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Abstract

Maputo province, Mozambique.

Background: The objective of this study is to analyze the spatial and temporal patterns of malaria incidence as to
determine the means by which climatic factors such as temperature, rainfall and humidity affect its distribution in

Methods: This study presents a model of malaria that evolves in space and time in Maputo province-Mozambique,
over a ten years period (1999-2008). The model incorporates malaria cases and their relation to environmental
variables. Due to incompleteness of climatic data, a multiple imputation technique is employed. Additionally, the
whole province is interpolated through a Gaussian process. This method overcomes the misalignment problem of
environmental variables (available at meteorological stations - points) and malaria cases (available as aggregates for
every district - area). Markov Chain Monte Carlo (MCMC) methods are used to obtain posterior inference and
Deviance Information Criteria (DIC) to perform model comparison.

Results: A Bayesian model with interaction terms was found to be the best fitted model. Malaria incidence was
associated to humidity and maximum temperature. Malaria risk increased with maximum temperature over 28°C
(relative risk (RR) of 0.0060 and 95% Bayesian credible interval (Cl) of 0.00033-0.0095) and humidity (relative risk (RR)
of 0.00741 and 95% Bayesian CI 0.005141-0.0093). The results would suggest that additional non-climatic factors
including socio-economic status, elevation, etc. also influence malaria transmission in Mozambique.

Conclusions: These results demonstrate the potential of climate predictors particularly, humidity and maximum
temperature in explaining malaria incidence risk for the studied period in Maputo province. Smoothed maps
obtained as monthly average of malaria incidence allowed to visualize months of initial and peak transmission.
They also illustrate a variation on malaria incidence risk that might not be related to climatic factors. However,
these factors are still determinant for malaria transmission and intensity in the region.

Background

Malaria is considered one of the most deadly diseases in
Mozambique, with around six million cases reported
each year [1]. Most of these cases are Plasmodium falci-
parum [1,2]. Transmission takes place all year round
with a seasonal peak extending from December to April.
Many factors affect the dynamics of malaria transmis-
sion and infection, ranging from social to natural. Rain-
fall and temperature can be considered the major
natural risk factors affecting the life cycle and mosquito
breeding [2]. Relative humidity plays a role in the life-
span of the mosquito. In the presence of high relative
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humidity values, the parasite would complete the neces-
sary life cycle in order to increase transmission of the
infection to more humans. All districts in Maputo pro-
vince show favourable climatic conditions for develop-
ment and transmission of malaria [3]. Studies on
prevalence of malaria are important not only to assess
the problem of malaria in a given region, but also to
analyse the effectiveness of strategies for primary and
secondary prevention, as well as its quality and impact.
A combination of advances in hierarchical modelling
and geographical information systems has led to the
developments in fields of geographical epidemiology and
public health surveillance. This made it possible to
explore and characterize different sets of spatial disease
patterns at a very fine geographical resolution [4]. As a
result, disease mapping has been widely used in
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epidemiology and public health research [5]. The use of
geographical mapping helps the detection of areas with
high disease incidence for which usually neighbouring
areas show similar factors. One common application of
disease mapping has been in describing the variation in
health outcomes over geographic regions. However,
mapping of crude disease rates can be quite misleading
particularly at a small area level. This is often due to the
combination of two factors: small regional incidence
counts and the presence of spatial correlation in the
rates. Low prevalence diseases do not provide a possibi-
lity of obtaining stable estimates at the district level. For
high prevalence diseases like malaria however, these
estimates are easily attained due to the availability of a
large amount of information at the district level.

Different approaches have been used to model spatio-
temporal problems, starting from work by [6] in which
space-time interaction is realized by assuming area-speci-
fic linear time trend for relative risks. Many other
researchers [7,8] proposed and implemented space-time
models with different interactions. Spatial and temporal
malaria variation is studied in [9] with an investigation of
possible geographical expansion of malaria transmission.
Space-time models using malaria data are investigated in
research by [10,11] where they use dynamic and Bayesian
models respectively. Climatic variables are then used as
covariate predictors of malaria incidence risk.

