the absolute effects of
indoor vs outdoor temperatures on R0 requires estimates

Figure 1 Schematic overview of the gonotrophic cycle of
mosquitoes that both feed (exophagic) and rest (exophilic)
outdoors (left hand side of figure), or both feed (endophagic)
and rest (endophilic) indoors (right hand side of figure). At
these extremes, mosquitoes will spend the majority of their adult
lives under dramatically different environmental conditions.
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of all parameters. However, by taking the simplifying
(and conservative) assumption that other parameters
remain constant, the relative consequences of changes
in parasite development rate on R0 can be assessed
using the relationship between EIP and median daily
mosquito survival rate, p, derived from the R0 equation:
pEIP/-lnp [see 12 for more details]. Importantly, adult
mosquito survival is largely insensitive to temperature
across much of the transmission range, with mortality
only increasing markedly as mean temperature exceeds
35-36 °C [1]. Keeping p fixed (in this case a median
daily survivorship of p = 0.86, as used elsewhere [56])
enables the relative change in R0 due to effects of indoor
vs. outdoor temperature on EIP to be estimated.
As expected, the shorter EIPs resulting from the war-

mer conditions indoors than outdoors generate relative
increases in R0 (Table 2b). As differences between
indoor and outdoor temperatures increase (e.g. with

altitude), so does the relative change in transmission
intensity. With the current data set, relative increases in
R0 range from around 5 to approaching 3,000%, depend-
ing on the model and exact temperatures used.

Implications of the hypothesis
Use of relative R0 does not in itself quantify absolute
disease risk and as pointed out by Rogers & Randolph
[4], even a large increase from a very small initial R0

will still be a small R0. Nonetheless, this analysis clearly
reveals that current risk models based on mean outdoor
temperatures could be substantially underestimating
transmission intensity if mosquitoes spend significant
periods of the gonotrophic cycle resting indoors. At
higher altitudes, where the differences are greatest,
indoor resting may be common as mosquitoes attempt
to alleviate the burden of hostile outdoor microclimates
[57]. Variation between individual villages indicates that

Table 1 Outdoor and indoor microclimatic data (mean temperatures and temperature variability) in several villages at
various altitudes in Tanzania and Kenya

Outdoor temperature Indoor temperature

Year Country Village (#) Altitude(m) mean min max DTR mean min max DTR

1996 Tanzania Kwameta (1) 335 24.7 20.2 30.4 10.2 25 21.9 28.8 6.9

Magundi (2) 640 22.7 19.6 27.4 7.8 25.7 23.7 28.4 4.7

Kwamhanya (3) 775 22 18.9 26.6 7.7 25.8 23 29.2 6.2

Bagamoyo (4) 1040 19.4 16 23.7 7.7 22.1 20 24.7 4.7

Balangai (5) 1360 17.8 15.2 21.8 6.6 19.6 18.1 21.2 3.1

Milungui (6) 1686 15.7 11.7 20.6 8.9 19.5 18.2 20.6 2.4

2004 Kenya Kombewa (7) ~1200 22.5 17.6 29.7 12.1 23.1 20.1 26.5 6.4

Marani (8) 1500-1650 19.5 14.4 27.4 13 21.5 19.2 24.7 5.5

References: Village 1-6 [50], villages 7&8 [54].

Table 2 Parasite development time (EIP) and relative change in malaria risk (R0) based on indoor and outdoor
temperatures

Village # (a) Parasite development time (days) (b) Percent change in R0for indoor environments relative
to outdoor