This study is motivated by the need to investigate the
spatial and temporal variation in malaria rates at the
district level in Maputo province - Mozambique, for the
period 1999-2008. It is postulated that malaria incidence
rates are highly influenced by environmental factors that
vary in space and time. To establish this influence, a
Bayesian hierarchical model relating malaria incidence
rates and climatic data is formulated. The analysis looks
at possible relationships between environmental factors
and malaria rates to learn about spatial and temporal
similarities amongst these rates on different districts of
Maputo province. It is expected that the model will
facilitate the mapping and elucidation of spatio-temporal
patterns of malaria incidence risk. However, before
employing environmental factors to explain malaria inci-
dence two issues need to be considered first:

1. The problem of incomplete data, i.e. missing of
some explanatory variables. Multiple imputation
approach to missing data is pursued.

2. Gelfand et al [12] define the change of support
problem (COSP) as relating to the inference about
the values of a variable measured at different levels
of spatial aggregation from those at which it has
been observed. In this study, the COSP is addressed
by interpolating these factors (covariates) through a
Gaussian process.
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The aims of this investigation are:

(a) To provide a spatio-temporal analysis of malaria
incidence risk;

(b) To determine the contribution of predictors/cov-
ariates in the variation of malaria incidence risk

Methods

Study area and data

Given the wide geographic range of Mozambique and
weakness of health information system in other regions
of the country, a particular region less comprehensive
than the whole country was chosen with better quality
systems of health recording. Maputo province is located
in south of Mozambique with an estimated area of
23,669 square kilometres. Eight administrative districts
comprise the province and are shown in the map of
Figure 1. Detailed description of study area is given else-
where [3].

The data comprises malaria rates and environmental
averages of rainfall, temperature (minimal, average and
maximum) and relative humidity for years 1999-2008 in
each month. In fact, the environmental data are avail-
able as monthly averages at each monitoring station
obtained through the National Institute of Meteorology
(INAM), and the response is available as monthly counts
of malaria cases in each district. Malaria data includes
records from health posts and centres, and rural hospi-
tals compiled at district level in Maputo province [3].
These counts are registered daily and used to generate

w%ﬂ,
\

MAGUDE

{
{

MOAMBA MANHICA |

MARRACUENE

| maTol'A

“BOANE.-
NAMAACHA * p

{‘

MATUTUINE

by,
11 500 000

Figure 1 Study region.
.




Zacarias and Andersson Malaria Journal 2011, 10:189
http://www.malariajournal.com/content/10/1/189

Weekly Epidemiology Bulletin. It includes both micro-
scopically and clinically confirmed cases. They are col-
lated and summarized by each district health
department and reported to provincial health Officers’
monthly. The summaries are than sent to the Ministry
of Health and shared with different disease control pro-
grammes. Expected malaria cases are taken as the num-
ber of people in each district according to population
projections of 1997 and 2007 national census. Figures 2
and 3, illustrate the variation of malaria cases for years
with highest and lowest frequency respectively.

Modelling
Environmental data used in this study is collected at
monitoring stations located in five out of eight districts
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in Maputo province. This a typical situation of change
of support (misaligned) problem with environmental
factors observed at fixed locations s (point referenced
data), whereas the malaria cases are observed at district
level. Different approaches are proposed by Zhu and
colleagues [12] to tackle the problem of misaligned,
namely: predictions from points to points, points to
blocks and blocks to blocks. Their work is supported by
an application to a static spatial case using the dataset
of point-level ozone measurements in the Atlanta
metropolitan area. Same researchers in [13] investigated
further, by looking at the relationship between ambient
ozone and paediatric emergency room visits. The appli-
cation is extended to spatio-temporal model with log-
ozone modelled by a stationary Gaussian process. Before
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attempting to model misaligned data it was necessary to
address the problem of missing data.

A. Modelling environmental data

A.1 Missing data imputation In the process of data
analysis, it is commonplace to observe that data for each
case are not always complete. Rather, some data are
usually missing. The amount of missing data may be
minimal for some cases; in others perhaps significant.
Problems dealing with the analysis of missing data have
been extensively reviewed in the scientific literature
[14-16]. Environmental time series generally have as
their main focus physical and chemical measurements.
Hence, problems such as reserved information, privacy
respect and non-response as for example in social and

medical surveys are not present. The main sources of
missing records considered in this study are:

« Break-down of measurement instruments;
» Maintenance interventions, and
+ Reading invalidation.

Thus, the data was analysed assuming missing at ran-
dom mechanism with an incomplete level of environ-
mental observations of around 16.7%. Multiple
imputation (MI) package in R [17] was used to perform
the imputation of m = 5 values for each missing record
hence creating five complete datasets. The five imputed
values on each variable of interest were aggregated to
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Table 1 Overall estimated mean and variance of imputed
data.

Estimated Rain Max- Min- Mean- Humidity
Temp Temp Temp
Mean 73.08 2944 17.08 2323 69.16
Variance 3957.74 1.861 4.934 3.21 19.586

produce inferential results. The single point estimate
was attained by averaging the values of parameter esti-
mates for the covariates rain, humidity and temperature
(maximum, mean and minimal values). Table 1 shows
the variation and mean of each imputed environmental
covariate obtained through MI.

In the execution of space-time model with one

imputed data set, the results obtained for the main para-
meters were similar to the run of the model with the
data obtained as average values of the five datasets. This
assures us that the procedure applied for MI produced
consistent results.
A.2 Misaligned problem The change of support pro-
blems of interest includes predicting rain, temperature
(minimum, mean and maximum) and relative humidity
measurements at different points on the map and from
that moving to prediction of average weather parameters
at district level. Although there are at least twenty-six
weather stations registered in Maputo province, on aver-
age only five or six stations are operational at any time.
The sites are daily monitored within the same time
interval and data is aggregated for every four weeks
(month). Hence, it comprises time series of spatial pro-
cesses as the time scale is equally spaced. It is reason-
able to consider the change of support problem only in
space [13].

Assuming continuous observations from a spatio-tem-
poral process denoted by Z(s, £) at time ¢ ¢ T and location
s € D, we seek to change support from observed points to
district (block) averages. Following the approach
employed in [13], the block average is defined as,

28,0 = 187" [ 2(5,1) e )

B

where |B| is the area of block B © D. Each point in
Maputo province is described by its latitude and longi-
tude coordinates through a spatial random field {Z(s):s
€ D}, where D € R? and p = 2. The amount of rainfall,
temperature and humidity Z,(B1), ..., Z{B,,) = Z1p -
Z,q¢ 1s predicted for each time ¢ (month) in all districts.
To obtain predictors for each district (block) B;, a 90-
point grid is overlaid over Maputo province map and
the integral in (1) was approximated to a sum. The
interpolation is performed by applying Bayesian kriging.
Following [4], the random field has to be Z = Z(sy), ..., Z
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(s,,) predicted at non-observed point sg. The model is
specified as,

Z =XpB +¢e,where e ~ N(0, X) (2)

A spatial covariance structure with no nugget effect is
used, with T specified as £ = 6°H(¢) where H(p); =p
(@; dij). Being the d;; = || s; - s; || distance between
points s; and s; and p is an ordinary exponential func-
tion. To complete model specification independent
priors are assigned to the parameters namely, a multi-
variate normal for 3, inverse gamma for 6> with para-
meters a = 0.004 and b = 0.02, and a gamma prior for ¢
with mean 0.12 and variance about 0.05. The amount of
each environmental factor predicted in every district i
was estimated as the mean of the posterior predictive
distribution of the random field process at points of the
grid that have fallen within that district. This procedure
was independently repeated for every year r = 1999, ..,
2008.

B. Modelling malaria risk in space and time

As a result of preliminary bi-variate analysis performed
in statistical package R, the explanatory covariates tem-
perature (minimal, mean and maximum), rainfall and
humidity showed a significant relationship p < 0.001
with malaria incidence (Table 2). The data consists of
observed malaria counts O,; and expected cases E,; in
districts i = 1, ..., M (M = 8), for year r = I, ..., Years
(Years = 10) and month ¢ = 1, .., T(T = 12) in Maputo
province.

Counts of malaria are registered daily at different
health centres and rural hospitals generating Weekly
Epidemiology Bulletin. They are collated and summar-
ized by each district government health department and
reported to provincial health Officers’ monthly. These
summaries are sent to the Ministry of Health and shared
with different disease control programmes. Expected
cases are taken as being the population of each district
in a corresponding year.

Malaria observed counts are assumed to follow a Pois-
son distribution with mean g,;,. The log-relative term
modelling all predictor data variables is written as,

log(urit) = log(Pri) + o + ,BTXrit +0; + @ + it (3)

Table 2 Results of bi-variate analysis of prediction
variables.