Mean temperatures Fluctuating
temperatures

Mean temperatures Fluctuating temperatures

Detinova Paaijmans Paaijmans Detinova Paaijmans Paaijmans

EIPout EIPin EIPin-out EIPout EIPin EIPin-out EIPout EIPin EIPin-out

1 12.8 12.3 -0.4 12.1 11.7 -0.3 12.9 12.1 -0.8 +7 +5 +12

2 16.6 11.4 -5.1 15.3 11.0 -4.3 15.0 11.1 -3.8 +117 +91 +78

3 18.5 11.3 -7.2 17.0 11.0 -6.1 16.5 11.3 -5.2 +195 +149 +119

4 32.6 18.2 -14.5 29.0 16.7 -12.3 28.5 16.9 -11.6 +784 +536 +478

5 ND† 30.8 N/A 50.1 27.5 -22.5 42.1 28.4 -13.7 N/A +2889 +693

6 ND†† 31.7 N/A ND† 28.3 N/A ND† 30.1 N/A N/A N/A N/A

7 17.1 15.6 -1.4 15.8 14.5 -1.3 15.8 15.1 -0.7 +24 +21 +12

8 31.7 20.2 -11.5 28.3 18.5 -9.8 23.6 18.2 -5.4 +469 +337 +126

Parasite development was calculated with two different published models [Paaijmans’ equation ref. 12, Detinova’s equation ref. 53] using the outdoor and indoor
temperature data presented in Table 1. EIPout indicates parasite development derived from outdoor temperatures, EIPin indicates development derived from
indoor temperatures and EIPin-out indicates the number of days difference in parasite development indoors compared with outdoors.
† No development: completion of parasites development takes longer than the upper limit for mosquito survival of 56 days [1]
†† No development: temperature below lower threshold for P. falciparum development.
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application of a simple temperature correction factor is
unlikely to capture the effects across different house
structures and local environments.
The effect of the indoor microclimate will also extend

to other temperature-dependent life-history characteris-
tics, such as blood-meal digestion and egg production,
potentially increasing malaria risk by endophilic mosqui-
toes even further. Understanding malaria transmission
ecology and malaria risk, therefore, requires better aware-
ness of mosquito resting behaviour and the associated
microclimate. In this regard, the current study reveals a
number of important knowledge gaps:

Where do exophilic mosquitoes rest and what are
the exact microclimates?
Searches for outdoor resting mosquitoes have frequently
proved time consuming and unrewarding [58]. It seems
likely that indoor collections will result in a relatively lar-
ger proportion of mosquitoes being caught, even when the
outdoor resting population is of the same size or larger. A
human dwelling is extremely small compared with its out-
door surroundings and so the size and importance of the
exophilic fraction of a population is probably often over-
looked [58,59]. The consequences of a prevailing sampling
bias was highlighted recently with the discovery of a pre-
viously unknown subgroup of exophilic An. gambiae in
Burkina Faso [60].
Outdoor resting mosquitoes seek shelter in a variety of

environments, such as under the eaves of huts, in dry
pots, canal water pipes, undersides of bridges, at bases of
trees, in tree holes, piles of fallen leaves, cracks and cre-
vices of brick pits, cracks and holes in the ground, small
ridges under rocks, granaries, etc. [26,58,59,61,62]. All
these sites are likely to be heavily shaded [61], and have
their own specific microclimate. Outdoor temperature
data, however, are most commonly collected from
met-stations, such as Stevenson screens. Whether these
met-station data are representative of the outdoor micro-
climates experienced by mosquitoes is unclear. Studies
similar to the one by Meyer et al [63], in which microha-
bitat temperatures of resting places of Culex tarsalis
were monitored in detail in California, USA, are urgently
needed for tropical malaria mosquitoes.

Where do endophilic mosquitoes rest and what
are the exact microclimates?
Indoor temperature will strongly depend on factors such
as season [14,41,42], location/altitude [14,40-42,50,54],
the nature of the building structure [47,48,64], its sur-
roundings [14,40-42], the number of occupants [44],
and whether people burn wood indoors [65]. Addition-
ally, even within a single house there is likely to exist a
gradient of temperature microhabitats [66].