Covariate Coefficient SE P-value
Min-Temp 078 0001 < .001
Mean-Temp 0694 0002 < .001
Max-Temp 0558 0002 < .001
Rainfall 001 000006 < .001
Humidity 0742 00014 < .001
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where o is a measure of overall incidence (intercept
term), 0; is the spatial random effect and ¢,, is the
monthly temporal random effect for each year. J,; is
defined as space and time interaction term with 8 and
X,i; being vectors of regression coefficients and environ-
mental covariates respectively. The spatial dependence is
introduced through the conditional autoregressive
(CAR) process.

In the CAR model, the conditional distribution of each
0, given all other O’s is a normal distribution with mean
equal to the average of #’s of its neighbours, and preci-
sion proportional to the number of neighbours. Hence,
a neighbourhood structure needs to be defined and sup-
plied to the model through matrix W. This matrix is
important as it specifies how much influence neighbour-
ing districts will have on district i. Figure 1, illustrates
the location of each district where can be noticed that
the shapes and the lengths of their boundaries vary
quite a bit among districts.

One simple way to take this information into account
is to assign different weights to neighbouring districts
according to the length of their boundaries. Therefore,
two different specifications of the weighting matrix W
are used:

1. Binary structure with w; = 1 for neighbouring dis-
tricts i and j, and w;; = 0 otherwise;

2. Weighted by the length of the boundary, i.e. with
w;; equal to the border length (in km) for districts i
and j, and w;; = 0 for districts not sharing common
boundary. In this case the effect of neighbouring dis-
trict varies according to the extension of its
boundary.

To capture local dependence in time, the year and
month temporal trends ¢,, were given a first order ran-
dom walk prior that allows for year independence. This
is a simply one dimensional version of the CAR Normal
prior distribution. Hence,

¢ ~ CARNormal(Q, aj) (4)

and the weight matrix Q defines the temporal neigh-
bours of month ¢ as being months -1 and ¢+1 for ¢ = 2,
..., 11; with months ¢ = I and ¢ = 12 having singular
neighbours.

The space-time interaction terms J,;; capture depar-
ture from space and time main effects which may high-
light space-time clusters of malaria risk. In the present
study they are assumed to be independent for every year
and month with a constant variance over time. This is
captured by an auto-regressive AR(1) prior process. It is
parameterized by a temporal variance o7 that allows for
correlation between consecutive months within the
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same district, i.e. assumes that cases at month ¢ are
influenced by cases of month ¢-1. This relationship
holds for months in same year and also for December-
January relation of consecutive years, except for January
in first and December in last year. A uniform prior was
specified to the intercept term and a standard normal
prior for coefficients f with high variance. Spatial and
temporal random effects variance parameters were spe-
cified inverse gamma hyper-prior distributions.

The covariate mean temperature was removed from
the analysis as it is in general highly correlated with cov-
ariate values of maximum and minimum temperatures
respectively. However, it was felt necessary to introduce
into the analysis the influence of temperature variation
on the incidence of malaria, which is modelled by the
differences of maximum and minimum temperatures at
each time point. Humidity, minimal and maximum tem-
perature showed non-linear relationship to log(O,;,) and
were converted to categorical variables for further analy-
sis. Hence, to isolate outliers from the analysis and
allow for better observation of the linearity relationship
between the variables of the model, the plotting of log-
transformed climatic covariates against the ratio of
malaria prevalence and population was performed. Their
scatter plots are shown in Figure 4. Cut-off points were
determined using the statistical package R, with the
superimposition of graphs of predictors and the distri-
bution of the ratio of malaria cases and population. For
points that did not appear on the x axis, the minimum
and/or maximum values (inflection points) were deter-
mined, taking also into consideration the change of con-
cavity of the graph. This resulted into having ten
coefficients for different threshold intervals with outliers
being disregarded.

Model fitting used Markov Chain Monte Carlo
(MCMC) simulation techniques implemented in Win-
bugs with employment of two parallel consecutive
chains. A burn-in of 30,000 iterations was allowed
where values of main parameters were stored. Diagnos-
tic tests for convergence of stored variables were under-
taken, including the analysis of the Brooks, Gelman and
Rubin statistics and visual examination of history and
density plots, and by computing Monte Carlo errors
(MCE). The value MCE/SD was less than 0.05 and thus
concluded that sufficient iterations had been conducted.
This was followed by a further 30 000 iterations run to
obtain posterior distributions of the parameters.

Results

On average, 324,014 malaria cases were reported per
year. Although displaying cases of malaria incidence for
just two years, the skewness of malaria data in time ser-
ies plotted in Figures 2 and 3 is apparently evident.
Therefore, there was a need to generate and model
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Figure 4 lllustration of linear relationship of covariates versus malaria cases in log scale. Piecewise intervals of climatic factors.
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smoothed estimates disease risk in order to extract
important features from the data. Seven different models
were initially analysed following equation (3) and a com-
parison of their appropriateness performed. This led to
dropping of purely temporal structure as being non-
important according to its Deviance Information Criteria
value [18]. Further refinement considered was the omis-
sion of spatio-temporal effect. This resulted into a non-
converging spatial model. Table 3 gives the final consid-
ered set of models. The DIC analysis shows that model
Bwas found to be the best fitted model. Thus, results
presented are based on this fitted model.

Table 4 shows the regression coefficients of the space-
time model where it can be seen that rainfall, minimum
temperature in the range 11 to 16.4 and maximum tem-
perature in the range 24.5 to 27 degrees centigrade are

not associated with incidence risk of malaria in the per-
iod under study. However, values of minimum tempera-
ture between 17 and 21.1°C, maximum temperature of
28 to 35°C and the occurrence of relative humidity in
the range 54.5% to 83% determined positive association
with malaria risk. Maximum temperature and humidity
in the same range contributed significantly to malaria
incidence. Furthermore, an increase of 1°C of maximum
temperature leads to higher increase of malaria

Table 3 Comparison of fitted models.

Model Description Weight structure DIC
(A) - Full model Border lengths 10714.8
(B) - Full model Binary adjacency 10711.8
(C) - Non-spatial None 107195
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Table 4 Posterior estimates of intercept ¢, environmental
regression coefficients B, of spatial o and spatio-
temporal (’52 variances obtained by fitting model B
(Table 3), including 95% credible intervals.

Variable Mean 95% ClI P-value
Intercept (o) -4.248 -4.389, -4.124 None
Rainfall (mm) -430E-  -9.54E04, 1.01E- 059

04 05

Minimal Temperature (°C)

(11-16.4) -005 -01, 1.11E-04 055
(17-21.1) 2.85E-04 -003, .005 96
Maximum Temperature (°C)

(24.5-27) -001 -.006, .003 55
(28-31) 002 6.39E-04, .004 001

(32-35) 006 .003, .009 < .001

Relative Humidity (%)

(52-61.56) 007 004, .011 <001

(62-72) 006 004, .007 < .001

(73-83) 007 .005, .009 < .001
Temperature variation 5.24E-04 -002 .003 61

Spatial variation ((792) 3,686 871, 1081 None

Spatio-temporal variation 2352 214, 258 None

CR)

incidence risk. Whereas, an increase of 1% of relative
humidity leads to a variation of malaria from lower to
higher incidence risk.

The effect of humidity and maximum temperature on
malaria incidence risk is very high as illustrated by their
mean posterior predictive P-value in Table 4. The mean
P-value decreases below the critical values as the maxi-
mum temperature levels increases. For humidity predic-
tor the mean P-value shows similar pattern. The values
estimated by a posterior Bayesian model show a marked
variation compared to the Standard Mortality Ratio as
shown on maps (See Additional files 1 and 2). There are
no similarities in general for regions with both higher
SMR and estimated malaria risk. It can be seen that for
the months of May to July malaria incidence is very
stable. The trends of incidence in the districts of Matu-
tuine and Namaacha are generally lower compared to
other districts except for August where this trend
increases in the district of Namaacha. For the district of
Namaacha, this could particularly be due to being
located at higher altitude compared to other districts.
Most of its administrative posts lie 400 meters above sea
level while the other districts are around 50 meters and
surrounded by several water basins. The model using
border lengths for weighting matrix did not improve
model performance as it is shown by results of DIC ana-
lysis in Table 3. It only over-performed the model with
no spatial dependency, i.e. non-spatial model.
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Discussion and conclusions

This research have analysed malaria cases data from
spatio temporal perspective to identify significant pre-
dictors associated with malaria incidence risk and to
produce contemporary smoothed maps of disease risk in
Maputo province. Maps of smoothed space-time malaria
incidence have been produced in several studies [9-11].
Besides the application of techniques of data multiple
imputation and spatial alignment in a typical problem
analysing the incidence of malaria in Mozambique, this
study implements the Bayesian models for analysis with
inclusion of temporal random effects and space-time
interaction terms.