There appear few records of exactly where African
malaria mosquitoes rest within a house. In Burkina Faso,
95% of the An. gambiae and An. funestus mosquitoes were
resting on the ceiling [67]. In South-America, the pre-
ferred resting site within houses appears to differ between
species and locations. In Columbia it was observed that
Anopheles darlingi and Anopheles marajoara tended to
rest close to the ground, whereas Anopheles oswaldoi and
Anopheles rangeli rested higher up [68]. In Brazil, on the
other hand, An. darlingi mosquitoes were mostly collected
from the ceiling (59%), with 37% resting on the walls and
only 4% on the floor [69]. In Guatemala, the greatest num-
bers (53%) of Anopheles albimanus were found at the
undersurface of shed roofs, the remainder mostly on walls
(28%) and furniture (13%) [70].
Similar variation has been observed in Asia for Ano-

pheles culicifacies. In Maharashtra, India, about 70% were
found resting on the underside of roofs of village houses
while only 30% rested on the vertical walls and surface of
furniture, vessels, grain bins, etc. In villages around
Delhi, 72% of An. culicifacies were found resting on the
ceiling and walls above 1.8 m from the floor [71]. In Sri
Lanka, however, it was found that the species preferred
to rest on walls below 1.8 m [72]. Whether such beha-
vioural variation is important with respect to tempera-
ture, and is possibly even driven by microclimate
selection, is uncertain.

Do mosquitoes moderate body temperature via
behavioural thermoregulation?
Short-term selection of thermally favoured microcli-
mates, especially of sunny or shaded substrates, is prob-
ably the most common mechanism for control of body
temperatures in insects [73]. The extent to which adult
mosquitoes select habitats based on micro-environment
and can behaviourally thermoregulate, however, is
unclear. One study examined the escape or avoidance
behaviour of An. gambiae and An. arabiensis in response
to increasing temperatures and showed An. arabiensis to
be slightly more thermally tolerant than An. gambiae
[74]. Another study showed that newly-emerged An.
gambiae mosquitoes can avoid desiccation by using their
thermohygroreceptor cells to guide them to cooler and
more humid locations that facilitate survival [75]. These
observations are consistent with thermal gradient studies
on Anopheles stephensi, which indicated some ability to
avoid temperature extremes, although no clear capacity
to maintain steady body temperatures by behavioural
thermoregulation was observed [76]. Beyond these exam-
ples, research investigating whether adult mosquitoes
make behavioural choices in response to temperature is
limited. Given the potential importance of the behaviour,
further studies, including whether malaria parasites have
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the potential to manipulate mosquito microhabitat selec-
tion (cf. [77]), would appear warranted.

What are the implications of changes in resting
behaviour due to vector control tools?
The use of insecticides on bed nets (ITNs) [78-81], eaves
curtains [82], durable linings [83], or by indoor residual
sprays (IRS) [84], all have the potential to keep/drive
malaria vectors outdoors. Evolution of such behavioural
resistance is a major threat to malaria control as all these
front-line tools rely on mosquitoes feeding and/or resting
indoors [85,86]. However, in some settings a switch to
actual outdoor resting could result in increases in EIP and
a reduction in underlying transmission intensity (Table 2).
The extent to which such changes could offset any proxi-
mate reductions in control will depend on the specifics of
the system. Based on the relative changes in R0 presented
in Table 2, a shift to outdoor resting could reduce trans-
mission intensity many fold and in theory, in areas where
the outdoor environment it is too cold for parasites to
complete their development within the lifespan of the
mosquito, could even lead to local elimination.
The list of questions above highlights many unknowns

and sets out numerous research challenges. Nonetheless,
given that certain mosquitoes clearly spend part of the
gonotrophic cycle indoors and that indoor microcli-
mates do generally differ from outdoor microclimates, it
seems important that malaria risk assessments move
away from use of mean outdoor temperatures alone.
Based on current knowledge it seems unlikely that pro-
cessed-based models can fully capture the complexities
of variable mosquito behaviours across variable environ-
ments. However, a useful starting point could be to take
the extremes of complete exophily vs complete endoph-
ily and use these assumptions to explore the range of
transmission intensity possible based on the full extent
of microclimates available within a location.
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