The problem of missing data is a major issue during
the analytical process of any study. This is normally
addressed by applying imputation techniques. They fol-
low into two categories: single imputation and multiple
imputations (MI). The first has been subjected to
increasing criticism by researchers due to its tendency
of introducing bias and underestimating standard errors
[19]. However, if the quantity of missing values is very
small (less than 5%) this methodology can in general be
considered accurate. The procedure of multiple imputa-
tions is a more general method for inference with miss-
ing data. It replaces each missing record with multiple
plausible values instead of a single replacement of miss-
ing observation.

The mechanism of missing data relates to the underly-
ing reason why the data are actually missing and may
follow into three categories [20]:

1. Missing Completely at Random (MCAR): in terms
of analysis, no difference established between miss-
ing and not missing cases.

2. Missing at Random (MAR): missing data is fully
described by variables observed in dataset.

3. Missing Not at Random (MNAR): data missing in
an unmeasured fashion termed “non-ignorable”

The establishing of main source of missing records
helped to determine and identify the MAR as the most
appropriated missing data mechanism underlying the
environmental data incompleteness in this study.

The spatial pattern of malaria showed that to the
north of Maputo province there is a more pronounced
pattern of incidence. In contrast, sub-regions to the cen-
tre and south exhibit levels of relatively lower incidence.
The main hypothesis for these results could be occur-
rence of other factors such as indoor pulverization,
proximity to water basins, etc. However, the absence of
this information has prevented the inclusion of these
variables in the analysis. Furthermore, as malaria has a
certain period of latency it would ideally be not to
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include the information about for example present
indoor pulverization, but this activity in the past. On the
other hand, it is not observed a single temporal gradient
of malaria relative risk, with some areas showing a
decrease and others exhibit a relative increase. Further-
more, the quantification of relative amount of spatial
risk pattern has helped highlighting districts with low
and high proportions of malaria incidence at a given
time period [11]. In addition, this study may also contri-
bute to the evidence of the importance of spatial and
temporal smoothing of random effects in mapping
malaria [9,11,21-23].

This study showed that the combination of the
monthly maximum temperature in the range 28 to 35°C
and relative humidity in the range 54.5% to 83% pro-
vided suitable condition for malaria transmission. The
negative association attained by maximum temperature
in the range of 24 to 27°C to malaria incidence, could
indicate a need of warmer temperatures for malaria
transmission [11]. The performance of rainfall in the
analysis could be influenced by the presence of humidity
covariate. High levels of humidity is generally observed
when temperature and rainfall are also high, thus lead-
ing to suitable conditions of parasite development due
to available breeding sites and survival of mosquitoes
population [24].

The mapping of averaged smoothed incidence malaria
risk for each month and ten years period allows a
visually display for months of initial and peak transmis-
sion. See Additional files (Additional Files 3 and 4). This
may provide information on the length of transmission
based on the predicted relationship with the included
covariates. Although this study does not present seaso-
nal analysis of malaria incidence variation as in [11], the
monthly variation illustrates some seasonal pattern in
months May-July (usually considered part of winter per-
iod in Mozambique), where the warmer temperatures
may have induced the reduction of the die-back mosqui-
toes and parasite levels, increasing substantially their
availability in the following months. Nevertheless, the
climate remains the main limiting factor of malaria
intensity controlling transmission at both spatial and
temporal dimension [25,26].

In conclusion, the models applied in this study
adjusted for unobserved spatial and temporal variation
on risk factors, while allowing for inter-monthly and
inter-annual variation in malaria incidence to be influ-
enced by environmental conditions. Nevertheless, the
variation on incidence malaria risks could also be
affected by other factors not considered in the analysis.
These results may be useful for developing of climate
based malaria surveillance systems in Mozambique
which can help bring a better management and imple-
mentation of nation-wide malaria control programmes,
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by guiding public and private policies towards reducing
malaria incidence in Maputo province. Variation from
normal monthly minimal temperature and rainfall pat-
terns in this study, showed their limited use for predict-
ing malaria incidence in Maputo province.
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Additional file 4: Relative risk for months July to December.
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